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Abstract
The treatment of heavy metal (HM) wastewater is a critical and considerable challenge. Fruit peel-based HM adsorption is 
a promising way for the water pollution control and the reuse of agricultural waste. In this study, a novel adsorbent based on 
orange peel was synthesized for the first time by introducing abundant -COO groups with ethylenediaminetetraacetic dianhy-
dride (EDTAD) to eliminate Cd(II) and Co(II) of sewage solution. The synthesized adsorbent displayed excellent adsorption 
capacity of 51.020 and 40.486 mg/g for Cd(II) and Co(II), respectively, and the adsorption equilibrium was achieved within 
5 min, following the Langmuir isotherm model and the pseudo-second-order model. Surface characterization of adsorbents 
by scanning electron microscopy-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray 
photoelectron spectroscopy confirmed that ion exchange, complexation, and physical adsorption could occur during the 
adsorption process. The rapid and highly efficient adsorption performance suggests EDTAD-modified synthesized orange 
peel possesses great potential for HM removal from sewage systems.
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Introduction

Environmental pressure has always been an important 
problem for human health with the rapid growth of global 
economics (Annadurai et al. 2003; Gupta et al. 2018; Vil-
len-Guzman et al. 2021). Soil and water pollution of heavy 
metals (HMs) has become widespread worldwide due to 
human activities, including the excessive use of metal-
based fertilizers manures and farm chemicals in agricul-
tural practices, metallurgical engineering, urban sewage 
discharges, intensive soil development, and metal mining 
activities (Gu et al. 2014; Anju and Banerjee, 2011; Zhang 
et al. 2019a). Due to the non-biodegradability, HMs tend 
to be accumulated in water bodies (Ayoubi and Karami 
2019, Jia et al. 2020, Tan et al. 2016, Yong et al., 2020), 
and then the ecosystem is seriously damaged by reducing 
water quality and biological transmission and enrichment 
(Bulin et al. 2020, Kerr and Cooke, 2017). Among the 
HMs, cobalt (Co(II)) and cadmium (Cd(II)) are both con-
sidered the most common pollutants in many industrial 
applications, and they are also important factors affect-
ing human healthy. These HMs are chronic in the human 
body and may cause carcinogenic and non-carcinogenic 
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toxic effects (Brohi et al. 2021; Ma et al. 2017; Sameena 
et al. 2019). It is reported that Cd can trigger femoral pain, 
sterility, renal injuries, and immune deficiencies (Memon 
et al. 2008); excessive intake of Co gives rise to neurotox-
icity (Singh and Shukla, 2015). Therefore, the protection 
of surface water and groundwater has become an important 
task at present. Equally, those HMs which were already 
discharged in a reasonable way must be managed to reduce 
the emission. 

In order to deal with the pollution of HMs, various treat-
ment measures have been put into effect, including but not 
limited to ion exchange, coagulation, solvent extraction, 
chemical precipitation (Németh et al. 2016), membrane 
filtration (Fang et al. 2017), and electrochemical treatment 
(Mourya et al. 2019). While effective adsorption perfor-
mances have been achieved, some critical shortcomings 
still exist, such as high energy consumption and second-
ary pollution. More important, most of these procedures are 
expensive and complicated, thus offsetting their advantages 
(Kai et al. 2017, Li et al. 2018).

To overcome these limitations, the strategy of biosorp-
tion, as a powerful method to efficiently remove HMs from 
sewage system, has been widely used in the construction of 
efficient, simple, and inexpensive platforms in recent years 
(Jurado-Sánchez et al. 2015; Mia et al. 2017). For exam-
ple, Jin et al. isolated endophytic fungi from plants to cope 
with HMs contamination (Jin et al. 2019). Módenes et al. 
evaluated the biosorption of HMs by dead plant macrophyte 
Egeria densa in fixed bedposts (Módenes et al. 2018). Agri-
cultural and food industry wastes, such as grapefruit, straw, 
and seed bark, have also proved to be effective to remove 
HMs by adsorption (Jin et al. 2018).

