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Abstract
To resolve the conflict between multiple performance indicators in the complicated wastewater treatment process (WWTP), 
an effective optimization control scheme based on a dynamic multi-objective immune system (DMOIA-OC) is designed. A 
dynamic optimization control scheme is first developed in which the control process is divided into a dynamic layer and a 
tracking control layer. Based on the analysis of the WWTP performance, the energy consumption and effluent quality models 
are next established adaptively in response to the environment by an optimization layer. An adaptive dynamic immune opti-
mization algorithm is then proposed to optimize the complex and conflicting performance indicators. In addition, a suitable 
preferred solution is selected from the numerous Pareto solutions to obtain the best set of values for the dissolved oxygen 
and nitrate nitrogen. Finally, the solution is evaluated on the benchmark simulation platform (BSM1). The results show that 
the DMOIA-OC method can solve the complex optimization problem for multiple performance indicators in WWTPs and 
has a competitive advantage in its control effect.

Keywords  Adaptive dynamic optimization · Complex optimization problem · Multiple performance indicators · Dynamic 
characteristics of WWTPs · The best Pareto solution · Self-organizing recurrent fuzzy neural network control

Introduction

With the continuous advancement of the economy and living 
standards, water consumption and wastewater supply have 
increased dramatically. Many wastewater treatment plants 

have been built to improve the state of the environment 
(Luna et al. 2016; Löwenberg et al. 2014). However, the 
typical nonlinear, multi-variable, unstable, and time-varying 
characteristics of wastewater treatment process (WWTPs) 
have resulted in for their operation and management. Energy 
conservation and emission reduction are two major chal-
lenges under these stricter water quality standards (Büyüköz-
kan et al. 2021; Li et al. 2021a, 2021b; Shiek et al. 2021; 
Busch et al. 2013; Liu et al. 2018).

To design effective control strategies, extensive research 
has been conducted on process control for WWTPs (Liu 
et al. 2014; Cheng 2014). The focus over the past decades 
has been on meeting water quality standards. For exam-
ple, Guerrero et al. proposed a method-based optimization 
method to improve the performance of control systems 
(Guerrero et al. 2011; Han et al. 2021). A single cost func-
tion was used to evaluate the performance of fixed and 
time-varying settings. The results show that the costs can 
be effectively reduced while improving the water quality. A 
generalized simplified gradient method was used to design 
an optimal WWTP control strategy that can effectively 
reduce the annual total and operation costs (Shorbaghy 
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et al. 2011). In addition, Xie et al. developed an optimal 
control strategy based on an adaptive genetic algorithm to 
optimize the fixed residence time and the internal circula-
tion and thereby obtain the optimal operating variables for 
improving the quality of the output water (Xie et al. 2011; 
Li et al. 2021a, 2021b; Han et al. 2021). These strategies can 
achieve stable WWTP operation and thus meet water quality 
standards (Han et al. 2021). However, the coupled relation-
ship between energy consumption (EC) and effluent quality 
(EQ) has rarely been studied (Santin et al. 2015).

Multi-objective optimization control is currently a val-
ued approach for solving the trade-off between multiple 
conflicting objectives (such as the EQ, EC, and operation 
stability in WWTPs; Han et al. 2014; Li et al. 2013). Vega 
et al. proposed a hierarchical optimal control strategy for 
WWTPs to evaluate the improvements in the EC and EQ 
(Li et al. 2021a, 2021b; Vega et al. 2014). They showed 
that this strategy can ensure the satisfaction of EQ stand-
ards and reduce costs. In addition, the ant colony algorithm 
has been used to better optimize the EC and ensure system 
stability (Schlüter et al. 2009). Although the above methods 
have resulted in effective improvements, the essential weight 
factors for transforming the multi-objective functions into 
single-objective problems are difficult to obtain (Cai et al. 
2016).

To fundamentally resolve the conflict between the EC and 
EQ, Guerrero et al. proposed a multi-criteria optimal con-
trol strategy in which an appropriately controlled variable 
is selected as the set point and a set of solutions is generated 
with a Pareto optimal distribution to achieve energy-savings 
and emission reduction (Guerrero et al. 2012; Han et al. 
2021). They proved that the control effect can be improved 
by optimizing the water quality, cost, and microbial action. 
In addition, an interactive multi-objective optimization strat-
egy was designed to optimize several objective functions 
simultaneously (Hakanen et al. 2013; Han et al. 2021). This 
method combines control systems with interactive multi-
objective optimization software to enable decision-makers to 
understand the interdependence between conflicting objec-
tive functions. Other multi-objective optimization control 
strategies were introduced in Dominic et al. (2015) and 
Yetilmezsoy et al. (2012). However, it is difficult to obtain 
reliable optimal solutions for most of these strategies.

In recent decades, intelligent optimization algorithms 
(Chakraborty et al. 2011; Hu et al. 2016) with good global 
searchability have been applied. A multi-objective genetic 
algorithm (MOGA) and a sensitivity analysis scheme 
were designed for WWTP control strategies and resulted 
in improved EC and EQ (Beraud et al. 2008). To further 
improve the MOGA convergence, a non-dominant sequenc-
ing MOGA based on an elite strategy was designed to handle 
the conflicting multi-objective problem in WWTPs, so that 
the control performance is improved while ensuring that EQ 

meets standards (Iqbal et al. 2009). At the same time, other 
MOEAs-based optimization control strategies have been 
successfully applied in WWTPs to generate reliable multi-
objective optimization solutions with improved performance 
(Wang et al. 2014; Tabatabaei et al. 2015). However, dif-
ferent wastewater treatment plants have different cost func-
tions and the above optimal control strategies are inevitably 
unable to match the actual WWTPs. A data-driven control 
strategy was proposed to solve the dynamic optimization 
of WWTPs with the support of optimized operating sys-
tems, and an adaptive multi-objective differential evolution 
algorithm, and an adaptive fuzzy neural network control 
system were also presented (Li et al. 2021a, 2021b; Qiao 
et al. 2018). The stability and EC of the resulting control sys-
tem are better than those of the traditional control method. 
Sweetapple et al. developed an optimal control strategy 
using the non-dominated sorting algorithm II (NSGA-II) to 
obtain the optimal settings for the activated sludge WWTPs 
(Sweetapple et al. 2014). This strategy can reduce green-
house gas emissions and operating costs (Han et al. 2021). 
In addition, a dynamic multi-objective optimization strategy 
was presented (Hreiz et al. 2015) in which precise bottom-
level modelling and the NSGAII algorithm are used to opti-
mize the relationship between the EC and EQ. However, the 
above methods still have the following shortcomings: (1) 
WWTPs are highly nonlinear. Because of the rapid fluctua-
tions in the water inflow, limited storage space, and other 
difficulties, it is difficult to obtain accurate EC and EQ mod-
els in real time (Liu et al. 2019). (2) WWTPs are complex 
dynamic systems, with multiple goals that change over time 
(Li et al. 2021a, 2021b). Whether the optimal settings for 
the nitrate nitrogen (SNO) and dissolved oxygen (SO) are real-
time variables or not is directly related to the EC and EQ. 
This presents an additional challenge to the multi-objective 
optimization algorithm which changes dynamically over 
time. (3) In WWTPs, the traditional proportional integral 
controller (PID) cannot sufficiently compensate for inter-
ference caused by interactions in large circuits. Therefore, 
the selection of an appropriate controller and the stable and 
accurate tracking of the optimal settings, which change with 
the environment, are significant issues.

