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Abstract
Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffec-
tive for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 
1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral 
therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional 
route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, trans-
dermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes 
management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal 
degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration 
because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery 
of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. 
Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively 
launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclu-
sion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over 
the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical 
outcomes in diabetes management.
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DM  Diabetes mellitus
EE-ASI-1  Enhanced epidermal antigen-specific 

immunotherapy trial-1
GUMP  Glucose measurement using microneedle 

patches
HbA1c  Hemoglobin A1c
HLA  Human leukocyte antigen
ISF  Interstitial fluid
LA  Lauric acid
MBGs  Mesoporous bioactive glasses
MSN  Mesoporous silica nanoparticle
MNs  Microneedles
PTMs  Phase transition microneedles
PVPMAA  Poly (vinylpyrrolidone-co-methacrylic) 

acid
PDA  Polydopamine
PGA  Polyglycolic acid
PLA  Polylactic acid
LGA  Polylactic-co glycolic acid
PVP  Polyvinylpyrrolidone
RS-PGC-MNs   Rapidly separating genepin-crosslinked 

gelatin (MNs) mounted on polyvinyl 
alcohol-coated polylactic acid MNs

ROS  Reactive oxygen species
SC  Subcutaneous
T1DM  Type 1 diabetes mellitus
T2DM  Type 2 diabetes mellitus
WIPO   World Intellectual Property Organization
ZnO QDs  Zinc oxide quantum dots
ZP   Zosano Pharma

Introduction

Diabetes mellitus is regarded as one of the world’s most 
complex health issues in the twenty-first century. In reality, 
it has been dubbed the “Black Death of the Twenty-First 
Century” because of its striking resemblance to the four-
teenth century Plague in aspects of prevalence morbidity, 
as well as mortality (Jain 2015). Diabetes mellitus affects 
an approximately 20.8 million people in the USA, as per the 
Centre for Disease Control and Prevention (Jain and Joshi 
2013). In 2010, 285 million and, in 2019, 463 million adults 
(20–79 years) worldwide were reported to have diabetes, and 
these cases are anticipated to increase to 578 million by 2030 
and 700 million by 2045 according to International Diabetes 
Federation (https://diabetesatlas.org/data/en/world/; Zhang 
et al. 2019a). While there are many forms of diabetes mel-
litus, the most common are type 1 diabetes mellitus (T1DM), 
type 2 diabetes mellitus (T2DM), and gestational diabetes 
(Fonseca et al. 2020). Insulin-dependent diabetes mellitus, 
commonly known as T1DM, is induced by the autoimmune 
disruption of pancreatic beta cells, which leads to a decrease 

or elimination of biological insulin production (Jana and 
Wadhwani 2019; Galderisi and Sherr 2019). The resulting 
absolute insulin deficiency causes high glucose levels termed 
as hyperglycaemia, as well as changes in protein and lipid 
metabolism (Wolkowicz et al. 2021). Hyperglycaemia can 
cause a number of symptoms, including cardiovascular and 
neurological issues, whereas hypoglycaemia causes fatigue 
and eventually death. Although current therapeutic alterna-
tives can regulate short-term glycaemia, none of the existing 
anti-diabetic medications can restore functional β-cell mass 
(Dong and Wu 2018; Alejandro et al. 2015). At present, 
the management of T2DM focuses on glucose control via 
lowering of fasting/postprandial blood glucose and hemo-
globin A1c (HbA1c). The shortages of existing oral drugs 
for the treatment of diabetes include that these medications 
do not address the key driver of type 2 diabetes i.e., loss of 
functional beta-cell mass and the majority of patients do not 
achieve glycated haemoglobin targets (Giugliano et al. 2009; 
Loretelli et al. 2020). As a result, treatment failure causes a 
long time in controlling glycaemia, and ultimately leads to 
disease progression, disability, infection risks, and eventu-
ally early mortality (Gotfredsen et al. 2020). Therefore, the 
objective of therapy should be delay of disease progression 
and should specifically target the newly identified pathogenic 
targets of disease. Recently, sodium glucose co-transport 2 
inhibitors are approved by the Food and Drug Administra-
tion (FDA) in 2013 as a new class of antidiabetic medicines 
but post-marketing data indicated that the use of SGLT2 
inhibitor is associated with several adverse drug reactions 
such as diabetic ketoacidosis, cancer, bone fracture, geni-
tal and urinary tract infection, and foot and leg amputation 
(Singh and Kumar 2018; Singh et al. 2019). In 2014, FDA 
has approved dulaglutide (GLP-1 analog) for the treatment 
of T2DM; however, various risks associated with the use of 
this drug include septicaemia, malignant neoplasm, coro-
nary artery disease, and pancreatic cancer (Garg and Kumar 
2018).