As the world’s largest fruit producing country, China gen-
erates approximately 31.98 million tons of fruit waste every 
year (Pathak et al. 2015). Among them, orange peel is rich in 
lignin, cellulose, hemi-cellulose, and pectin that contain var-
ious functional groups (-OH, -COOH, etc.), which is suitable 
for large-scale preparation of renewable adsorbents to deal 
with HMs (Vilardi et al. 2018). However, the low adsorption 
efficiency of raw orange peel on HMs is still unsatisfactory, 
and many chemical modification methods have been tried 
to enhance the capture ability. For example, the maximum 
removal capacities of Cd(II) and Co(II) by using orange 
peel modified with nitric acid were 13.70 and 1.82 mg/g, 
respectively (Annadurai et al. 2003; Lasheen et al. 2012), 
whereas the adsorption capacity of Cd(II) by the grafted 
copolymerization-modified,  HNO3-modified, and active 
carbon orange peels were 21.53, 11.20, and 28.67 mg/g 
(Feng et al. 2011, Lasheen et al. 2012, Moreno-Pirajan and 
Giraldo, 2012). Still, the time required to reach equilibrium 
was at least 0.5 h. These studies suggest that orange peel is 
a promising adsorbent, but the adsorption capacity needs to 
be strengthened.

Ethylenediaminetetraacetic dianhydride (EDTAD) is 
an efficient derivatization reagent for chelating metal ions, 
which contains two anhydride groups per molecule. Abun-
dant carboxyl functional groups with high capacity to form 
stable complexes with HMs can be introduced into biomass 
materials through esterification reaction (Chen et al. 2012; 
Kołodyńska et al. 2008). The excellent features of EDTAD 
facilitate us to develop a facile method to manufacture a new 
adsorbent with superior adsorption capacity for HMs. In this 
regard, orange peel was chemically modified by EDTAD 
for the first time through esterification reaction, and a large 
number of -COO groups were introduced, which have been 
proposed for Cd(II) and Co(II) removals. The specific aims 
of the work are (1) using EDTAD to modify biomaterial to 
improve its adsorption performance for HMs; (2) investigat-
ing the effects of pH, initial concentration and contact time 
of HMs, and competitive adsorption of Cd(II) and Co(II) 
loaded on material, as well as the adsorption kinetics, iso-
therms, and thermodynamics; (3) characterizing the desired 
material using SEM, EDX, FT-IR, and XPS to reveal the 
physical and chemical properties of the adsorbents; and (4) 
elucidating the underlying adsorption mechanisms.

Materials and methods

Materials

Orange peel used in the study was collected from the local 
market originating from Nanning, Guangxi Province, which 
was the famous orange-producing area of China. The peel 
was first washed for four times and dried at 50 ℃ to constant 
weight, then cut into small pieces about 1 cm, and crushed 
and sieved with 40 mesh Taylor screen.

N–N-dimethylformamide (DMF, purity 99.5%) and eth-
ylenediaminetetraacetic dianhydride (EDTAD, purity 95%) 
were provided by Thermo Fisher Scientific Co. ltd; high 
purity (≥ 9 9.9%) Cd(NO3)2 and Co(NO3)2 were provided 
by Shanghai Macklin Biochemical Co., Ltd., China. The 
rest of reagents were purchased from Shanghai Sinopharm 
Chemical Reagent Co., Ltd., China. The water used in this 
experiment was purified through the Milli-Q water purifica-
tion system (Millipore, USA).

Adsorbent preparation

Degreasing and deproteinization of peels

According to the previous method, the peel was defatted 
by Soxhlet extraction method for 5 h with N-hexane and 
ethanol (1:1) to remove the lipids (Júnior et al. 2009) and 
then deproteinized to expose the hydroxyl groups for the 
esterification reaction, which were operated by mixing with 
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NaOH solution (5 M) over night to obtain mercerized peels, 
repeating twice and generating secondary mercerized peels 
defined as modified orange peel (MOP).

Preparation of EDTAD‑modified peels

Peraira’s method was used to prepare the EDTAD-modified 
material with some changes (Pereira and Gurgel, 2010). 
Briefly, MOP was mixed with EDTAD (1:1.5, w/w) in 42 ml 
DMF and continuously stirred for 20 h at 75 ℃ and then 
centrifuged at 10,000 × g. The precipitate was washed with 
DMF, deionized water, saturated  NaHCO3, deionized water, 
95% ethanol aqueous solution, and acetone in turn. The pre-
cipitate was dried in room temperature to obtain EDTAD-
modified orange peel (EMOP).

