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Abstract
Mercury (Hg) is a great concern for marine environments. Bird feathers have been widely used to assess Hg pollution. In this 
study, we determine mercury concentrations in body feathers of juvenile Magellanic penguins (Spheniscus magellanicus) 
from the southeastern sector of Buenos Aires province, Argentina, during a non-breeding season, considering both sexes. Hg 
levels, considering both females and males together, ranged between 265.5 and 1515.52 ng/g. These levels are well below 
the concentrations in feathers suggested for taking actions focused on the protection of seabirds. Non-significant differences 
between sexes regarding Hg levels were found, probably because juveniles were sexually immature and females did not 
excrete Hg by egg laying yet. Hg concentrations found in this study were an order of magnitude higher than those reported 
10 years ago for the species in breeding areas on the Argentine coast. Thus, the present study provides relevant informa-
tion indicating a possible increase of Hg pollution in the southwestern region of the Atlantic Ocean and thus trigger for the 
development of monitoring programs and regional strategies to improve the conservation status of this species.
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Introduction

Mercury (Hg) is a persistent and non-essential heavy metal, 
well known as highly toxic causing detrimental effects on 
nervous, immune, cardiovascular, renal, respiratory, repro-
ductive, and endocrine systems on both humans and animals 
(García-Fernández 2014; Risher and Amler 2005). Natural 

sources of Hg encompass emanations from volcanoes and 
fumarolic degassing, among others (Pirrone et al. 2010; 
Mason et al. 2012), while anthropogenic ones include pet-
rochemical and metallurgical industries, mining and process-
ing of ores, and waste incineration and disposal (Pacyna 
et al. 2006). Although its supply, trade, and demand are 
regulated in 128 countries, including many South American 
countries such as Argentina, by the Minamata Convention 
since 2013 (UNEP 2013; 2018), Hg is a long-range trans-
ported contaminant, which can globally cycle between earth, 
atmosphere, and oceans (Lamborg et al. 2014). Coastal and 
oceanic ecosystems play an important role in the global 
cycle of Hg, acting as the recipients of much of the atmos-
pheric deposition of Hg and all industrial water runoff (Zam-
ani-Ahmadmahmoodi et al. 2010; Lamborg et al. 2014). 
The high concentrations of Hg in marine organisms, such 
as predatory fish, marine turtles, and mammals, and even 
marine birds, are a consequence of its bioaccumulation and 
biomagnification through the food webs (Lavoie et al. 2013; 
Gómez-Ramírez et al. 2020; Albertos et al. 2020). Inorganic 
Hg reaching aquatic environments can be transformed into 
its organic form (methyl mercury) by microbial activities 
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(Fitzgerald et al. 2007; Lyons et al. 2017). Methyl mercury 
is taken up from food and water by the biota, accumulated 
in their tissues with a half-life elimination rate ranging from 
some days to about 2 years, depending on the organisms, 
thus enabling its biomagnification through the food web 
(Cole et al. 1999; Monteiro and Furness 2001).