To overcome the nonlinearity of the WWTP, mechanism 
models for the EC and EQ have been studied. However, 
because the parameters in these models are fixed, they can-
not adapt to the operating conditions of the WWTP. Qiao 
et al. used a radial basis network to predict the EC and EQ 
and obtained the objective function for multi-objective opti-
mization (Han et al. 2018). Hang et al. established a model 
relating the EC, EQ, and variables in the process using the 
adaptive regression kernel function method, and achieved 
a good prediction accuracy. However, because the input 
water composition and flow rate vary with time in WWTPs, 
prediction models with fixed structures cannot meet the 
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requirements for high accuracy predictions of the EC and 
EQ (Li et al. 2021a, 2021b). In this study, a fast online self-
organizing fuzzy neural network (ILM-SVDFNN) based on 
SVD is constructed by analysing the WWTP operation char-
acteristics and data and combined with the improved LM 
algorithm. The single-sided Jacobi transformation is used 
to perform singular value decomposition (Qiao et al. 2017), 
and the rule layer neurons are grown and trimmed based on 
the size of the singular values of the output matrix from the 
rule layer. It is used to build the EC and EQ models.

To obtain the optimal setting of SO and SNO, Sina et al. 
proposed a scheme-based optimization method and defined 
two types of performance evaluation criteria to assess EC in 
various situations (Han et al. 2021). However, because the 
optimization results depend on the quality of the scheme, 
there are some limitations to this method. To overcome 
these limitations, Han et al. used the multi-objective parti-
cle swarm optimization algorithm to optimize the objective 
function and obtain the optimal settings. To obtain the opti-
mal result with good convergence, an optimization algorithm 
for the multi-objective hybrid particle swarm was designed 
to optimize the two conflicting objectives of the EC and EQ 
(Zhou et al. 2017). However, because the biochemical reac-
tions, input water components, and flow rates in WWTPs 
vary with time, the dynamic EC and EQ problems cannot be 
solved effectively by the above methods. Han et al. therefore 
proposed a dynamic multi-objective particle swarm optimi-
zation controller (DMOPSO-OC) and proved that the control 
performance can be improved while satisfying the require-
ments of multiple conflicting targets (Han et al. 2019). How-
ever, the uneven individual distribution in target space is a 
disadvantage. The accurate prediction of the location of the 
Pareto front in changing environments remains a challenge 
for the precise and dynamic determination of SO and SNO.

In addition, an adaptive fuzzy neural network method is 
used to improve the accuracy, stability, and adaptability of 
bottom control in WWTPs (Qiao et al. 2018; Li et al. 2021a, 
2021b). A fuzzy neural network controller (FNNC) based on 
the second-order Begg-Marquart (L-M) approach was used 
to track the settings of SO and SNO (Han et al. 2018). WWTPs 
are time-varying systems in which the flow and composi-
tion of the input water are constantly changing. Therefore, a 
recursive fuzzy neural network with a time-varying structure 
is required to adapt to changes in the operating conditions.

In summary, a WWTP control strategy based on adap-
tive dynamic immune optimization (DMOIA-OC) is pro-
posed to optimize the control of WWTPs. Compared to the 
existing control strategies, the innovations and advantages 
of DMOIA-OC are as follows: (1) an adaptive dynamic opti-
mal control system for WWTPs that can reduce the EC while 
meeting EQ standards is designed. A fast online self-organ-
izing fuzzy neural network based on SVD (ILM-SVDFNN) 
(Han et al. 2021) is constructed to model the EC and EQ 

of WWTPs in complex dynamic environments (Qiao et al. 
2017). (2) To obtain the optimal settings for SO and SNO 
in real time, an adaptive dynamic immunization algorithm 
is proposed. (3) A self-organizing recursive fuzzy neural 
network controller is used to track the optimal settings for 
SO and SNO. To verify the effectiveness of DMOIA-OC, all 
the algorithms were verified using the international bench-
mark simulation model platform (BSM1) (Han et al. 2021). 
The results show that even when the flow and concentration 
change in time, the proposed dynamic immune optimization 
control method can significantly improve the control perfor-
mance of the WWTP by reducing the EC while improving 
the outflow water quality.

The outline of the paper is as follows: “Problem formula-
tion” describes the characteristics of the dynamic process 
in WWTPs. In “Framework of proposed DMOIA-OC”, the 
dynamic optimization control system comprising the objec-
tive function design, dynamic immune optimization algo-
rithm, and tracking controller is discussed in detail. The sim-
ulation results and experiments to verify the effectiveness of 
the proposed DMOIA-OC are presented in “DMOIA-based 
optimization layer design”. “SORFNN control” provides a 
summary of the study.

Problem formulation

Dynamic characteristics of WWTPs

WWTPs are dynamic systems that are affected by different 
physical and biological phenomena (Han et al. 2021). They 
have the following characteristics: the biochemical reaction 
cycle in WWTPs is long, complex, and susceptible to exter-
nal factors (such as the temperature and pH), and the state 
changes with time (Han et al. 2021). The microbial popula-
tion faces indeterminate living conditions and reaction rules. 
The composition and flow in the process vary with time, and 
it is difficult to determine the pollutant content and quantity 
(Han et al. 2019).

In recent years, increasingly stringent environmental laws 
and regulations have resulted in large improvements in the 
operation of WWTPs. At the same time, an economic per-
spective, it is extremely important to reduce operation costs. 
However, because of the potential interactions and complex 
biochemical reactions that may occur, a large number of design 
parameters, and a variety of complex objectives (EQ, operating 
costs, etc.), the formulation of efficient optimal control strate-
gies that ensure stable operation and the effective reduction of 
operating costs while maintaining effluent water quality is an 
urgent problem that remains to be solved. Therefore, the design 
of a dynamic optimization algorithm to optimize multiple 
conflicting objectives and the use of an optimal controller for 
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stable tracking control are the basic requirements for improv-
ing the control performance of WWTPs.