Patients with insulin-dependent diabetes mellitus lose 
their ability to produce endogenous insulin, which can lead 
to blood glucose instability and ketosis without the use of 
exogenous insulin. The insulin-dependent diabetes mellitus 
treatment entails delivering exogenous insulin by injec-
tion or pump to achieve a plasma glucose level that is close 
to average, i.e. below 8.0 mmol/L prior to large meals for 
adult diabetes patients. Blood glucose levels should not drop 
below the normal range, i.e. 70–140 mg/dL which describes 
hypoglycaemia condition, leading to increased morbidity 
and mortality (Jana and Wadhwani 2019; Zong et al. 2021). 
The most common methods for treating and controlling dia-
betes consist of multiple regular insulin injections, as well as 
continuous and precise monitoring of blood glucose levels 
(BGLs) in order to keep their normal blood glucose levels 
between 70 and 140 mg/dL (Primavera et al. 2020; Liu et al. 
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2016; Raval et al. 2021). Because of its low oral bioavail-
ability, insulin is normally given subcutaneously (SC); how-
ever, SC injections are linked to greater inflammation and 
infection danger, and also poor patient compliance. People 
having diabetes are frequently encouraged to subcutaneously 
self-administer insulin on multiple occasions per day; this 
necessitates both intensive self-management and training, 
including regular dose modifications by patients depending 
on glucose monitoring. Furthermore, repeated injections in 
the same place can cause thickening of skin and inadequate 
glycaemia regulation, leading to poor diabetes management. 
Several other new and minimally invasive delivery mecha-
nisms, like buccal, oral, transdermal, and nasal systems, are 
being studied to ascertain their efficacy and improved patient 
compliance in order to mitigate these limitations; however, 
such technologies are mostly still in preclinical development 
(Fonseca et al. 2020; Ross and Neville 2019; Tucak et al. 
2020).

One of the most notable aspects of current efforts of 
researchers is the invention of the microneedle (MN) patch, 
which can successfully overcome the implicit barriers to 
insulin absorption through the skin and therefore facilitate 
transdermal drug delivery despite the use of complex sys-
tems or external energy sources (Chen et al. 2020a; Hult-
ström et al. 2014; Thuillier et al. 2018). Without causing 
pain, the micro-scaled needles can penetrate the outermost 
keratinous stratum corneum layer and enter the epidermal 
and dermal layers of the skin for drug release (Alimardani 
et al. 2021; Dharadhar et al. 2019). MN creates temporary 
micro-channels for drug transport, but they immediately heal 
after MN is removed, preventing long-term skin tissue injury 
(Jin et al. 2018).

Diabetes is one of the most prevailing health issues in 
recent times due to highly busy scheduled lifestyle of the 
modern era people, as the people are not having enough time 
to go for the exercises to burn their calories and use their 
body glucose as a source of energy which leads to the accu-
mulation of glucose in the muscles and blood and increases 
the glucose levels in the blood above the normal range, giv-
ing rise to diabetes, which leads to serious health problems. 
Therefore, this needs immediate care as well as treatment. 
In this review, we give an overview of several types of dia-
betes with an emphasis on pathophysiology and causes. 
This article discusses the several types of MNs available 
and their drug release patterns in the skin after insertion, as 
well as glucose monitoring in diabetic patients using blood 
or interstitial fluid samples. This review describes the vari-
ous potential and applications of the MNs and also includes 
a brief summary of recent patents and the current clinical 
status of MN use in diabetes. The primary search engines 
employed throughout the paper search strategy were Pub-
Med, Google Scholar, ScienceDirect databases, and Web 
of Science. Literature review was done using publications 

published in peer-reviewed journals from the year 2004 to 
year 2021.

Pathophysiology of diabetes mellitus

Type 1 diabetes mellitus

T1DM is now widely accepted as an autoimmune disease 
caused by the destruction of insulin-producing pancreatic 
cells (Zaccardi et al. 2016). As a result of this process, insu-
lin deficiency develops, eventually leading to full depend-
ence on exogenous insulin (Brinkman 2017). Beta cells 
regulate and generate insulin as well as acting as glucose 
sensors (Bluestone et al. 2010). As the number of beta cells 
in the body decreases, less insulin is produced to maintain 
blood glucose homeostasis, leading to a rise in blood glucose 
levels (Cnop et al. 2005). The individual with diabetes can 
no longer control their blood glucose levels due to the loss 
of beta cell mass. If left untreated, this can cause a person to 
become sick in a short period of time, with the risk of devel-
oping diabetic ketoacidosis (Devendra et al. 2004). Further 
consequences on this condition could end up with diabetic 
coma as sequentially represented in Fig. 1.

Type 2 diabetes mellitus

The steady decline in ß-cell function that occurs against a 
background of insulin resistance leads to changes in glucose 
metabolism. Insulin secretion and insulin sensitivity are the 
two most important aspects of the blood glucose control 
mechanism (D’Adamo and Caprio 2011). Insulin resistance 
is a defining characteristic of T2DM, and it affects more than 
90% of patients (Imam 2013). A reduction in the metabolic 
response of insulin-responsive cells to insulin or, at a sys-
temic level, an inadequate/decreased response to circulating 
insulin by blood glucose levels is referred to as insulin resist-
ance (Galicia-Garcia et al. 2020). The liver and muscles have 
long been known to have a role in systemic insulin resist-
ance. During fasting, the liver generates glucose from non-
glucose substrates via gluconeogenesis process to assure 
that a carbohydrate energy source is always available. Sev-
eral investigations have found that people with T2DM have 
enhanced gluconeogenesis despite having hyperinsulinemia, 
implying that hepatic insulin resistance is a major factor in 
fasting hyperglycaemia. The causes of decreased hepatic 
insulin sensitivity are unknown; however, a deposition of fat 
in the liver (steatosis) is thought to be a major factor (Kou-
fakis et al. 2021; Zaccardi et al. 2016). The second and as 
important pathogenic factor is a reduction in β-cell dysfunc-
tion. Insulin is generally released in two stages in response 
to increased glucose levels: first, a rapid first-phase release 
(0–10 min), then by a longer second phase (10–120 min), 
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which lasts as long as essential to sustain euglycaemia. First-
phase insulin production is lost after fasting glucose levels 
reach 115–120 mg/dL. The β-cell function has already been 
lowered by 60–70% by the moment poor glucose tolerance 
develops with glucose levels of 141–199 mg/dL 12 h after 
the challenge (Imam 2013). Insulin secretory failure, the 
fundamental cause of β-cell dysfunction and the base of 
T2DM, can be caused by deficiencies in the production of 
insulin intermediates or insulin itself, and also a disruption 
in the secretion process (Hoang Do and Thorn 2015). The 
sequential illustration of pathophysiology of T1DM and 
T2DM is described in Fig. 1.