Seabirds are usually used for monitoring marine ecosys-
tems health (Burger and Gochfeld 2004; Mallory et al. 2010; 
García-Fernández et al. 2020), and studies assessing Hg 
accumulation in their tissues have increased since the 1960s 
(Burger and Gochfeld 2009; Espín et al. 2012). Given their 
particular life history traits, including high trophic position 
and longevity, these species integrate exposure to contami-
nants over large geographic areas, turning seabirds into suit-
able sentinels of chemical pollution of marine ecosystems 
(Burger and Gochfeld 2004; García-Fernández 2014). It is 
noteworthy to stress that one-third of the total species of 
extant seabirds are listed under some type of threatened cat-
egory (Croxall et al. 2012); thus, non-destructive technics, 
such as the use of feathers and blood samples, are largely 
preferred when monitoring contaminants in live organ-
isms. In particular, birds’ feathers constitute a useful non-
destructive tool for detecting Hg because 70–90% of the Hg 
stored within internal tissues in the organic form (MeHg) 
is excreted through the quill via the blood stream during 
the pre-molting period (Espín et al. 2012; García-Fernández 
2014; Renedo et al. 2018). In this sense, Hg concentrations 
in body feathers of species holding simple or synchronous 
molt pattern are expected to be correlated to levels in blood, 
turning body feathers into an adequate tool to reflect the 
body burden of this compound (Ansara-Ross et al. 2013; 
Lodenius and Solonen 2013). It is known that the varia-
tion in feathers pollutants levels—including Hg—may be 
due to diet, habitat, and/or migratory strategies (Anderson 
et al. 2010; Brasso et al. 2015; Moura et al. 2018). Further-
more, there may be differences related to intrinsic factors 
such as sex—where differences in pollutant loads among 
sexes could be explained by egg formation—and age classes, 
where younger individuals are believed to contain higher 
body loads than adults due to maternal transfer from the egg 
(Burger and Gochfeld 2004).

The Magellanic penguin (Spheniscus magellanicus) is 
one of the most widely distributed warm-water penguin spe-
cies in the Atlantic and the Pacific oceans. This species is 
listed as “Near Threatened” by the International Union for 
the Conservation of Nature (IUCN) mainly due to popula-
tion declines observed in diverse breeding colonies (Bird-
Life International 2018). In Argentina, those colonies range 
from Redondo Island in Río Negro province at 41° S to 
Martillo Island in Tierra del Fuego at 54° S, including in 
Malvinas Islands at 52° S, being the largest colony located 
in Punta Tombo (Chubut Province). Wintering grounds for 
populations from Patagonia include the northern coasts of 

Argentina and Uruguay and the coasts of south-central Bra-
zil (Schiavini et al. 2005; Boersma et al. 2015). All along its 
non-breeding range, the Magellanic penguin is increasingly 
threatened by human activities, including commercial fish-
ing, tourism, oil pollution, climate change, and the ingestion 
of plastic debris (García Borboroglu et al. 2006; Boersma 
et al. 2015). In particular, the available literature pertaining 
to chemical exposure of the Magellanic penguin in Argen-
tine grounds is biased towards individuals from breeding 
colonies located in northern and southern Patagonia (Frias 
et al. 2012; Brasso et al. 2015). In other areas of its regional 
distribution, information is focused on non-breeding indi-
viduals found stranded along the coasts, particularly of 
southern-central Brazil (Vega et al. 2010; Kehrig et al. 2015; 
Moura et al. 2018). There is virtually no information else-
where along the species’ non-breeding distribution. In this 
context, and as part of an ongoing, long-term study on the 
non-breeding ecology and health status of the Magellanic 
penguin (García et al. 2020), the aim of this study was to 
assess exposure to Hg in beached juvenile Magellanic pen-
guins and to investigate the relationship of feather Hg levels 
with the birds’ sex during the species’ non-breeding season 
in Buenos Aires province, northern Argentina. The presence 
of beached penguins in this area (and further north) occurs 
chiefly during the non-breeding season when penguins 
migrate north to feeding areas during the austral fall and 
winter months. In general, these birds are forced to leave the 
water during such seasonal movements for different health 
reasons, or dead individuals are washed ashore by natural 
currents (Massigoge et al. 2015; García et al. 2020).

Materials and methods

Sampling

A total of 26 juveniles beached Magellanic penguins (11 
males and 15 females) were sampled during daily surveys 
conducted between February and May of 2017 (see García 
et al. 2020 for further sampling details). These birds were 
found beached alive along the coastline in the southeast of 
Buenos Aires province, Argentina (from 38° 05′ S, 57° 32′ 
W to 38° 14′ S, 57° 46′ W), in northern Patagonia. Penguins 
included in this study were found in a state of inanition, with 
most of the individual displaying poor condition in terms 
of body mass (García et al. 2020). Samples for molecular 
sex determination were collected by pricking the brachial 
vein with 3-ml syringes and 25 Ga with 1-inch needles. A 
few drops of blood were placed on commercial filter paper, 
dried, and stored (Quintana et al. 2008). A random pinch of 
body feathers was plucked from the right side of the breast 
of the individuals, stored in paper envelopes, and maintained 
at room temperature until analysis.
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Mercury analysis