Optimal control problem

Because the inflow flow and composition in WWTPs change 
with time (Li et al. 2021a, 2021b), traditional models for EQ, 
pumping, and aeration energy consumption cannot accurately 
reflect the dynamic process in WWTPs. Therefore, a self-
organizing fuzzy neural network is employed in which the 
structure and parameters can be dynamically adjusted online 
to determine the objective functions (Qiao et al. 2017; Li et al. 
2021a, 2021b). The main input and process variables (EC, EQ, 
and PE) are analysed, and the soft sensing model is established 
based on the operational data and dynamic characteristics of 
the WWTP (Li et al. 2021a, 2021b). The relevant variables 
are the solid suspension concentration (SS), chemical oxygen 
demand (COD), nitrate-nitrogen concentration (SNO), Kelvin 
nitrogen concentration (SNkj), biochemical oxygen demand on 
day 5 (BOD5), oxygen conversion coefficient in unit 5 (KLa5), 
and internal return flow (Qa) (Han et al. 2019; Li et al. 2021a, 
2021b). The optimal objective function at time t is:

where F is the objective functions vector. f1(�∗, t) , 
f2(�

∗, t) , and f3(�∗, t) are the AE, PE, and EQ model at 

(1)
min �

(
f1(�

∗, t), f2(�
∗, t), f3(�

∗, t)
)�

t = 1, 2,⋯ ∈ T

(2)�
∗ =

(
x1, x2

)

time t, respectively (Li et al. 2021a, 2021b). �∗ is the deci-
sion vector, and x1 and x2 are the SO and SNO, respectively 
(Han et al. 2019; Li et al. 2021a, 2021b).

Figure 1 shows the curves of the three conflicting per-
formance indicators comprising the AE, PE, and EQ. They 
are involved in controlling the WWTP through NSAGII. 
It can be seen that the AE, PE, and EQ have obvious non-
linear and time-varying characteristics and that there are 
numerous locally optimal solutions in the target space. 
AE and PE fluctuated greatly, which results in a complex 
and variable Pareto front. Therefore, additional choosing 
the appropriate optimization control method and obtain-
ing precise optimized settings are proposed. The following 
aspects of the WTTP optimization problem are considered 
in depth: (1) time-varying objective function: the objective 
function model should be accurately and quickly estab-
lished to provide a basis for the optimization process; (2) 
optimization of complex problems: appropriate optimiza-
tion methods should be chosen to effectively coordinate 
the solution of complex optimization problems dynami-
cally to achieve optimal control; (3) dissolved oxygen and 
nitrate nitrogen set points: the best Pareto solution should 
be chosen from a set of optimization results, to obtain the 
instantaneous optimal set point to ensure optimal control; 
(4) computing resources: the optimized solutions should 
be quickly and effectively obtained the use of computing 
resources reduced, and the control process made simple 
and efficient of the control process.

Fig. 1   The optimized control 
based on NSGAII. a AE value, 
b PE value, c EQ value

a)

b)

c)
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Framework of proposed DMOIA‑OC

In WWTPs, the AE, PE, and EQ are coupled performance 
indices. They play a primary role in performance evalua-
tion. Because these indices can be influenced by different 
process variables, a two-layer structure is used to estab-
lish different control objectives according to the dynamic 
response time. Figure 2 shows a diagram of the DMOIA-
OC scheme, which consists of an upper-optimized layer, 
and a lower-controlled layer. The system realizes energy-
saving and efficient operation of the WWTP through the 
optimization and tracking control layers, respectively (Li 
et al. 2021a, 2021b).

The optimization layer is mainly composed of two parts: 
B, the optimization objective function, and C, the dynamic 
optimization module. The module illustrated in Fig. 2B 
determines a sequence of objective function models (AE, 
PE, and EQ) that are optimized online. The dynamic opti-
mization algorithm shown in Fig. 2C provides the best 
optimal solutions (the sets of SO and SNO settings). These 
sets ensure that the EC is minimized while meeting the 
water quality standards. The lower layer, which is shown 

in Fig. 2D, is mainly used to track the set values of SO and 
SNO. The self-organizing recursive fuzzy neural network 
(SORFNN) controller can meet the requirements for stable 
operation (Qiao et al. 2017). The detailed design of each 
control layer is presented in the following sections.

DMOIA‑based optimization layer design

Owing to the complex biochemical reactions in WWTPs, a 
self-organizing FNN with adaptive parameters is used to cal-
culate the time-varying objective function model for the EC 
and water quality to accurately obtain the mechanism model 
of the dynamic process. In addition, an adaptive immune 
optimization algorithm with improved convergence and dis-
tribution is designed to obtain the best set value of SO and 
SNO in real time, so that the optimal control target for the 
underlying tracking control is achieved.

Optimization objectives

Owing the strong nonlinearity and time-varying character-
istics of WWTPs, traditional fixed-parameter mechanism 

A

B

C

D

Fig. 2   Multi-objective optimal control chart of wastewater treatment
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models are insufficient for modelling the dynamic process 
in WWTPs. For this reason, the process variables related 
to the EC and EQ are first analysed based on the operation 
characteristics and data of WWTP.

Equations (4) and (5) show that the EC is affected by SO, 
SNO, MLSS, and other variables, while EQ is mainly related 
to SO, SNO, SS, SNH, and other variables (Li et al. 2021a, 
2021b). Therefore, SO, SNO, MLSS, and SNH are selected 
as the model input variables and EC and EQ as the output 
variables because the mixed liquor solid suspended concen-
tration (MLSS) can be measured online more easily than 
the SS. The relationship between the input variables, and 
EC and EQ is then modelled using a self-organizing fuzzy 
neural network (SOFNN) as follows (Qiao et al. 2017):

Step 1: Calculate the output membership value of the 
second layer membership function layer.

where cij and σij are the centre and width of the Gauss 
function of the jth neuron in the 2nd layer corresponding 
to the 1st layer of the jth neuron, and φij is the output of the 
neuron in the corresponding membership function layer, and 
m is the number of neurons in regular layer.

Step 2: Operation Π and normalization are performed on 
the layer 2 neurons.

where vj and hj are the jth neuron output and normalized 
output, and n is the number of input neurons in the first input 
layer. ωj is the connection weight between the regular layer 
and the output layer; the output of the neuron y is:

Step 3: Self-organizing optimization of network structure.
The main parameters that the FNN needs to learn are the 

connection weight ωj between layers 3 and 4 and the centre 
cij and width σij of the membership function of layer 2. An 
improved LM algorithm is used to realize the online learning 
of these parameters. Singular value decomposition (SVD) 
(Qiao et al. 2017) is used in the output matrix of the FNN 
rule layer. The size of the singular value is compared and 
the root mean square error of the training set is combined 
with the network learning process to realize the growth and 
pruning of the rule layer neurons for the online optimiza-
tion of the network structure. The indexes for evaluating 

(3)
�ij = e

−
(xi−cij)

2

�2
ij , j = 1, 2,⋯ ,m

(4)
hj = vj

�
m∑
j=1

vj = e
−

n∑
i=1

(xi−cij)
2

�2
ij

�
m∑
j=1

e
−

n∑
i=1

(xi−cij)
2

�2
ij

vj =
n∏
i=1

�ij = e
−

n∑
i=1

(xi−cij)
2

�2
ij

(5)y =

m∑
j=1

hjwj

the growth and pruning and the root mean square error are 
defined as follows:

where Ig is the growth indicator, Id is the pruning indi-
cator, singular value vector ξ is arranged from small to 
large, Id is the ratio of the sum of the current d smaller 
singular values to all singular values, ns is the number of 
current singular values, Sa is the size of sample, ySa

d
 is the 

expected output, and ySa is the actual network output. When 
E(Θ(t)) > E(Θ(t − 1)), and Ig > Igth (Igth is the preset threshold 
for growth), the neuron g with the largest current singu-
lar value is split to adjust the network structure to improve 
performance. When E(Θ(t)) < E(Θ(t − 1)) and Id < Idth (Idth 
is the preset pruning threshold), the neurons s (s = 1, 2, …, 
d) corresponding to the current d smaller singular values 
will be deleted.