Assessment of diabetes risk factors for type 
1 diabetes mellitus

Genetic and environmental factors

Genetic mutations account for about one-third of disease 
sensitivity while environmental factors account for the other 
two-thirds. About 40% of the genetic risk is attributed to 
genes connected to the human leukocyte antigen (HLA) 
locus. HLA-DR3 or HLA-DR4 is found in around 95% of 
T1DM patients. The other significant gene, located in the 
5' polymorphic region of the insulin gene, provides nearly 
10% of the genetic risk (Imam 2013; Kerner and Brückel 
2014). HLA genes, which encode cell surface proteins impli-
cated in antigen presentation and self-tolerance, are crucial 
in controlling the immune response. As a result, genetically 
controlled changes in the amino acid sequence of these 

proteins can modify the repertoire of peptides given, lead-
ing to the loss of self-tolerance. These findings, together 
with current understanding of a link between HLA and other 
autoimmune disorders, as well as evidence of the efficacy of 
immunosuppressive medications on T1DM disease progres-
sion, greatly supported the notion that “insulin-dependent” 
diabetes was an immune-mediated disease implicating the 
pancreatic islets of Langerhans (Zaccardi et al. 2016; Von 
Herrath et al. 2016). Vitamin D deficiency has long been 
believed to be a risk factor for developing T1DM. Consump-
tion of meat preservatives and alcohol are some other factors 
that may contribute to the development of type 1 diabetes 
(Mayo 2016).

Co‑existent autoimmunity

Immune-mediated diseases such as thyroid disease and 
celiac disease have been related to T1DM. However, it is 
unknown whether they constitute risk factors for the dis-
ease. Thyroid auto-antibodies are found in about 25% of 
children with T1DM when they are diagnosed, and thyroid 
dysfunction is more common in people with T1DM than in 
those without the disease. T1DM patients are more likely 
to develop celiac disease than non-diabetic patients. Thy-
roid disease and celiac disease affect metabolic regulation; 
if left untreated, they can increase the risk of hypoglycaemia 
in people with T1DM (Chiang et al. 2014, 2018). Once a 
person is diagnosed with T1DM, the only way that allows 
them to live is to replace the missing endogenous insulin by 

Fig. 1  Pathophysiology of type 
1 and type 2 diabetes mellitus 
which leads to reduction of 
glucose utilization by adipose 
tissues, muscles, and induction 
of glucogenesis by liver ulti-
mately causing hyperglycaemia 
and diabetic coma
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subcutaneous insulin injections at periodic intervals every 
day for the rest of their lives (Bluestone et al. 2010).

Assessment of diabetes risk factors for type 
2 diabetes mellitus

Multiple factors, like β-cell mass and secretory capacity, 
which are affected by genetic and environmental variables, 
influence the ability of the β-cell to release adequate insulin 
to effectively respond to the peripheral insulin resistance 
condition. In fact, various metabolic derangements (insu-
lin resistance, lipotoxicity) could cause progressive loss of 
β-cell function.

Reduction in β‑cell mass

The reduced β-cell mass may play a role in explaining lower 
maximal secretory capability for insulin secretion in peo-
ple with T2DM. This decrease in mass, however, cannot 
account for the complete pattern of functional alterations 
seen in T2DM. As a result of the altered metabolic state, 
like elevated glucose and free fatty acids, as well as amy-
loid deposits, a rise in programmed cell death, also called 
apoptosis, may occur (Pozzilli et al. 2011; Weir et al. 2020).

Nutritional factors

The high-calorie Western diet comprises considerable quan-
tities of carbohydrates and fats, which raise glucose levels 
of blood and circulating triglyceride-rich chylomicrons, and 
very-low-density lipoproteins. This causes an increase in the 
levels of reactive oxygen species (ROS), which results in 
aberrant inflammatory molecule production. Since oxidative 
stress is a renowned inducer of inflammation, the two pro-
cesses interact synergistically after a large meal, increasing 
the negative postprandial consequences. The pathogenesis of 
T2DM is aided greatly by a prolonged and considerable rise 
in steady-state ROS levels (DeFronzo et al. 2015).

Western lifestyle

A Western lifestyle is typically connected with high-energy 
foods and less physical activity. The broad availability and 
intake of high-fat, high-sugar, energy-dense processed con-
venience meals add considerably to the obesity epidemic 
that has gripped developed countries. Also, these diets are 
often lacking in vitamin D, vitamin  B12, and folic acid, all 
of which have been associated to the development of T2DM 
(Nolan et al. 2011; Kahn et al. 2014).