Feathers were mechanically washed prior to analytical 
determination in order to remove any loose foreign material 
collected with them. The washing process was performed 
following Jaspers et al. (2007); this is by using tap water, 
distilled water, Milli-Q water, and acetone, subsequently 
wrapping samples with filter paper and dried at room tem-
perature overnight. After drying, feather samples were cut 
into 1 mm pieces, weighed (0.01 g feathers, approximately), 
and loaded in a nickel boat for analysis of total mercury by 
atomic absorption spectrophotometry using a direct mer-
cury analyzer (DMA-80, Milestone) at the Department of 
Toxicology, Faculty of Veterinary Medicine, University of 
Murcia (Murcia, Spain). Samples were randomly analyzed 
in duplicates, and the coefficient of variation for the repeat-
ability was on average 12.9%. The detection limit of the 
technique is 0.005 ng of Hg. A calibration curve with eleven 
points (in duplicate) was calculated from 0 to 1004 ng of 
mercury standard for AAS (Fluka, 1000 mg/l Hg in 12% 
nitric acid, prepared with high purity Hg metal, HNO3Trace 
SELECT, and water Trace SELECT Ultra). Certified ref-
erence material (CRM; TORT-2, lobster hepatopancreas, 
National Research Council Canada) was analyzed in each 
batch in duplicates for testing precision and accuracy of the 
method. A recovery percentage of total Hg of 108.14 ± 4.1% 
(mean ± standard deviation) was obtained from 7 replicates 
of CRM diluted to 1 ppm. The repeatability of the method 
was also successful with a coefficient of variation of 3.7%.

Statistical analysis

The data failed the normality procedure using a Shap-
iro–Wilk test. Thus, the generalized linear models (GLMs), 
with Gamma error distribution and log link function, were 
used to relate Hg concentrations in penguin feathers regard-
ing the sex of the birds. Mercury concentration in feathers 
(referred to dry weight, dw) was set as the response variable, 
while sex (male and female) was considered as the explana-
tory variable. All statistical analyses were performed using 
R software version 3.6.1 (R Development Core Team 2019) 
from the R package mass. The level of significance in all 
tests was set to p < 0.05.

Results and discussion

Detectable concentrations of Hg were found in feathers 
from all sampled Magellanic penguins. The mean estimated 
(± SD) value across samples was X= 676.76 ± 402.86 ng/g, 
ranging between 265.5 and 1,515.52 ng/g dw feathers (both 
sexes combined). These levels are well below the concentra-
tions in feathers suggested for taking actions focused on the 

protection of seabirds (5,000 ng/g dry weight) (Eisler 1987) 
or even other avifauna such as birds of prey (4,100 ng/g wet 
weight) (Palma et al. 2005).

Inter-specific comparisons are complex given the differ-
ences in seabird life history traits such as location, breeding, 
diet, and migratory habits. Since Hg levels did not differ 
significantly between sexes (GLM, p > 0.05), though a slight 
tendency of higher concentrations were observed in males 
when compared to females (Table 1), intra-specific compari-
sons based on juvenile penguins from breeding grounds are 
possible given the lack of genetic structure among Patagon-
ian populations (Bouzat et al. 2009). Our results showed 
higher concentrations of Hg than those reported by Frias 
et  al. (2012) in samples obtained from juvenile Magel-
lanic penguins inhabiting Punta Tombo in 2007 (mean: 
47 ± 33.3 ng/g, median: 52 ng/g dw). This difference might 
be partially attributed to a continuous released of Hg from 
anthropogenic sources in the region, such as oil and cement 
production (Fig. 1), and/or due to a lack of strict regula-
tions during the time spanned between the study by Farias 