In the EC and EQ models, which are based on an online 
self-organizing fuzzy neural network (Qiao et al. 2017), not 
only can the adjust parameters be adjusted adaptively based 
on the error between the actual and expected outputs, but 
the self-organizing network structure can also be adjusted 
according to the root mean square error and the growth, 
and pruning evaluation indexes. Improving the network 
modeling speed, prediction accuracy, and ability is of great 
importance in the real-time establishment of the EC and EQ 
models for the WWTP.

Dynamic optimization algorithm design

Because the real-time changes of the incoming water flow 
and concentration occur frequently, an adaptive dynamic 
immune optimization algorithm (DMOIA) is designed to 
obtain the dynamically and adaptively changed SO and SNO 
setting values. To implement the DMOIA, the optimization 
problem is solved on representative individuals with good 
diversity and distribution when a change in the environment 
is detected. An efficient elite selection strategy based on a 
uniform distribution is proposed to solve the optimization 
problem. In this strategy, the number of representative indi-
viduals g is first determined as g =

⌈
g1 + Φ(t) ∗

(
g2 − g1

)⌉
 , 

where g1 and g2 = 9, g1 and g2 the upper and lower limits of 
g, take the respective values of 4 and 9, and g depends on 
the severity of the environmental change, ɸ(t).

(6)

Ig = max (�)

�
ns∑
s=1

�s

Id =
d∑

s=1

�s

�
ns∑
s=1

�s

(7)E(Θ(t)) =

√√√√√ 1

Sa

Sa∑
Sa=1

(
y
Sa
d
(t) − ySa (t)

)2
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Among them, Mo = 3 is the number of objectives, No is 
the population size, and f ′

j

(
Ai, q

)
 is the jth objective function 

normalized value of the ith individual in the qth iteration, 
and fj

(
Ai

)
 is the objective function value (Li et al. 2021a, 

2021b). lj(q) and uj(q) are the minimum and maximum val-
ues of fj

(
Ai, q

)
 , respectively. �j(q) is the average value of f ′

j

.

After the number of representative solutions is calculated, 
a uniform distribution mechanism is used to select the repre-
sentative solutions. The population is mapped to the object 
space, which is equally divided into g intervals. Based on 
the non-dominated sort, the more representative individuals 
are chosen from each interval. The mechanism is described 
as follows:

I is the set of intervals, Ii is the ith interval, i ∈ [1, g]. 
Within each interval Di, in which the number of individuals 
NDi

≥ 1 , the individuals in the interval are sorted according 
to the crowding distance and the individual with the maxi-
mum crowding distance is selected. In addition, if NDi

=0 , 
the individual closest to the interval is selected for mutation. 
The sets of representative individuals at time t and t − 1 are 
then given by:

rt
i
 and rt−1

i
 are the representative individual in the ith and 

i-1th interval, respectively. Then, the evolution direction Δrt
i
 

of the individual rt
i
 is:

Second, to quickly respond to environmental change and 
save computing resources, the new individuals xt+1

i
 are gen-

erated as:

Among them, �t ∼ N(0, �t),�t is a random value with a 
normal distribution of variance �t and 0. In the following, to 

(8)Φ(t) =
1

Mo

1

No

Mo∑
j=1

No∑
i=1

|||f
�

j

(
Ai

)
− �j(q)

|||

(9)f �
j

(
Ai

)
=

fj
(
Ai, q

)
− fj

(
Ai, q − 1

)
uj(q) − lj(q)

(10)�j(q) =
1

No

No∑
j=1

|||||
fj
(
Ai, q

)
− fj

(
Ai, q − 1

)
uj(q) − lj(q)

|||||

(11)� =
(
I1,⋯ , Ii,⋯ , Ig

)

(12)
Rt =

{
rt
1
,⋯ , rt

i
,⋯ , rt

g

}
and Rt−1 =

{
rt−1
1

,⋯ , rt−1
i

,⋯ , rt−1
g

}

(13)Δrt
i
= rt

i
− rt−1

i

(14)xt+1
i

= xt
i
+ Δrt

i
+ �t

increase the diversity and improve the convergence speed 
(Li et al. 2021a, 2021b), the remaining No-g individuals are 
generated by the limit optimization mutation strategy (Li 
et al. 2018; Li et al. 2021a, 2021b).

The proposed DMOIA framework

The proposed DMOIA algorithm is presented in Algo-
rithm 1. First, the No individuals in the search space are ran-
domly initialized (lines 2 to 4). The environmental change 
is detected through Rg and f(Rg) (lines 6 to 11). When a 
change occurs, the severity of the environmental change ɸ(t) 
is calculated (line 12), and the number of representative indi-
viduals g is calculated (line 13). Then, the individuals are 
mapped to the hyperplane and clustered (line 14); the target 
space is evenly divided into g intervals (line 15) (Li et al. 
2021a, 2021b). The crowding distance is calculated, and 
the individuals with the maximum distance in each interval 
are selected as the representative individuals Rt (line 16). 
If there is no individual in an interval, the individual clos-
est to this interval is chosen to generate new representative 
individuals using the limit optimization mutation strategy 
(Qiao et al. 2020). The evolutionary trajectories are built 
up from the g representative individuals (line, 17). A part 
of the initial population is then generated for the new envi-
ronment. The remaining (No − Nd) individuals are randomly 
generated (line 18), and the two parts are combined as the 
initial population (line 19). If a change does not occur, the 
crossover and variation operations on all the individuals are 
used to generate the initial population (lines 20 to 24). If the 
stopping criterion is met, the algorithm is completed and 
the PS is output, and the algorithm execution goes to line 7.

The proposed DMOIA algorithm allows representative 
individuals to be selected with good distribution and diver-
sity. This improves the convergence and the convergence 
speed, and avoids falling into the local optima. At the same 
time, the limit optimization mutation strategy is adopted to 
improve the local search and exploration ability to generate 
the best solution for the dynamic set values of SO and SNO.