Adsorption experiments

The standard storage solutions of Cd(II) and Co(II) 
(500 mg/L) were prepared by dissolving Cd(NO3)2 and 
Co(NO3)2 into deionized water and calibrating the con-
centration by inductively coupled plasma-atomic emission 
spectroscopy (ICP-OES, Avio 200, PerkinElmer, USA) 
(Zhang et al. 2020b). All other concentrations used in this 
study were serial dilutions from stock solutions. The adsor-
bent and the standard HM solutions were placed in a 200-
rpm shaker at a ratio of 1 mg:1 ml at room temperature 
for adsorption experiments. Subsequently, the solid liquid 
mixtures were separated by centrifugation at 10,000 × g and 
passed through a 0.22-μm Nylon filter. The dried adsorbent 
was then adapted for subsequent FT-IR, SEM–EDX, and 
XPS analysis. Specifically, single-factor experiments were 
applied to investigate the effects of pH (3–7), initial metal 
ion concentration (30–250 mg/L for Cd and 20–150 mg/L 
for Co), and contact time (1–180 min) on the removal pro-
cess. The pH of ionic solutions was adjusted with 1 M HCl 
or NaOH solutions, and the equilibrium adsorption capacity 
of the adsorbent was expressed by Eq. (1):

where Qe is the equilibrium adsorption capacity (mg/g), C0 
and Ce are the initial and equilibrium ion concentrations 
(mg/L), V is the solution volume (L), and W is the weight of 
the adsorbent (g).

Characterization of the adsorbents

Semi-quantitative elemental analysis of EMOP surface mor-
phology observation by using field emission high-resolu-
tion scanning electron microscope (SEM; Apeo, FEI Inc., 
USA) combined with energy dispersive X-ray spectroscopy 
(EDX) was performed (Zhang et al. 2018). Fourier trans-
form infrared spectra (FT-IR) spectra using KBr pressed disk 
technique were determined on a FT-IR spectrometer (IS 50, 
Thermo) (Huang et al. 2019). Surface element composition 
and atomic valence of EMOP were detected by X-ray pho-
toelectron spectroscopy (XPS; ESCALAB 250Xi, Thermo 
Fisher Scientific Inc., USA) (Ding et al. 2020). The C1s peak 
at 284.8 eV was used as the standard for calibration.

Results and discussion

Modification of orange peel improved HMs removal 
capacity

The adsorption capacity of modified material for metal ions 
has been significantly improved (Fig. 1). For the unmodi-
fied orange peel (UOP), the removal capacity for Cd(II) and 
Co(II) was limited, only 12.60 and 7.58 mg/g, while the 
adsorption capacity for mercerized orange peel (MOP) was 
19.86 and 12.10 mg/g, respectively, both of which were far 
behind that of modification with EDTAD (EMOP, 40.45 
and 22.89 mg/g). Interestingly, whether modified or not, the 
orange peel had better adsorption performance on Cd(II) 
than Co(II).

(1)Qe=
(C0 − Ce)V

W

Fig. 1  The fabrication of 
EDTAD-modified material 
composite. After cutting, dry-
ing, and crushing, the orange 
peel modified by EDTAD was 
obtained by mercerization 
and esterification. Adsorbent 
dose = 1 g/L,  C0 is 70 mg/L 
for Cd and 50 mg/L for Co, 
t = 3 h, T = 25 °C, r = 200 rpm. 
****p < 0.0001
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Effect of initial pH

The initial pH of the solution was a key parameter affecting 
the adsorbate characteristics and the surface properties of the 
adsorbent material. As shown in Fig. 2a, the extremely low 
level of adsorption occurred at pH 3.0, which might be caused 
by the strong competition between H(I) and HMs for bind-
ing sites (Bulin et al. 2020; Surgutskaia et al. 2020). With 
the increase of pH, the adsorption capacity of the adsorbent 
on HMs improved from 3.0 to 5.0 and then reached a plateau 
region between 5.0 and 7.0, possibly because the concentration 
of H(I) in the solution decreased, weakening the competition 
with HMs for binding sites.