Table 1   Mercury concentrations (ng/g feathers) in body feathers of 
females and males juvenile Magellanic penguin beached along the 
southeastern Buenos Aires province during the non-breeding season 
of 2017

Gender Concentration (ng/g) Mean ± SD (ng/g) t-value P

Female 1,223.94 568.34 ± 308.19 1.67 0.107
441.31
455.94
324.19
948.32
475.48
336.29
372.50
498.86
317.31

1,105.86
435.22
284.65
432.17
873.09

Male 1,130.03 824.59 ± 480.71
1,006.67

410.93
428.41

1,051.50
311.27

1,310.96
1,327.17

312.54
1,515.52

265.50
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et al. (2012) and the present work. Besides, according to the 
United Nations Environment Program, Argentina is listed 
among the 17 main mercury-producing countries, which pro-
duced annually more than 25 tons of Hg between 2013 and 
2015 (UN 2017). In 2013, Argentina signed the Minamata 
Convention, whose main objective is to control the supply, 
trade, and use of Hg and to reduce the atmospheric emis-
sions from point sources and develop additional Hg research. 
This international agreement entered into force in Argentina 
as late as in May 2017. Nevertheless, the manufacturing, 
importation, and exportation of products containing Hg were 
not forbidden until January 1, 2020 (Law 27356, 2017).

On the other hand, previous studies have indicated that 
Hg incorporated into feathers was mainly composed of 
MeHg (77–118%) through the birds diet (see Bond and 
Diamond 2009 and references therein). This is true for 
some marine birds inhabiting the South Atlantic (Thomp-
son and Furness 1989; Thompson et al. 1998). Thus, there 
is a possibility that the difference between the Hg levels 
found in this study and those reported by Frias et al. (2012) 
could also be explained by potential modifications of the 
food webs because of human pressures, in which penguins 
may have switched to more contaminated preys. In fact, 
there is evidence indicating that the fishing down process 
(Pauly et al. 1998; Pauly and Palomares 2005) is taking 
place in the marine food web of the Argentinean-Uru-
guayan Common Fishing Zone (Jaureguizar and Milessi 
2008; Milessi and Jaureguizar 2013), a ground support-
ing one of the traditional fishery activities of the coastal 
regions of both nations. In addition, this area is used by 
transiting penguins during their non-breeding seasons in 

northern Argentina and southern Uruguay (Boersma et al. 
2015). Unfortunately, there is no information regarding the 
effect on the fishing down process on the levels of Hg (and 
other contaminants) of commercial and non-commercial 
fish species at a regional scale.

Penguins are considered apex predators in the food 
web; thus, biomagnification of Hg (among other pollut-
ants) is expected (Vega Ruiz 2008; Jæger et al. 2009). 
Magellanic penguins from colonies located within cen-
tral Patagonia, such as the San Jorge Gulf, are known 
for feeding mainly on pelagic fish, such as the Argentine 
anchovy (Engraulis anchoita) (Scolaro et al. 1999; Yorio 
et al. 2017). This schooling fish comprised up to 50% of 
the diet of juvenile Magellanic penguins, escalating up to 
ca. 80% in chicks and varying around 70% in males and 
females during the breeding season in northern Patagon-
ian colonies (Forero et al. 2002; Yorio et al. 2017). Other 
less frequent prey species include the Argentine hake 
(Merluccius hubbsi), silversides (Austroatherina sp.), and 
cephalopods such as squids (Illex sp.) (Yorio et al. 2017). 
In northerly breeding locations, such as the San Matías 
Gulf, though anchovy encompasses the trophic spectrum 
of penguins, other species include the Patagonian redfish 
(Sebastes oculatus), Thornfish (Bovicthus argentinus), 
Snailfish (Agonopsis chiloensis), and the Argentine short 
fin squid (Illex argentinus) (Fernandez et al. 2019). On 
the other hand, previous diet studies conducted in winter-
ing grounds of southern Brazil chiefly report cephalopods 
as the main prey for the Magellanic penguin outside its 
breeding season (see Baldassin et al. 2010 and references 
therein). This is also the case for other areas within the 