Best Pareto solution

To select the appropriate preferred solution from the many 
good Pareto solutions, a fuzzy membership function (Zhou 
et al., 2017) is used for intelligent decision-making. The 
optimal set points for SO and SNO are determined as follows:

(15)PRk
i
=

⎧⎪⎨⎪⎩

1 fi
�
xk
�
≤ fmin

i
fmax

i
−fi(xk)

fmax

i
−fmin

i

fmin

i
< fi

�
xk
�
< fmax

i

0 f
�
xk
�
≥ fmax

i
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Among them, PRk
i
 is the satisfaction degree of the non-

dominant solution xk. fmax

i
 and fmin

i
 are the maximum and 

minimum values of the ith objective function fi, respectively. 
fi
(
xk
)
 is the ith objective function value of xk.

Among them, 3 is the target number and |ε| is the number 
of elements in external reserve set. The selected preference 
solution is the solution corresponding to the maximum PRk.

SORFNN control

Owing to the frequent changes in the flow and components 
in WWTPs, it is difficult to ensure that a recursive fuzzy 
neural network (RFNN) controller with a fixed structure can 
adapt to all working conditions. Therefore, a SORFNN con-
troller (Liu et al. 2018) is adopted to track the set points for 
SO and SNO. As shown in Fig. 1D, the SORFNN controller 
consists of the input, RBF, recursive, TSK fuzzy, and output 
layers. The network structure and parameters of the RFNN 
are adaptively adjusted over time. To adapt to changes in 
the set points, the structure and parameters are adjusted as 
follows:

1) Growth method:
To evaluate the performance of the SORFNN, the error 

e(t) between the actual and predicted values of the control 
variable is defined as:

where Eth is a fixed constant that needs to be determined 
by the system requirements. In most cases, input variables 
do not have perfect matching rules. Therefore, the rules for 
structure self-organizing are:

Among them, Jsum(t) is the evaluation criterion of 
global- approximation ability (Liu et al. 2018), o[3]

j
 is the 

output of the rule layer, and Nσ is the number of centres.
In the SORFNN, each rule corresponds to a set of mem-

bership functions. The Euclidean distance between the cen-
tres of two membership functions is defined as follows:

where dis(i, j) is the Euclidean distance between two 
membership function centres. ci is the centre of the ith 

(16)PRk =

3∑
i=1

PRk
i

���∑
k=1

3∑
i=1

PRk
i

(17)e(t) ≥ Eth

(18)Jusm < 1, Jsum =

N𝜎∑
j=1

o
[3]

j

(19)
dis(i, j) =

‖‖‖ci − cj
‖‖‖, i ≠ j, i, j = 1, 2,⋯ ,NR

NR = (� − 1)!; disc(i) = ‖‖� − ci
‖‖, i = 1, 2,⋯ , �

membership function, NR is the centres number of mem-
bership function layer, γ is the number of rules, and 
disn(i) is the Euclidean distance to the central of all 
membership functions. X(t) is a new set of input data, 
�(t) =

(
x�
1
(t), x�

2
(t),⋯ x�

m
(t)
)
 . dismax and discmin are the 

maximum and minimum value of dis(i, j), respectively. If 
(25) is satisfied:

or formula (22) and (23) are satisfied, a rule needs to be 
added, and the new parameters are as follows:

where c∗(t + 1) , �∗(t + 1) , and �∗(t + 1) are the centres, 
widths, and weights of the new rules at the next moment. 
υ ∈ (0,1) is a random value, x�

i
(t) is the ith dimension input 

variable, and c∗
ij
(t) is the jth centre corresponding to x�

i
(t) . 

Nx(t) is the size of the ith dimension-input samples, a∗ and 
b∗ are the average value of o[4]

j
 and o[5]

j
 , respectively; o[4]

j
 and 

o
[5]

j
 are the output of the jth TSK fuzzy layer and recursive 

layer, respectively.
2) Pruning method:
Redundancy and bad generalizations may exist when 

some of the rules are redundant. To address this, the overall 
redundancy criterion Jr(t) is defined (Liu et al. 2018) as:

Among them, JImin(t) is the rule of the least contribute 
in the activation region S. The width set of S is 
�
∗
j�
(t) =

‖‖‖�∗
j�1
(t), �∗

j�2
(t),⋯ , �∗

j�m
(t)
‖‖‖ ,  the centre set  is 

�
∗
j�
=

(
�∗
j�1
(t),�∗

j�2
(t),⋯ ,�∗

j�n
(t)

)
 , and �∗

j�n
(t) is the nth centre 

of the membership function. �∗
j�m
(t) is the nth width of the 

membership function. j′ represents the maximum activation-
intensity rule.

where dis(i, j′ ) is the Euclidean distance between j′ th and 
the other rule centres. ���

(
j′
)
 is the set of dis

(
i, j′

)
 , and �∗

j�
 is 

the set of dis
(
i, j′

)
 . If (28) is satisfied, the j′ th rule belongs 

to S; then Jimin = argmin(S); argmin is the minimum value 
of S. If (22) and (28) are satisfied, the vth rule which has the 
least contributing in S needs to be pruned; the weight ωv’ of 

(20)disnmin > dismax

(21)

�∗(t + 1) = min
1≤j≤�∗(t)

� ×
���x�i(t) − c∗

ij
(t)
���

c∗(t + 1) = x�
i
(t), �∗(t + 1) = �∗, i = 1, 2,⋯ ,Nx(t)

�∗=
(a∗+eb∗)⋅(b∗+1)−a∗⋅b∗

(Nx(t)+1)x�i (t)b
∗

a∗ =
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j=1

o
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j
(t), b∗ =
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j=1

o
[4]

j
(t)

(22)Jr(t) = Jsum(t) − JImin(t) > 1
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i, j�

)
=
‖‖‖�

∗

j
− �

∗

j�
‖‖‖, j
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the v'th rule which is closest to the vth is adjusted as 
follows:

where ρ is the dimension of the input variable.

Experimental results and analysis

All the experiments were performed on BSM1 implemented 
using MATLAB 2014b running on Microsoft Windows 8. 
The computer used a 3.6 GHz processor and 8 GB of RAM. 
To objectively evaluate the performance under different con-
ditions, the 14-day data from BSM1 was used for simulation 
at sampling interval of 15 min (Li et al. 2021a, 2021b). The 
integral of the absolute error (IAE) was used to evaluate 
the control performance of the system, and the proposed 
DMOIA-OC system was compared with other systems.

Experimental setup

The population size is 150 to compare the dynamic multi-
objective optimization algorithm; the number of iterations is 
100. The crossover parameter ηc = 20, the mutation param-
eter ηm = 20, and the crossover and mutation probabilities are 
0.9 and 1/Nd, respectively. Nd = 10, it is the number of deci-
sion variables; the shape parameter Nq = 11; also, the algo-
rithm runs 20 times independently. To test the convergence, 
distribution, and diversity of the algorithm, the inverse dis-
tance IGD (Lin et al. 2018) is used as the test index.