Endocrine‑disrupting chemicals

Chemicals that affect the endocrine system function and 
induce severe health effects like T2DM have been identi-
fied. Pesticides, cosmetic preservatives and food, compo-
nents and compounds used in the plastics sector, consumer 
products, and waste incineration by-products are all exam-
ples of endocrine-disrupting chemicals. These chemicals are 
all around us, and they are impossible to avoid (Chevalier 
and Fénichel 2015).

Microneedle technology

The use of MN technology for drug delivery via and into 
the skin and other target tissues has advanced significantly 
over the last decade (Sharma et al. 2019; Mdanda et al. 
2021). MNs were first suggested as a drug delivery tool in 
the 1970s, and since then, they have been produced using a 
range of technologies, materials, and geometries (He et al. 
2019). MNs have been thoroughly researched in the produc-
tion of insulin patches (Ng and Gupta 2020). Microneedles 
are classified as solid or hollow cannulas with an external 
diameter of less than 300 mm and a length of 50–900 mm 
(Queiroz et al. 2020). The MN system is focused on the 
painless piercing of the skin by several needles inside a patch 
that are micrometres in size (less than 1 mm in length) to 
administer insulin in a minimally invasive and targeted man-
ner (Chen et al. 2020a). Whenever the patch is applied to 
the skin whether manually or by an applicator, MNs with 
lengths varying between 100 to 1500 µm puncture the outer-
most layer stratum corneum having a width of 10–20 µm and 
penetrate via the skin epidermis to a level of 70 to 200 µm. 
Microchannels produced in this way serve as temporary 
hydrophilic pathways in the skin, allowing small drugs 
like alendronate, macromolecules, and nanoparticles to be 
transmitted to the skin. The dermis’s dense capillary bed 
allows the medication to be absorbed quickly. Skin integrity 
is restored, as determined by transepidermal water loss, and 
microchannels reclose within hours (El-Khordagui 2012).

Silicon, glass, metal, polymers, and less conventional 
materials such as carbohydrates have all been used to make 
MNs. The large numbers of silicon-based MNs for clinical 
use are engraved perpendicular to the silicon wafer surface 
and are called “out-of-plane” designs (Yang et al. 2020). 
Strong and hollow MNs are the two broad types of MNs. 
Non-dissolving and dissolving/degradable MNs are also 
solid MNs. Drugs can be administered through MN-treated 
skin in a number of ways, including (a) “poke and patch”, 
which involves skin pre-treatment using solid MNs accom-
panied by topical application of drug preparation or patch 
on microporated skin; (b) “coat and poke”, which involves 
coating solid MNs with the drug and inserting them into the 
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skin, allowing accurate dosing and skin administration of 
unstable drugs; (c) “poke and release” using drug-loaded 
solid MNs composed of dissolving/biodegradable polymers 
or polysaccharides enables concurrent skin microporation 
and drug release in one step. There is no need for a patch 
or a micropump, and there is no dangerous sharp waste left; 
(d) “poke and flow”, which involves injecting a liquid drug 
preparation into the skin using hollow MNs. Hollow MNs 
may also be utilized to take a sample of dermal interstitial 
fluid for glucose testing (El-Khordagui 2012).

Microneedles as an emerging therapy 
for diabetes mellitus

Diabetes mellitus (DM) has been a global health problem 
for many decades and is now the fifth leading cause of 
death. DM is a metabolic disorder with several aetiologies 
that affects several organs and contributes to a number of 
cardio-vascular and neuropathic complications. In clinical 
terms, DM is defined as an increase in blood glucose levels 
and a decrease in plasma insulin levels (Zaric et al. 2019). 
Type 1 and type 2 diabetes mellitus are the two main types 
of diabetes mellitus (T1DM and T2DM). T1DM is caused 
by an absolute lack of insulin, while T2DM is caused by a 
combination of insulin resistance, impaired insulin secretion, 
and increased glucose production. T1DM is divided into two 
types, i.e. type 1A (autoimmune destruction of ß-cells) and 
type 1B (idiopathic insulin deficiency) (Mohsen 2019). The 
new normal treatment for type 1 diabetics with inadequate 
insulin secretion is to keep BGLs under tight control via 
regular exogenous insulin subcutaneous injection. Type 2 
diabetes is characterised by insulin resistance that can be 
controlled by exercise, a healthy diet, or oral anti-diabetic 
medicines. Insulin administration is also necessary to effec-
tively control BGLs in people with advanced type 2 diabetes. 
In order to achieve effective glucose regulation, many insulin 
formulations are currently available on the market. Owing to 
the increasing degradation of insulin in the gastrointestinal 
tract, numerous routes of insulin administration have been 
studied, including subcutaneous injection, nasal, pulmonary, 
and transdermal delivery. Because of their high absorption 
capacity and distribution performance, subcutaneous insu-
lin administration through hypodermic injection or pump 
infusion is still the preferred method, but SC injections are 
linked to higher inflammation and infection risk, as well 
as poor patient compliance. Minimally intrusive alternative 
routes such as oral, pulmonary, nasal, buccal, peritoneal, 
and transdermal administration have been studied to address 
these disadvantages. Transdermal insulin administration, in 
particular, has gained popularity in recent decades due to 
its ease of use and increased patient adherence. MNs have 
recently gained popularity as a convenient and minimally 