Adsorption isotherms

To comprehend the adsorption process and the relationship 
between adsorbent and HMs, the adsorption isothermal experi-
ments were performed at 25 ℃ by changing the initial concen-
trations of Cd(II) (30–250 mg/L) and Co(II) (20–150 mg/L). 
The Langmuir (Eq. (2)) and Freundlich (Eq. (3)) isotherm 
models were utilized to analyze the adsorption type of surface 
coverage the adsorption belonged to and estimate the maxi-
mum adsorption capacity (Chen et al. 2021). The Langmuir 
isotherm is assumed that adsorption process occurs at a spe-
cific uniform location in the adsorbent, and the Freundlich 
isotherm is not confined to a monolayer adsorption, which 
explains the reversible heterogeneous surface (Bagheri et al. 
2021). The equations (Elkady et al. 2020) for these models 
are as follows:

(2)Qe =
QmKcCe

CeKc + 1

where Qm is the maximum adsorption capacity (mg/g), Kc 
is Langmuir constant associated with energy of adsorp-
tion (L/mg), and Kf  (L1/n  mg1–1/n  g−1) and 1/n are Freun-
dlich constants related to adsorption capacity and intensity, 
respectively.

The curve of adsorption capacity versus initial con-
centration was shown in Fig. 2b. Obviously, as the initial 
concentration increased, the adsorption capacity increased 
until reached a critical value, where the adsorption tended 
to be saturated. It was evidently that the Langmuir model 
(RL

2 = 0.995–0.999) was fitted better to the Cd(II) or 

(3)Qe = C1∕n
e

+ Kf

Fig. 2  The effects of solution 
pH, initial concentration, con-
tact time on adsorption capacity. 
a Orange peel under different 
pH. Adsorbent dose = 1 g/L,  C0 
is 70 mg/L for Cd and 50 mg/L 
for Co, t = 3 h, T = 25 °C, 
r = 200 rpm. b Initial concentra-
tions under different tempera-
tures. Adsorbent dose = 1 g/L, 
t = 3 h, T = 25 °C, r = 200 rpm. 
c Contact time at optimal 
pH. Adsorbent dose = 1 g/L, 
t = 1–180 min,  C0 is 70 mg/L 
for Cd and 50 mg/L for Co, 
T = 25 °C, r = 200 rpm

Table 1  Parameters of the Langmuir and Freundlich isotherm mod-
els in single HMI system under different initial concentrations and 
kinetic parameters for the removal of Cd(II) and Co(II) on adsorbents

Metal ion Cd(II) Co(II)

Langmuir parameters Qm (mg/g) 51.020 40.486
KC (L/mg) 0.080 0.063
RL

2 0.995 0.999
Freundlich parameters KF  (L1/n  mg1–1/n  g−1) 25.386 0.298

1/n 0.122 1.119
RF

2 0.801 0.464
Pseudo-first-order Qe (mg  g−1) 4.513 2.762

K1 (g  min−1  mg−1) 0.022 0.011
R1

2 0.953 0.852
Pseudo-second order Qe (mg  g−1) 41.152 21.097

K2 (g  min−1  mg−1) 0.219 1.404
R2

2 0.993 0.991
Intra-particle diffusion Kid (mg  g−1  min−0.5) 5.106 2.529

C 28.893 17.345
R3

2 0.999 0.999
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Co(II) adsorption by EMOP than the Freundlich model 
(RL

2 = 0.464–0.801) (Table 1), which demonstrated that the 
adsorption was single-layer and homogeneous (Yuan et al. 
2017). The Qe of Cd(II) and Co(II) computed via Langmuir 
model were 51.020 and 40.486 mg/g, respectively. Espe-
cially worthy of attention, the Qe of Cd(II) and Co(II) on 
EMOP in this work was significantly higher than previous 
studies (ranged from 1.82 to 13.70 mg/g) (Annadurai et al. 
2003; Lasheen et al. 2012), suggesting that EDTAD modi-
fication was a suitable strategy for preparing adsorbents to 
remove Cd(II) and Co(II) from the sewage systems.

Adsorption kinetics

To probe the adsorption kinetics of Cd(II) and Co(II) onto 
EMOP, the adsorption capacity of Cd(II) and Co(II) were 
detected within specified time intervals. Figure 2c showed 
the changes of adsorption capacity over time. The adsorp-
tion rate was extremely fast in the initial stage and reached 
equilibrium within 5 min, much more efficient than previous 
studies (at least 30 min) (Chen et al. 2021; Gao et al. 2019; 
Liu et al. 2012; Zheng et al. 2020).

In addition, the pseudo-first-order (Eq.  (4)) and the 
pseudo-second-order (Eq. (5)) models were employed to 
calculate the adsorption capacity of Cd(II) and Co(II) on 
EMOP and reveal the removal mechanism. The pseudo-
first-order model describes the mass transfer between the 
adsorbent and the metal ions, dominated by the physical 
adsorption; the pseudo-second-order model representatives 
the chemical adsorption (Antuna-Nieto et al. 2020). These 
equations are as follows:

where Qt (mg/g) is the adsorption capacity at t, and K1 (g 
 mg−1  min−1) and K2 (g  mg−1  min−1) are the adsorption rate 
constants of pseudo-first-order and pseudo-second-order, 
respectively.