Simulation results

(1) DMOIA algorithm validation.
To evaluate the performance of DMOIA, four algorithms, 

dynamic population prediction strategy (PPS), dynamic non-
dominant sorting genetic algorithm II (DNSGAII), decom-
position-based dynamic multi-objective evolution algorithm 
(MOEA/D), and dynamic competitive co-evolution algo-
rithm (DCOEA), are used to validate the performance. At 
the same time, to study the effect of changing frequency on 
the performance of the algorithm, different combinations 
of changing severity and frequency are used to experiment, 
namely (nt, τt) = (5, 10), (10, 10)和(20, 10) (Li et al. 2018). 
Because IGD is mainly used to reflect the convergence and 
distribution of POF, so it is used to test the performance of 
the algorithm.

Table 1 gives the IGD and its standard deviation val-
ues obtained by five algorithms on FDA (Goh et al. 2008) 

(24)�v� (t + 1) = �v� (t) + �

(25)�= −

a∗−o
[5]

j∗
− a∗

(
b∗ − o

[4]

j∗

)/
b∗

(� + 1)o
[4]

v�
xi

and dMOP (Farina et al. 2004) problems to show the best 
results of the five algorithms in bold. From Table 1, the 
PPS and DCOEA algorithms show good performance for 
FDA4, dMOP2, and dMOP3 problems. DNSGAII performs 
the worst on FDA1, FDA4, FDA5, dMOP1, and dMOP3. In 
addition, for FDA2, FDA3, and dMOP1 problems, PPS has 
the worst effect. However, DMOIA performs best in most 
test functions of FDA and dMOP; i.e. DMOIA performs 
better in dynamic optimization than other comparison algo-
rithms. The results show that DMOIA can approximate PF 
stably and effectively in a dynamic environment for three-
dimensional problems. Because DMOIA has better popula-
tion diversity and distribution, it shows better optimization 
performance significantly.

At the same time, in order to further study the perfor-
mance of the algorithm under different population sizes, to 
evaluate the performance of DMOIA, three different popula-
tion sizes were set up; they were set to 100, 150, and 200, 
respectively. As seen in Table 1, the DMOIA algorithm size 
which was set to 200 has the minimum IGD value. When 
set to 100, it has the maximum IGD value, and 150 was the 
second. Therefore, the larger the population size, the smaller 
the IGD value and the better the convergence, and vice versa.

(2) DMOIA-OC experimental results.
WWTPs have a non-linear change due to biochemi-

cal and nitrification reactions. When water flow changes 
dynamically, DMOIA-OC achieves the goal of lowering 
EQ before EC meets the standards. To evaluate the control 
performance of the DMOIA-OC, three weather conditions 
(dry, rainy, and storm) are experimented. It is compared 
with five algorithms, which are two optimization control-
lers: virtual reference feedback adjustment control strategy 
(VRFT-CS) (Roman et al. 2016), scale integral optimization 
controller based on non-dominant sorting genetic algorithm 
(NSGA + PI-OC) (Vitor et al. 2021); adaptive multi-objec-
tive particle swarm optimization algorithm based on the par-
allel unit coordinate system (pccsAMOPSO-OC) (Hu et al. 
2015), cluster MOPSO (Zhang et al. 2012), and dynamic 
multi-objective particle swarm optimization control method 
(clusterMOPSO-OC) (Chakraborty et al. 2011). The simu-
lation results in three kinds of weather are shown in Fig. 3, 
Fig. 4, and Fig. 5.

1) Dry weather.
In dry weather, the control results of SO and SNO are 

shown in Fig. 3 (a) and (b). It can be seen that DMOIA-OC 
can generate time-varying settings based on actual input and 
has good tracking performance. In addition, Fig. 3 (c) shows 
the control error between the actual output values of SO and 
SNO and the set values. The control errors are small when 
they are all kept within ( +) 0.4 mg/L.

To further validate the performance of DMOIA-OC, 
Table 2 shows the results compared with the other five 
methods. It can be seen that IAE has the best control effect 
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than other comparison methods. The AE, PE, and EQ val-
ues of DMOIA-OC are the lowest; that is, the EC and EQ 
of the outlet are the lowest. In addition, the concentration 

of SS in NSGA + PI-OC is slightly lower than that of in 
DMOIA-OC. However, its EC and EQ are significantly 
lower than that of NSGA + PI-OC. In conclusion, under 

Table 1   Performance IGD comparison of results on the test problems

* The data are from the reference Jiang et al. (2016)

Problem
Algorithm

DNSGAII* PPS* MOEA/D* DCOEA* DMOIA* (150) DMOIA* (100) DMOIA* (200)

FDA1 (5,10) 6.4053E-1 
(9.8895E-2)

2.0885E-1 
(8.4104E-2)

3.5649E-1 
(4.9023E-2)

6.3686E-2 
(1.1610E-2)

2.0126E-1 
(2.3652E-2)

2.3567E-1 
(3.9765E-2)

1.5679E-1 
(2.0468E-2)

(10,10) 5.8213E-2 
(3.8909E-3)

4.2736E-2 
(1.9486E-2)

1.2112E-1 
(1.1879E-2)

4.1342E-2 
(6.5605E-3)

4.0569E-2 
(3.4259E-3)

5.0398E-2 
(4.6325E-3)

3.3596E-2 
(3.0572E-2)

(20,10) 4.1464E-2 
(4.2405E-3)

1.6218E-2 
(7.9450E-3)

4.0424E-2 
(2.2617E-3)

2.3984E-2 
(2.2878E-3)

1.4983E-2 
(2.0698E-3)

2.6872E-2 
(2.9862E-3)

1.2267E-2 
(1.6982E-3)

FDA2 (5,10) 2.8517E-2 
(2.4351E-3)

8.1301E-2 
(3.0399E-2)

8.4088E-2 
(1.3585E-2)

7.2853E-2 
(3.8658E-2)

2.5326E-2 
(2.2698E-3)

3.0915E-2 
(2.7698E-3)

2.1369E-2 
(1.7635E-3)

(10,10) 1.0805E-2 
(9.0279E-4)

6.3561E-2 
(1.0647E-2)

3.3894E-2 
(8.8878E-3)

4.7325E-2 
(3.3605E-2)

1.0126E-2 
(8.1259E-4)

1.6842E-2 
(1.0159E-3)

9.5231E-3 
(7.4236E-4)

(20,10) 6.5124E-3 
(5.2611E-4)

6.2768E-2 
(9.0724E-3)

1.6459E-2 
(4.9937E-3)

3.2472E-2 
(4.6061E-2)

6.3395E-3 
(5.1611E-4)

6.9657E-3 
(6.8649E-4)

5.6231E-3 
(4.5683E-4)

FDA3 (5,10) 2.6346E-1 
(6.0463E-2)

4.4378E-1 
(1.1102E-1)

2.4764E-1 
(2.3050E-2)

2.6371E-1 
(3.5505E-2)

2.2654E-1 
(3.3426E-2)

2.8942E-1 
(3.7698E-2)

1.8965E-1 
(2.9963E-2)

(10,10) 1.0821E-1 
(3.3153E-2)