invasive way to self-administer this medication. Since the 
stratum papillare of the skin is rich in small vessels, MNs 
have the potential to speed up insulin absorption (Chen 
et al. 2020b; Vora et al. 2020; Wang et al. 2020a). MN sys-
tem is produced by arranging hundreds of MNs in arrays 
on a tiny patch (similar to a commercially available trans-
dermal patch) to deliver enough medication to produce the 
desired therapeutic response (Waghule et al. 2019; Jung and 
Jin 2021). For drug release, the micro-scaled needles will 
penetrate the stratum corneum and enter the epidermal and 
dermal layers without causing pain. MN creates temporary 
micro-channels for drug delivery, but they rapidly heal after 
MN is removed, preventing long-term skin tissue damage 
(Zhang et al. 2019b). The dermis has a lot of blood capillar-
ies and is relatively hydrophilic. Insulin can swiftly circulate 
throughout the dermis and then be absorbed into systemic 
circulation through blood capillaries, resulting in a thera-
peutic reaction when it reaches the site of action (Shen et al. 
2020; Bilal et al. 2021). MNs have a base width or diameter 
of around 200 to 300 μm, which is substantially greater than 
the diameter of a follicle of approximately 100 μm. As a 
result, MNs aid macromolecule dispersion through the skin 
by forming drug-permeating channels. MN tips may pen-
etrate the nerve-distributed skin layer; their scale is so min-
ute that they cause minimal damage or activation to nerves 
(Wang et al. 2020b).

Types of microneedles

Solid microneedles

Metals, silicon, and polymers, such as polycarbonate, have 
all been used to make solid MNs. The first solid MNs were 
fabricated from silicon using microfabrication technology 
(Puri et al. 2021). Solid silicon MNs emerged as the most 
common method due to their high biocompatibility (Agrawal 
et  al. 2020). Solid MNs are stronger and have a better 
mechanical strength than hollow MNs (Yadav et al. 2020). 
MN-assisted transdermal administration using solid MN is 
also referred to as the “poke with patch” method as depicted 
in Fig. 2 (Xie et al. 2015). Solid MNs may be used as a skin 
pre-treatment to create large pores for drug delivery. Topical 
formulations like lotion, gel, and ointment required to cure 
skin can be delivered into the dermis via the pores once they 
have created. They can then be dispersed across the body via 
systemic circulation (Duarah et al. 2019).

Coated microneedles

The use of coated MNs in transdermal delivery of MNs is 
an appealing process (Xie et al. 2015). Coated MNs may 
be made of silicon or metal, and the medicine is packed 
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onto the individual needles of the MN array as a coating 
layer in a dry state (Tarbox et al. 2018). The drug deliv-
ery pattern from coated MNs via skin layers is depicted 
in Fig. 2. Coated MNs serve two functions; the first is to 
penetrate the skin, and the second is to add required drugs 
to the surface of the MNs. Regrettably, the maximum 
drug dosage is less than 1 mg; therefore, the production 
of coated MNs is limited (Ingrole and Gill 2019).

Hollow microneedle patch

Microelectromechanical system techniques have been used 
to create hollow MNs in a variety of heights and shapes, 
primarily out of silicon and metal. MNs made of poly-
meric materials, hollow glass, and ceramics have also been 
produced (Cárcamo-Martínez et al. 2021). Hollow MNPs 
are made up of hollow needles that allow for continuous 

Fig. 2  Pictorial representation 
of solid microneedles (left side) 
and coated microneedles (right 
side) showing intra-dermal drug 
delivery to blood vessels via 
skin needling (before and after) 
procedure

Fig. 3  Diagrammatic illustra-
tion of dissolving microneedles 
(left side) and hollow micronee-
dles (right side) revealing intra-
dermal drug delivery via skin 
needling procedure for direct 
drug delivery in blood vessels 
with minimum invasion
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insulin delivery into the skin (Tarbox et al. 2018). After 
the needle is injected into the tissue, the medicine is per-
mitted to pass via the hole and then into the systemic 
circulation (Fig. 3). Some of the benefits of this form of 
transdermal delivery include drug distribution rates can 
be controlled with a pump; drug administration amounts 
are far greater; and accurate dosage led to very effective 
delivery (Xie et al. 2015).

Dissolving microneedles

Insulin is encapsulated in the polymeric matrices of a 
dissolving/degradable MN patch composed of soluble/
degradable polymer materials. Insulin is released when a 
polymer dissolves or degrades, and the rate at which insu-
lin is released is regulated by the rate at which matrices 
dissolve or degrade (Wang et al. 2020c). Since the MN is 
not withdrawn after injection like in other situations, there 
is only one step to the procedure (Fig. 3). Within the skin, 
the polymer degrades and regulates drug release. The bio-
acceptability of the polymer and its breakdown within the 
skin make it one of the best options for long-term therapy 
with better patient compliance. When designing dissolving 
microneedles, efficient needle drug delivery is a critical 
component that confronts challenges. As a result, mix-
ing of polymer and the drug is an essential stage in the 
manufacturing process (Waghule et  al. 2019). Numer-
ous dissolving MNs composed of sugar glass polymers, 
like maltose and trehalose, have been identified to date. 
After insertion, sugar glass MNs typically dissolve rapidly 
in human skin. The production of these MNs, however, 
necessitates an elevated temperature of over 100 °C to 
cause rubber to glass transitions of sugar glasses, which 
can impair the bioactivity of biomolecules such as insulin 
(Jeong et al. 2021).