Fig. 1   Hg concentrations in 
feathers of Magellanic penguin 
from the literature (Punta 
Tombo: Frias et al. 2012) and 
from this study (Mar del Plata)
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species non-breeding distribution, particularly along the 
coasts of Buenos Aires Province, in northern Argentina 
(J.P. Seco-Pon and G.O. García, unpublished data).

It is known that penguin species differ on their feed-
ing habits, preying on a large range of prey; besides 
several species show signs of sexual dimorphism 
(Boersma and García Borboroglu 2015) including the 
Magellanic penguin (Gandini et al. 1992; Forero et al. 
2002), though such trait may not be visually recognized 
during the non-breeding season (Scolaro et al. 1983). Hg 
concentrations in Magellanic penguin from this study 
were roughly two times higher than levels on feath-
ers from juvenile Gentoo penguin Pygoscelis papua 
breeding in Antarctica ( X  ± SD = 297 ± 341 ng/g fresh 
weight  feathers) (Polito et al. 2016), probably due to 
differences in their body sizes and/or dietary habits. 
Magellanic penguins are medium-sized birds (61–76 cm 
tall, 2.7–6.5 kg body weight), whereas the Gentoo pen-
guins ranked as the third-largest species of penguin 
(51–90 cm tall, 5–8.5 kg body weight) (Boersma and 
García Borboroglu 2015). Still, both species are con-
sidered opportunistic feeders, with juvenile Gentoo 
penguins feeding primary on krill Euphausia sp. (Polito 
et al. 2016), whereas juvenile Magellanic penguins from 
colonies located in northern Patagonia feed, as it was 
previously mentioned, mainly on pelagic fish. Seabirds 
with pelagic diet, such as the Magellanic penguin, may 
present major concentrations than those feeding on mes-
opelagic preys, due to bioavailability of methyl mercury 
in deep water with low oxygen and fish capacity to accu-
mulate it in their edible tissues (Monteiro et al. 1998; 
La Colla et al. 2019). Almost three decades ago, Perez 
et al. (1986) reported total Hg in anchovy and hake from 
the Argentinean export industry ( X  ± SD = 60 ± 40 ng/g 
and 110 ± 60  ng/g wet weight, respectively). More 
recently, Hg concentrations were reported in anchovy 
inhabiting Rio de Janeiro, southern Brazil, at levels one 
order of magnitude lower to those found in the present 
work ( X  ± SD = 59.6 ± 7.1 ng/g wet weight) (Bisi et al. 
2012). In relation to other less frequent prey, Faland-
ysz (1988) portrayed low levels of Hg in squid (Illex 
argentinus) from the Argentine Continental Shelf 
( X  ± SD = 12 ± 5 ng/g wet weight). Future studies are 
needed to elucidate the relative contribution of preys 
in the diet of non-breeding Magellanic penguins along 
northern Argentina and the effect that diet has upon Hg 
concentrations considering sampling location.

Since our samplings were carried out between February and 
May, a period during which Magellanic penguins are known 
for experiencing a synchronous molting (Boersma et al. 1990), 
Hg concentrations found on their feathers would reflect the 
levels of blood Hg during their growth. Some juvenile (“old 
juveniles”) birds were found molting during the samplings 

(García et al. 2020). Therefore, Hg levels in feathers may be 
well related to those in internal tissues during that period of 
time. In this sense, our results are in line with previous stud-
ies, which have reported Hg concentrations on seabird’s inter-
nal tissues one order of magnitude higher than their probable 
fish preys (Jæger et al. 2009; Espín et al. 2012; Albertos et al. 
2020).