2.1946E-1 
(1.8132E-2)

1.3090E-1 
(2.5891E-2)

1.9526E-1 
(3.2807E-2)

1.0162E-1 
(1.9596E-2)

1.5674E-1 
(2.4821E-2)

9.6875E-2 
(1.0259E-2)

(20,10) 9.0365E-2 
(2.8703E-3)

1.9259E-1 
(2.4153E-2)

5.4535E-2 
(8.3567E-3)

1.2625E-1 
(3.1398E-2)

5.1569E-2 
(2.0695E-3)

6.3516E-2 
(3.1269E-3)

4.3678E-2 
(1.2372E-3)

FDA4 (5,10) 1.4906E + 0 
(1.2669E-1)

3.0719E-1 
(1.9145E-2)

1.3602E-0 
(1.6118E-1)

1.6224E-1 
(6.1969E-3)

1.4732E-0 
(1.1596E-1)

1.7895E + 0 
(1.4926E-1)

1.1569E-0 
(9.1532E-2)

(10,10) 7.6342E-1 
(4.4885E-2)

2.1151E-1 
(2.0215E-2)

5.7713E-1 
(5.4877E-2)

1.2450E-1 
(4.5799E-3)

2.5986E-1 
(4.6598E-2)

3.0156E-1 
(5.2369E-2)

1.9546E-1 
(4.1621E-2)

(20,10) 2.6255E-1 
(1.6817E-2)

1.7909E-1 
(3.0438E-3)

2.2277E-1 
(1.3352E-2)

1.0303E-1 
(1.7584E-3)

1.3615E-1 
(1.2631E-2)

2.2496E-1 
(1.7216E-2)

1.0142E-1 
(9.8946E-3)

FDA5 (5,10) 1.7611E + 0 
(1.0707E-1)

6.5562E-1 
(3.1705E-2)

1.5704E + 0 
(1.3189E-1)

4.3378E-1 
(4.6953E-2)

4.2631E-1 
(2.9654E-2)

4.8573E-1 
(3.5864E-2)

3.6846E-1 
(2.0516E-2)

(10,10) 1.0239E + 0 
(5.4901E-2)

4.8031E-1 
(3.5207E-2)

8.1980E-1 
(6.0501E-2)

3.6283E-1 
(4.0631E-2)

3.3269E-1 
(3.0156E-2)

2.8674E-1 
(2.5592E-2)

2.9818E-1 
(2.6549E-2)

(20,10) 4.8890E-1 
(1.2544E-2)

3.7195E-1 
(1.2431E-2)

4.0732E-1 
(1.4768E-2)

3.1016E-1 
(2.7499E-2)

2.9523E-1 
(1.1561E-2)

2.1462E-1 
(9.3683E-2)

2.0194E-1 
(9.5673E-3)

dMOP1 (5,10) 1.3135E-1 
(1.1037E-2)

4.1528E-1 
(7.4997E-1)

1.3604E-2 
(9.0549E-3)

6.9595E-2 
(1.4007E-2)

1.18965E-1 
(4.3259E-3)

1.7963E-1 
(5.0326E-3)

9.3648E-2 
(3.8654E-3)

(10,10) 8.8338E-3 
(5.0638E-3)

5.0918E-2 
(9.3741E-2)

9.3916E-3 
(1.1914E-3)

3.9362E-2 
(6.2467E-3)

8.1256E-3 
(1.9856E-3)

9.4687E-3 
(2.5984E-3)

7.8324E-3 
(1.0659E-3)

(20,10) 7.3907E-3 
(3.2736E-3)

4.3965E-2 
(8.4779E-2)

7.1797E-3 
(2.7117E-3)

1.8848E-2 
(2.3214E-3)

6.5623E-3 
(1.3569E-3)

7.4816E-3 
(2.8537E-3)

5.8674E-3 
(9.4658E-4)

dMOP2 (5,10) 6.8741E-1 
(7.5422E-2)

1.5635E-1 
(1.8877E-2)

4.9102E-1 
(4.1828E-2)

1.2043E-1 
(2.0546E-2)

2.0238E-1 
(3.0159E-2)

2.9687E-1 
(3.8686E-2)

1.2316E-1 
(2.5619E-2)

(10,10) 1.1864E-1 
(9.4674E-3)

4.2819E-1 
(1.7367E-2)

1.8898E-1 
(4.3151E-2)

7.3299E-2 
(8.9931E-3)

8.5231E-2 
(1.0126E-2)

9.2685E-2 
(1.7962E-2)

8.0162E-1 
(9.5613E-3)

(20,10) 1.5741E-1 
(6.7003E-4)

2.0207E-2 
(2.4955E-3)

5.6301E-2 
(3.9135E-3)

3.4622E-2 
(4.3234E-3)

2.2569E-1 
(3.0259E-3)

2.9685E-1 
(3.8849E-3)

1.9326E-1 
(2.5169E-3)

dMOP3 (5,10) 5.6244E-1 
(3.9864E-2)

1.7617E-1 
(8.0705E-2)

3.4211E-1 
(1.9264E-2)

4.9556E-2 
(4.8079E-3)

4.1596E-2 
(2.0156E-3)

5.4963E-2 
(3.7756E-3)

3.6915E-2 
(1.2641E-3)

(10,10) 2.0009E-1 
(1.5091E-2)

1.1367E-1 
(1.2092E-2)

1.6853E-1 
(1.0496E-2)

2.9589E-2 
(2.4806E-3)

4.3262E-2 
(1.8962E-3)

4.9675E-2 
(2.6949E-3)

3.8542E-2 
(1.0659E-3)

(20,10) 1.0780E-1 
(8.5053E-3)

8.9901E-2 
(6.7418E-3)

6.2795E-2 
(4.3764E-3)

1.6366E-2 
(1.7152E-3)

1.2695E-2 
(1.0326E-3)

2.6698E-2 
(2.5942E-3)

9.8873E-3 
(9.7232E-4)
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dry conditions, DMOIA can output the best water quality 
with the least energy consumption and the best control 
effect.

2) Rainy weather.
In rainy weather, the SO and SNO control results are given 

in Fig. 4 (a) and (b). Seen from that, SO settings fluctu-
ate more than sunny days, and SNO settings change rela-
tively smoothly. Similarly, DMOIA-OC has good tracking 
performance. In addition, in order to observe the control 
effect of DMOIA-OC more intuitively, the control error 
is given in Fig. 4 (c). It can be seen that the error is also 
within ± 0.4 mg/L, the control error is small, and the predic-
tion error of SNH is greater than that of SO.

Table 2 shows the results of DMOIA-OC compared with 
the other five methods. It shows that the concentration of 
SS is the lowest. Compared with other comparison algo-
rithms, DMOIA-OC has the lowest AE, PE, and EQ values, 
NSGA + PI-OC (Jiang et al. 2004) has the lowest EQ, and 
cluster MOPSO-OC has the lowest AE and PE values. The 
control effect of DMOPSO-OC is only inferior to DMOIA-
OC. Also, DMOIA-OC has the smallest IAE value. To sum 
up, DMOIA can output the best water quality with the least 

energy consumption and the best control effect under cloudy 
and rainy weather conditions.