Hydrogel‑forming or phase transition microneedles 
(PTMs)

Microneedles that form hydrogels are made of cross-linked 
hydrophilic polymers. Phase transition microneedles (PTMs) 
are strong enough in their dry glassy condition to pierce the 
epidermis and transform to a water-swollen hydrogel via 
absorbing interstitial fluid in the dermis layer. The preloaded 
insulin in the MNs diffuses quickly into the skin via hydrogel 
network. The cross-linking between the molecular chains 
allows the PTMs to retain their hardness when hydrated, 
ensuring that they are completely removed from the skin fol-
lowing application (Shen et al. 2020). In a nutshell, Table 1 
summarizes differentiating features between various types 
of earlier explained microneedles (Fig. 4).

Application of microneedles in glucose 
monitoring

The diagnosis of all forms of diabetes, at an early stage, 
is important for the management of the disease to slow 
down potential complications such as retinopathy, dia-
betic nephropathy, cardiovascular diseases, neuropathy, 
diabetic foot ulcer, and viral infections (Szunerits et al. 
2021; Baghban et  al. 2019). The advantages of strict 
glycaemic regulation towards the management of blood 
glucose levels in diabetic patients have long been known. 
Continuous glucose monitoring can significantly mini-
mize the incidence of diabetes-related diseases, allowing 
diabetics to maintain a healthier lifestyle while avoiding 
expensive and life-threatening late-stage diabetic compli-
cations (Teymourian et al. 2020; Juska and Pemble 2020). 
Microneedles can be explored as a glucose-sensing com-
ponent in glucose monitoring. Glucose sensing may be 
performed with blood or interstitial fluid (ISF) samples. 
The biofluid to be sampled is the most important factor in 
MN design. Several studies have been carried out on the 
relationship between blood glucose levels in blood and 
ISF. It has been widely reported that there exists a time 
lag in the distribution of glucose from blood to ISF. The 
lag time is estimated to be between 0 and 45 min (Mathur 
et al. 2010). Blood and ISF glucose levels, on the other 
hand, are strongly correlated once equilibrium is achieved. 
It essential to understand the physiological dissimilarities 
between blood and ISF in order to better understand design 
differences between blood and ISF extracting micronee-
dles (Khanna et al. 2008; Bariya et al. 2012).

Microneedles for interstitial fluid (ISF) sampling

For a variety of analytes, MN-mediated sampling of inter-
stitial fluid is evolving as a promising alternative to blood 
sampling, with glucose being a major target. Because of 
their short length (less than 1000 m), MNs can penetrate 
the stratum corneum and enter the ISF in the viable epi-
dermis and top layers of the dermis without stimulat-
ing nociceptors or touching blood vessels, making them 
a minimally invasive method of extraction (Wang et al. 
2019; Kap et  al. 2021; Jendrike et  al. 2017). Fracture 
and buckling are two possible failure scenarios of MNs. 
Shorter needles with the same diameter and material can 
generally tolerate greater pressure without breaking. As a 
result, needles made of lower-strength materials, such as 
silicon dioxide, can be utilized for ISF sampling. Another 
benefit of silicon dioxide is that it is highly biocompatible. 
Because of the lower height, smaller needle diameters may 
be used without causing buckling (Friedl 2005; Sivamani 
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et al. 2009; Davis et al. 2004). With a narrower tip diam-
eter, the ratio of fracture force to insertion force into skin 
is much greater (Ranamukhaarachchi et al. 2019). This 
improves the safety margin for using MNs without failure. 
For ISF sampling, MN lumen diameters can be as small as 
10 µm in most cases. Extremely high capillary forces are 
produced by a small MN diameter combined with a low 
density of ISF. Capillary forces significantly increase as 
the hydrophilicity of the MN material raises. And with-
out a pumping system, this makes fluid extraction easier. 
Unfortunately, as the diameter of the MNs decreases, the 
flow rate also decreases. As a result, before the MNs are 
loaded with ISF, there is an initial latent time. The major-
ity of commercial ISF glucose sensors only need 0.5–2 µl 
of fluid, and this figure is steadily decreasing. An array of 
MNs is employed to accomplish the necessary flow rates 
in order to improve flow rates. In humans, vacuum pump-
assisted ISF sampling with MNs has been established and 
proved to monitor changing glucose levels with a time lag 
of less than 20 min following insulin injection (Kolluru 
et al. 2019; Jiang and Lillehoj 2020; Samant and Prausnitz 
2018; Miller et al. 2018).