The corresponding parameters of kinetic models obtained 
in the adsorption experiments were showed in Table 1. Obvi-
ously, the R2 of the pseudo-second-order model for Cd(II) 
and Co(II) were 0.993 and 0.991, respectively, which exhib-
ited a higher adaptation than the pseudo-first-order model for 
Cd(II) (0.953) and Co(II) (R2 = 0.852). And the adsorption 
capacity calculated theoretically obtained by the pseudo-
second-order model of Cd(II) and Co(II) were closer to the 
experimental data, suggesting that the loading of Cd(II) and 
Co(II) by adsorbent was dominated by chemisorption rather 
than physical performance (Yang and Jiang 2014).

(4)Qt=Qe(1-e
−K1t)

(5)Qt=
k2Q

2

e
t

1 + K2Qet

To explore whether the intra-particle diffusion was a rate-
limiting step, an intra-particle diffusion model was adopted 
to expound the porous network and active binding sites of 
HMs diffusing from the solution to the adsorbent (Cabooter 
et al. 2021). The data were well fitted to the intra-particle 
diffusion model (R2 = 0.999), but the linear plots did not pass 
the origin, indicating that the capture process for Cd(II) and 
Co(II) was possibly governed both by the intra-particle dif-
fusion and physical adsorption (Zhang et al. 2020a). The 
adsorption equilibrium was finally achieved within 5 min 
due to the saturation of the adsorption sites and the decline 
of Cd(II) and Co(II) concentration:

where Kid (mg  g−1  min−0.5) is the constant of intra-particle 
diffusion and C represents a constant associated with bound-
ary thickness.

Adsorption thermodynamics

In this study, Gibbs energy change (ΔG), enthalpy change 
(ΔH), and entropy change (ΔS) were calculated for adsorp-
tion thermodynamics study. The relationship between them 
was as follows (Behjati et al. 2018):

In Fig. 2b, Qe gradually increased as the temperature 
increased. The thermodynamic parameters of Cd(II) and 
Co(II) adsorption by EMOP were listed in Table 2. The val-
ues of ΔG were all negative and decreased with temperature, 
indicating that the adsorption of Cd(II) and Co(II) by EMOP 
were spontaneous and thermodynamically favorable process. 
The positive ΔH values suggested that the adsorption of 
Cd(II) and Co(II) by EMOP was endothermic, and higher 
temperature was beneficial to this process. Moreover, the 
positive ΔS values meant an increase in the randomness of 
the solid–liquid interface after Cd(II) and Co(II) adsorption, 
and the adsorption was favorable (Xu et al. 2021).

(6)Qt = Kidt
0.5 + C

(7)△G = −RTlnKe = −RTln
(

Qe∕Ce

)

= △H − T△ S

Table 2  Thermodynamic parameters for the removal of Cd(II) and 
Co(II) on adsorbents. Adsorbent dose = 1 g/L,  C0 is 200 mg/L for Cd 
and 140 mg/L for Co, t = 3 h, r = 200 rpm

T (K) ΔG (kJ⋅mol−1) ΔH (kJ⋅mol−1) ΔS (J⋅mol−1⋅K−1)

Cd(II) 288  − 2394.1 4.386 8.328
298  − 2477.3
308  − 2560.6

Co(II) 288  − 504.17 2.687 1.760
298  − 521.77
308  − 539.37
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Mixed competitive adsorption

For the purpose of comparing the adsorption effects of 
EMOP on Cd(II) and Co(II), mixed adsorption experiments 
were performed. From Fig. 3, we can see that the loading 
capacity for Cd(II) was stronger than Co(II) in the mixed 
HM solution, indicating that EMOP exhibited higher adapt-
ability to Cd(II), which was similar to previous result (Li 
et al. 2008). Furthermore, the total adsorption capacity of 
the mixed ion solution was close to the maximum adsorp-
tion capacity of the single ion, indicating that the adsorption 
reached saturation state.