3) Storm weather.
Figure 5 (a) and (b) show the control results of SO and SNO 

in rainstorm conditions. The settings for rainstorm weather 
fluctuate more frequently than those for sunny and rainy 
days, and the fluctuations in the back section are more fre-
quent than those in the front section. In addition, to verify 
the control effect of DMOIA-OC more intuitively, control 
errors are given in Fig. 5 (c). From that, the error of the 
latter segment remains within ± 0.4 mg/L, and the error of 
the latter segment fluctuates considerably relative to the for-
mer. The prediction error of SO is greater than that of SNO, 
but the overall control error is smaller. In addition, Table 2 
shows the results of DMOIA-OC compared with the other 
five methods. As seen that, the concentration of SS is slightly 
higher than that of DMOPSO-OC. The AE, PE, and EQ 
values of DMOIA-OC are the smallest compared with other 
comparison algorithms. The result of pccsAMOPSO-OC is 
the worst; DMOPSO-OC is second only to DMOIA-OC. 
VRFT-CS (Peng et al. 2007), NSGA + PI-OC (Jiang et al. 
2004), and cluster MOPSO-OC (Zhang et al. 2012) ranked 

Fig. 3   a The control results of 
SO in the dry weather.b The 
control results of SNO in the 
dry weather. c The control 
errors of SO and SNO

a) 

b)

c) 

79728 Environmental Science and Pollution Research  (2022) 29:79718–79733

1 3



third to fifth, respectively, and DMOIA-OC (Lu et al. 2019) 
has the smallest IAE value. In summary, DMOIA can also 
obtain the best EQ with the least EC and the best control 
effect under heavy rain conditions.

Discussion on experimental results

The regularities exhibited by the experimental results can 
explain the factors that affected the overall performance of 
DMOIA-OC. These results are summarized as follows:

1.	 Excellent optimization performance: to more accurately 
predict the location of Pareto front, an adaptive dynamic 
immune optimization method is designed. When the 
environment changes, representative individuals are 
adaptively selected in the iterative process with good 
distribution and convergence to increase the diversity 
of the Pareto solutions. The multi-directional predic-
tion strategy is used to predict the motion position of 
the Pareto set more accurately and improve the perfor-
mance of the evolutionary algorithm in the solution of 

the dynamic multi-objective optimization problems. 
The real-time settings for SO and SNO are thus obtained. 
Meanwhile, the limit optimization mutation method (Li 
et al. 2018) increased the diversity of the population 
and improved its convergence speed. The above methods 
provided an excellent dynamic optimization scheme for 
solving complex optimization problems, as verified by 
the IGD results in Table 1.

2.	 Accurate tracking control: WWTP is a time-varying 
system, and the flow and composition of the input 
water are constantly changing. Therefore, a recursive 
fuzzy neural network with a time-varying structure is 
needed to adapt to the changes in operating conditions. 
For this reason, Zhou et al. combined the hybrid multi-
objective barebones particle swarm optimization algo-
rithm (HBBMOPSO) with a self-organizing controller 
to realize intelligent control of the WWTP (Zhou et al. 
2017). A better control effect can be achieved by devis-
ing more effective approximations for the non-linear 
dynamic relationships in WWTP control. At the same 
time, because a recursive fuzzy neural network com-
bines the advantages of a fuzzy system and a neural 

Fig. 4   a The control results of 
SO in the rain weather. b The 
control results of SNO in the 
rain weather. c The control 
errors of SO and SNO

a) 

b) 

c) 
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Fig. 5   a The control results of 
SO in the storm weather. b The 
control results of SNO in the 
storm weather. c The control 
errors of SO and SNO

a) 

b) 

c) 

Table 2   Comparison of 
different control strategies for 
the mean energy consumption 
and effluent quality with effluent 
parameters in three different 
weathers

* The data are from the reference

Weather Optimal control strategy SS/mg·L−1 AE/kW·h PE/kW·h EQ/kg poll units IAE/mg·L−1

DMOIA-OC 12.31 3620 231 6430 0.091

DMOPSO-OC* 12.52 3630 235 6558 0.099

Dry clusterMOPSO-OC* 12.45 3691 254 7291 0.122

pccsAMOPSO-OC* 13.25 3674 239 7103 0.120

NSGA+PI-OC* 12.15 3694 243 7214 0.100

VRFT-CS* 12.32 3655 239 7151 0.102

DMOIA-OC 13.20 3695 248 7860 0.087

DMOPSO-OC* 13.48 3701 251 7873 0.091

Rainy clusterMOPSO-OC* 13.25 3768 280 8148 0.121

pccsAMOPSO-OC* 13.51 3728 261 8214 0.102

NSGA+PI-OC* 13.71 3706 271 8341 0.099

VRFT-CS* 13.41 3746 263 8251 0.076

DMOIA-OC 13.24 3859 220 7498 0.101

DMOPSO-OC* 13.06 3869 224 7509 0.105

Storm clusterMOPSO-OC* 13.84 3884 251 7578 0.124

pccsAMOPSO-OC* 13.54 3915 261 7621 0.109

NSGA+PI-OC* 13.78 3919 250 7551 0.125

VRFT-CS* 13.91 3990 232 7598 0.098
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network, it has the ability to perform fuzzy inference 
and non-linear mapping. Therefore, a SORFNN with an 
adaptively adjusted structure and parameters (Qiao et al. 
2017) was adopted to effectively improve the control 
accuracy in this study. It can be seen from Figs. 3, 4, and 
5 that DMOIA-OC achieved stable and high-precision 
control.

Conclusion

An advanced DMOIA-OC control method was proposed to 
solve the multi-index coupling problem in complex WWTPs. 
To analyse the process variables related to EC and EQ in the 
WWTP operating characteristics and data, the SOFNN algo-
rithm with a dynamically adjusted structure and parameters 
was adopted to establish the relationship model (between 
the input variables, EC, and EQ). This provides a good foun-
dation for the WWTP optimization. The DMOIA method 
was also designed in this study to adaptively generate new 
populations with better diversity and distribution when the 
environment changes. This allowed the SO and SNO values 
with the lowest EC under the standard EQ to be obtained. 
The experimental results show that DMOIA achieved the 
best performance for complex dynamic optimization among 
the compared methods. To obtaining the best SO and SNO 
setting values, a recursive fuzzy neural network controller 
with high adaptive capability was used for tracking control. 
The experimental results show that on sunny and rainy days 
and under heavy rain, the proposed DMOIA-OC method 
achieved the best optimized control performance. The results 
also demonstrate the ability of DMOIA-OC to effectively 
optimize multiple performance indicators and achieve stable 
and accurate tracking and control of these indicators.
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