Microneedles for blood sampling

Blood capillaries are found deep under the epidermis. Com-
monly, blood microcapillaries are located at 400-µm pen-
etration depths. In the same depth, the nerve tips can also 
be found. As a result, some of the MNs in the array can 
only scratch the nerve cells at the top. The narrow diameters 
and regulated shank length, on the other hand, minimise 
the chances of encountering a nerve or stimulating it suf-
ficiently to cause significant pain. In a study of the impact 

of MN design on pain in humans, researchers discovered 
that needles varying in length ranging from 480 to 1450 µm 
resulted in pain scores of 5 to 40% of a 26-gauge hypodermic 
needle. MN shank lengths of 400–900 µm are required to 
extract blood without causing severe pain. The MNs must 
be made of stronger materials like metal or silicon at these 
lengths. The size of a female mosquito proboscis is a popular 
model used by researchers (Li et al. 2013). The diameter of 
the MNs must be large enough to allow easy access to the 
largest blood cells. Also, the longer length requires greater 
diameters to avoid needle failure via buckling. Typical MNs 
diameters must be at least 50 µm in width. And although 
capillary action alone can be sufficient for blood extraction, 
factors like greater fluid density, greater conduit diameter, 
and material of choice can all help to minimize the impact. 
In these circumstances, a microfluidic pumping device is 
required to produce negative pressure (Lisi et al. 2020; 
Zhang et al. 2019c).

Recent advancements in microneedle‑based 
treatment modalities for management 
of diabetes mellitus

The MN technique is being used for various medicines, but it 
must overcome a number of obstacles before being commer-
cially available. It will take a lot of research to get it clini-
cally authorized. Skin allergies, redness, and irritation are 
the most common concerns connected with MN technology. 
The MNs can only hold a small quantity of medicines. It is 
extremely difficult to pass hydrophilic and big substances 
through the skin. In order to fabricate these needles, the 
ideal material must be used that has sufficient mechanical 

Fig. 4  Diagrammatic illustra-
tion of hydrogel formation of 
hydrogel forming microneedles 
during skin needling procedure 
for intra-dermal drug delivery in 
blood vessels
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toughness and insertion force. The basic goal is to enhance 
permeability without creating discomfort. A patient may find 
it extremely challenging to poke with a needle and then put 
the patch. If the skin pores do not seal following applica-
tion, there is a risk of infection (Ita 2015). In spite of these 
challenges, the MN-based method appears to be the most 
widely studied field, serving as a foundation for drug pen-
etration and dermal delivery. Most studies have revealed that 
it can provide sustained release of drugs over a long period 
of time while avoiding a rapid drop in blood glucose in the 
early phase to avoid hypoglycaemic side effects. However, 
we are unable to manage drug release depending on vari-
able glucose levels using simply MN administration without 
additional features like biosensors which would be beneficial 
in this regard, as the release of drug would be triggered by 
the glucose level. One of the challenging issues encountered 
while using MNs is achieving precision of measurement and 
correlation between results acquired from interstitial fluid 
or sweat and plasma or blood glucose (Tarbox et al. 2018; 
Sharma et al. 2019; Puri et al. 2021). Table 2 summarizes 
the various recent advancements in MN-based treatment 
modalities for management of diabetes mellitus.

Patent literature focussing application 
of microneedles in treatment of diabetes 
mellitus

Patent literature searches were performed from the official 
website of World Intellectual Property Organization (WIPO) 
with analytics to ensure and categorize the current research 
about the applications of MNs in diabetes mellitus from the 
period of 2014 to date (Table 3). The keywords entered in 
search strategy were “insulin”, “microneedle”, “diabetes 
mellitus”, “therapy”, and “delivery”, “in various combina-
tions”. This literature would increase understanding and pro-
spective for research scientists to comprehend better outlook 
in the research and development of MNs systems for treat-
ment and monitoring of diabetes.

Current clinical status spotlighting 
expedient role of microneedles in diabetes 
mellitus

Various pre-clinical studies on MNs have been conducted 
and proved to be beneficial in several areas, but only a few 
have undergone success in human patients (https://clinical-
trials.gov/). Numerous clinical trials based on applications 
of MNs for monitoring and treatments of diabetes condi-
tions are currently under different phases carried by several 
universities and industries (Table 4).

Conclusions

MNs are emerging as essential physical enhancers in 
transdermal drug delivery and fluid extraction systems, 
and their importance will grow as a result of the benefits 
they provide and it has the potential to replace traditional 
drug delivery approaches, most notably the transdermal 
approach. MN devices have shown tremendous promise 
in enhancing insulin penetration by breaking the skin 
barrier, as contrasted to passive transport via the skin. 
Unlike traditional hypodermic injections, insulin delivery 
through MNs has the advantages of requiring little train-
ing and painless insertion. However, MN-based delivery 
has a number of drawbacks, such as less accurate dos-
age accuracy than hypodermic needles, variances in skin 
layer thickness and skin hydration among individuals, drug 
delivery issues related with non-vertical insertion of the 
MNs to the skin, harm to veins with repeated use, and 
probable breaking of the MNs tip or the entire MNs within 
the skin. A greater understanding of the pharmacokinetics 
of insulin delivered intradermally using MNs may also 
be beneficial. Furthermore, the effectiveness of increas-
ing skin penetration, which is one of the most significant 
challenges in transdermal drug delivery, has expanded the 
reach of MN drug delivery in the coming years.

Current status and future prospects

Silicon was used to create the first MNs and an analysis 
was carried to see if MNs might be utilized to more effec-
tively administer medications via the skin. First, permea-
tion studies on cadaver skin were conducted to investigate 
if big molecules such as albumin and insulin could pass 
via the skin when MNs were used. Microneedles were 
found to deliver big molecules more effectively in subse-
quent investigations. Many new fascinating MN concepts 
are now being developed that will be extremely beneficial 
in the future (Christensen and Gannon 2019; Gastaldelli 
2011; Marselli et al. 2014). MNs, as a new device, have 
distinct benefits (painless and quick delivery) over previ-
ous systemic administration methods, and they offer a vari-
ety of biomedical applications (Rao et al. 2014). The MN-
based method appears to be the most widely studied field, 
serving as a foundation for drug penetration and dermal 
delivery. Most studies have revealed that it can provide 
sustained release of drugs over a long period of time while 
avoiding a rapid drop in blood glucose in the early phase 
to avoid hypoglycaemic side effects (Rojas et al. 2018).