Desorption and reusability

As shown in Fig.  4a, generally, desorption efficiency 
decreased with pH and then stabilized from pH 4.0 to 6.0. 
For Cd(II), the maximum desorption efficiency was 90.58% 

at pH 1.0, while 93.94% for Co(II), suggesting the adsor-
bent of EMOP might be easily regenerated by HCl treatment 
(Kołodyńska et al. 2017). HCl was chosen as the regenera-
tion reagent in the reusability experiment, and the removal 
rate of Cd(II) and Co(II) was displayed in Fig. 4b. The 
removal rate of Cd(II) and Co(II) by EMOP decreased to 
53.97% and 40.85% after 3 times of adsorption–desorption 
cycle. The decrease of removal efficiency may be ascribed 
to the block of pore structure and decrease of iron binding 
sites (Mei et al. 2021).

Adsorption mechanisms

Various characterizations including SEM–EDX, FT-IR, 
and XPS were integrated to analyze the mechanisms of the 
adsorption process of Cd(II) and Co(II) on EMOP. Obvi-
ously, the surface of the unmodified orange peel (UOP) 
was comparatively smooth (Fig. 5a, b), but the surface 
of EDTAD-modified peel (EMOP) presented a loose and 
porous structure and became shrunken, which provided more 
adsorption sites for Cd(II) and Co(II). Such changes might 
be attributed to the removal of lipids and proteins during the 
mercerization treatment. The EDX spectrum was performed 
to determine whether Cd(II) and Co(II) were successfully 
adsorbed to the peel surface and explore element changes 
before and after modification. After modification, the disap-
pearance of P and K in the peel and the introduction of Na 
fully indicated that the material has been successfully modi-
fied (Fig. 5c, d). When adsorption reaction was completed, it 
was evident that ions were successfully adsorbed because Cd 
and Co appeared on the material surface (Fig. 5e). In addi-
tion, it was obvious from Fig. 5e that the content of Na ele-
ment was significantly reduced, indicating that ion exchange 
occurred in the adsorption process (Júnior et al. 2009).

To further understand the surface characteristics of 
EMOP and its adsorption mechanism for Cd(II) and Co(II), 
FT-IR was carried out, and the spectra was depicted in 

0 20 40 60 80

Cd

Co

Mixed

Qe (m g/g）

Cd

Co

Fig. 3  Comparison of the mixed ion adsorption and the single ion 
adsorption. Adsorbent dose = 1 g/L, pH = 6, t = 3 h,  C0 of each HM is 
100 mg/L, T = 25 °C, r = 200 rpm

Fig. 4  Desorption and recy-
cling of Cd(II) and Co(II) on 
EMOP. a Desorption efficiency 
under different pH. Adsorbent 
dose = 1 g/L,  C0 is 70 mg/L 
for Cd and 50 mg/L for Co, 
t = 3 h, T = 25 °C, r = 200 rpm. 
b Removal rate of EMOP to 
Cd(II) and Co(II) under dif-
ferent repeat times. Adsorbent 
dose = 1 g/L,  C0 is 70 mg/L for 
Cd and 50 mg/L for Co, pH = 1, 
t = 3 h, T = 25 °C, r = 200 rpm

25753Environmental Science and Pollution Research  (2022) 29:25748–25758

1 3



Fig. 6. The signal around 3416  cm−1 attributed to the -OH 
stretching vibration; the peaks at 2919 and 2929  cm−1 could 
be ascribed to the asymmetric and symmetric C-H stretch-
ing, and the sharp peaks at 1647, 1617, 1609, and 1624  cm−1 
represented the stretching of C = O, whereas 1051, 1081, 
and 1016  cm−1 were associated with C-O stretching (Lessa 
et al. 2017; Wang et al. 2014). It needed to be pointed out 
that the broader and weaker peaks assigned to C-H, C = O, 
and C-O were detected for MOP than UOP and the band 
at 1740  cm−1 which was ascribed to N–H stretching dis-
appeared for MOP, indicating that the success of degreas-
ing and deproteinization after mercerization (Krylova and 

Dukštienė, 2019, Zhang et al. 2018). The decrease of -OH 
peak and the increase of C = O and C-O peaks in EMOP 
just indicated that the adsorbent was successfully conju-
gated by EDTAD, and the -OH was substituted to introduce 
-COO group, which was one of the reasons for the signifi-
cantly improved adsorption performance. After binding with 
HMIs, the decrease of peak intensity around 3416, 1624, 
and 1016  cm−1 and the blue shift from 1609 to1624  cm−1, 
which could be attributed to the interaction between high 
electron density of metal ions and -COO group (Ding et al. 
2016; Lim et al. 2008) illustrates the interaction between 
oxygen-containing groups (-OH, C = O,C-O, etc.) and HMs.