In line with Frias et al. (2012), we observed a slight 
tendency of higher concentrations in males (mean: 
824.59 ± 480.71  ng/g dw  feathers) when compared to 
females (mean: 568.34 ± 308.19 ng/g dw feathers). How-
ever, as mentioned above, this difference was not significant 
in our study. Mercury concentrations are suspected to vary 
between sexes due to a possible transference of body Hg bur-
dens into eggs by laying females (Dietz et al. 1990). Since 
in the present study all penguins were sexually immature, 
this route of detoxification would not be feasible, at least 
for female penguins. Pollutant loads are also known to vary 
between sexes in those species with varied diet, differences 
in foraging areas and/or sexual dimorphism. Evidence sug-
gests no sex disparities in the foraging behavior and diet of 
the Magellanic penguin at least for adults from the northern 
Argentine Patagonia colonies or in their migratory move-
ments (Silva et al. 2014; Yorio et al. 2017; Castillo et al. 
2019). Moreover, analyses based on stable isotopes showed 
that both sexes regularly forage at the same trophic level, at 
least along the coast of Rio Grande do Sul State, in south-
ern Brazil during the non-breeding season (Marques et al. 
2018). However, more recent studies may indicate an intra-
specific segregation in sea movements of tracked penguins 
while attending waters of northern Argentina during the 
non-breeding season (Yamamoto et al. 2019; Barrionuevo 
et al. 2020), highlighting a low density of monitored non-
breeding individuals (including juveniles) of both sexes at 
this marine ecosystem.

During its extensive migration, the Magellanic pen-
guin moves northward through areas heavily influenced 
by coastal human activities, where they may be exposed 
to several threats, such as oil pollution, ingestion of plas-
tics, fisheries bycatch, among others, which can lead to 
their starvation and death (Garcia Borboroglu et al. 2010; 
Boersma et al. 2015). Despite the individuals analyzed 
in this study did not present human-induced injuries or 
petroleum stains, they showed a poor body condition using 
hematology and plasma chemistry as overall body indicator 
(Garcia et al. 2020). Previous studies have found a cer-
tain relationship between body Hg burden and indices of 
body condition (Kalisinska et al. 2010; Kojadinovic et al. 
2007). This fact supports the idea that, since feathers are 
known for showing significant correlations with internal 
body burdens of contaminants, the body condition of the 
studied birds might have an influence on our results. Thus, 
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it is recommended that future studies should focus on the 
influence of birds’ health status on Hg levels.

Conclusions

To our knowledge, this is the first study to report feather 
Hg levels in the Magellanic penguin during the species 
non-breeding season in Argentina, including intrinsic fac-
tors such as the birds’ sexes. Concentrations of Hg were 
detected in feathers from all sampled Magellanic penguins, 
although no significant difference was found between 
sexes.

In the present study, Hg levels were roughly six times 
higher when compared to a previous study conducted in 
the species’ largest breeding ground along the Argentine 
Patagonian coasts. The result reflects the environmental 
contamination throughout the migration route of Magel-
lanic penguin. Still, the reported values do not seem to 
be associated with risks for the bird’s health. Albeit such 
scenario, it is highly important to take into consideration 
that sampled penguins were all juveniles and the bio-
accumulation of this contaminant could be considered 
a potential risk for the future prospects of the species. 
Moreover, further studies should be performed in order 
to better understand the sub-lethal effects of exposure to 
Hg by examining cognition and foraging behavior, among 
other complex behaviors, of beached birds found in a poor 
body condition, as in this study.

There is much evidence indicating undesired impacts 
from the interaction between the Magellanic penguin 
and human activities, chief ly oiling and fisheries 
bycatch along its non-breeding grounds. These anthro-
pogenic stressors coupled with the “Near Threatened” 
conservation status of the species emphasize the rel-
evance of our results for the development of a national 
long-term monitoring project centered on S. magel-
lanicus as an indicator of coastal chemical pollution 
of aquatic ecosystems in wintering areas of the species 
in Argentina.
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