In microneedle research, there is more than enough 
space for advancement. For example, novel materials for 
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microneedle fabrication can be used, and manufacturing 
approaches can be upgraded. These materials must have 
appropriate mechanical strength and skin adherence, as 
well as be free of harmful degradation products. Materi-
als generated from nature are also excellent possibilities. 
Another research area is to equip microneedles with unique 
features that allow them to adapt to increasingly complex 
functional prerequisites. Multi-responsive microneedles, 
for example, can deliver medications in a controlled man-
ner whereas breathable microneedles can enhance skin 
comfort. In addition to wound-healing patches and 3D cell 
culture chips, microneedles can also be used in a variety of 
different biomedical applications. Furthermore, micronee-
dles are frequently overlooked when compared to popular 
therapeutic technology. The results of biomarker detec-
tion obtained using microneedles should be compared to 
those obtained using conventional methods to assess the 
accuracy and efficiency of microneedle-based detections. 
Despite the increasing scientific advances in the field of 
microneedles, there is still a significant gap between aca-
demic research and industrial products. This is reflected 

in the restricted number of microneedle products avail-
able, all of which have basic characteristics (Zhang et al. 
2020a, b). Several novel and fascinating MN concepts have 
recently been developed, all of which have the potential 
to be very useful in the future. Biodegradable polymer 
MNs, for example, have recently been developed and char-
acterised. Polymer needles have the benefit of being far 
less expensive to manufacture than silicon needles, and 
they should not cause any harm if they break in the skin 
because they are biodegradable. This research focuses on 
biocompatible and biodegradable polymer MNs, which are 
intended to enhance safety and manufacturing efficiency 
(Chatterjee and Davies 2015). With the increasing variety 
of MNs, a comprehensive set of tests that can be used to 
examine all needles should be suggested. Preclinical test-
ing (in vivo studies in animal models), clinical tests (to 
assess pain, inflammation), mechanical testing (to assess 
characteristics such as margin of safety), and fluidic flow 
testing (e.g. fluid pressure needed for particular flow rate) 
should all be included in this list. This would aid in not 

Table 3  Published patent literature about bacterial meningitis therapies

Patent name Patent number Applicant Publication date Reference

Patch loaded with dual-sensitive vesicles 
for enhanced glucose-responsive insulin 
delivery

US20200330562 North Carolina State University 22.10.2020 (Zhen and Jicheng 2020)

Prussian blue microneedle electrode for 
blood glucose monitoring, preparation 
method thereof, blood glucose monitoring 
patch and preparation method thereof

CN110558993 University of Science and 
Technology of China

13.12.2019 (Chenggang et al. 2019)

Glucose-responsive insulin delivery system 
using hypoxia-sensitive nanocomposites

TNP/2017/000439 North Carolina State University 12.04.2019 (Zhen and Jicheng 2019)

Glucose-responsive insulin delivery system 
using hypoxia-sensitive nanocomposites

ID2018/06279 North Carolina State University 29.06.2018 (Zhen and Jicheng 2018a)

Patch loaded with dual-sensitive vesicles 
for enhanced glucose-responsive insulin 
delivery

WO2018085809 North Carolina State University 11.05.2018 (Zhen and Jicheng 2018b)

Glucose-responsive insulin delivery system 
using hypoxia-sensitive nanocomposites

US20180110841 North Carolina State University 26.04.2018 (Zhen and Jicheng 2018c)

Glucose-responsive insulin delivery system 
using hypoxia-sensitive nanocomposites

PH1/2017/501910 North Carolina State University 05.03.2018 (Zhen and Jicheng 2018d)

Glucose responsive insulin delivery system 
using hypoxia-sensitive nanocomposites

IN201727037788 North Carolina State University 26.01.2018 (Zhen and Jicheng 2018e)

Glucose-responsive insulin delivery system 
using hypoxia-sensitive nanocomposites

CN107530296 North Carolina State University 02.01.2018 (Zhen and Jicheng 2018f)

Glucose-responsive insulin delivery system 
using hypoxia-sensitive nanocomposites

NZ736578 North Carolina State University 27.10.2017 (Zhen and Jicheng 2017)

Glucose-responsive insulin delivery system 
using hypoxia-sensitive nanocomposites

WO2016172320 North Carolina State University 27.10.2016 (Zhen and Jicheng 2016)

Built-in non-verbal compact instructional 
device integratable to applicator

JP2015171546 Nanomed Devices Inc 01.10.2015 (Bai 2015)

Systems and methods for intradermal deliv-
ery of therapeutics using microneedles

US20140350514 NanoPass Technologies Ltd 27.11.2014 (Levin 2014)
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only objectively comparing MNs, but also in selecting the 
best MNs for each application (Teo et al. 2006; Liu et al. 
2012). Conclusively, it has been manifested that MNs have 
a lot of potential in biomedical applications.
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