To explore the element types and atomic chemical 
valences on the surface of the material before and after 
adsorption, XPS analysis was performed. The full-spectrum 
and fine-spectrum scanning of C, O, Na, Cd, and Co before 
and after adsorption was displayed in Fig. 7. New charac-
teristic peaks of Cd 3d (412.6 eV and 405.8 eV) and Co 
2p (786.1 eV and 781.4 eV) appeared in the EMOP after 
adsorption, which indicated that Cd(II) and Co(II) were 
indeed captured. Additionally, the intensity of Cd 3d was 
stronger than that of Co 2p, supporting the finding that the 
orange peel has better adsorption performance on Cd(II) 
than Co(II). Even more noteworthy was the peak strength 
of Na 1 s around 1071.5 eV decreased after adsorption, 
manifesting that ion exchange might occur between Na(I) 
with Cd(II) and Co(II), which confirmed the EDX results. 
The C 1 s peaks of EMOP were split into three peaks at 
284.8/284.8, 286.4/286.6, and 288.1/288.3 eV, represent-
ing C − C/C = C, C − O, and C = O, respectively (Zhang 
et al. 2019b). The binding energy of C-O and C = O in C 1 s 
shifted towards the higher binding energy by approximately 

Fig. 5  Surface morphology and metal ions of the adsorbents observed 
by SEM–EDX. SEM: a UOP, unmodified orange peel; and b EMOP, 
EDTAD-modified orange peel. EDX: c Unmodified orange peel, d 

modified orange peel before adsorption, and e modified orange peel 
after adsorption
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Fig. 6  FT-IR spectra of adsorbents before and after adsorption. UOP, 
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EDTAD-modified orange peel; EMOP-Ions, EDTAD-modified 
orange peel after adsorbing Cd and Co

25754 Environmental Science and Pollution Research  (2022) 29:25748–25758

1 3



0.2 eV, and the strength of C = O was notably decreased 
after adsorption, which might be caused by the complexa-
tion reaction between the ions and the oxygen-containing 
groups of EMOP. The O atom provided a lone pair electron 
to form a coordinated covalent bond with metal ions, which 
led to the decrease of O charge density and the increase of 
photoelectron binding energy (Ling et al. 2013; Zhao et al. 
2013; Zhu et al. 2012). The O 1 s peaks were split into two 
major peaks, which were ascribed to C − O at 531.0 eV and 
C = O at 532.7/532.8 eV (Zhang et al. 2019b). The disap-
pearance of C-O and the shift of C = O binding energy indi-
cated that the binding between ions and EMOP preferred 
at the O atoms of C-O (Lim et al. 2008; Zhou et al. 2018).

Based on the above analysis, ion exchange, surface com-
plexation, and physical adsorption may simultaneously par-
ticipate in the adsorption process, in which chemical adsorp-
tion was dominant. Specifically, the decrease of Na peak 
strength in EDX and XPS indicated that free HMs may be 
replaced by –COO⋯Na⋯COO–. The change of -OH and 
-COOH in FT-IR and the shift of the C-O and C = O peak 
positions in XPS confirmed that complexation reactions 

occurred between the abundant oxygen-containing groups 
on the surface of EMOP and HMs to form C–O–Cd/Co com-
plexes, which was consistent with previous work (Zhang 
et al. 2020c). In addition, the pore size and shrinkage struc-
ture of adsorbent surface indicated that physical adsorption 
may also be involved in the adsorption process.

Conclusion

To sum up, mercerization and esterification approach were 
utilized to transform orange peel into EDTAD-modified 
adsorbent in this study. The as-prepared EMOP had out-
standing Cd(II) and Co(II) loading capabilities of 51.020 
and 40.486 mg/g, respectively, and excellent kinetic perfor-
mance (within 5 min), fitting with the pseudo-second-order 
and Langmuir isotherm model. The adsorption performance 
of EMOP might be attributed to abundant oxygen-containing 
groups since ion exchange and surface complexation were 
proved to be the main adsorption mechanism, which was 
assisted by physical adsorption. It can be concluded that 

Fig. 7  High-resolution XPS spectra of adsorbents
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EDTAD-modified orange peel is a promising and environ-
mentally friendly bio-adsorbent to treat HM pollution.
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