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Abstract
In-depth analyses of the spatial heterogeneity in environmental emissions and the causes of differences are of great impor-
tance to provide a reference for reduction policies. However, a spatial analysis of the specific mechanisms of China’s envi-
ronmental emissions is rarely scarce. Using the province-level data of 30 provinces in China over 2005–2017, this paper 
constructs a spatial Durbin model (SDM) to empirically address the existence and spatial mechanisms of environmental 
emissions. The results show that: first, China’s environmental emissions show significant characteristics of spatial depend-
ence and clustering from global and local perspectives, indicating the existence of spatial autocorrelation in environmental 
emissions across regions. Second, both per capita GDP and urbanization have positive impacts on environmental emissions, 
but the impact of environmental regulation is not significant. Third, urbanization not only directly influences environmental 
emissions, but also indirectly influences environmental emissions. These analyses provide comprehensive policy implica-
tions for government and policymakers to promote environmental quality.
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Introduction

Since the reform and opening-up policy in the past 40 years, 
China’s economy has achieved annual growth of 9.4% from 
1979 to 2018 (Chen et al. 2019). In 2009, China exceeded 
the USA and became the largest consumer in the world. 
Meanwhile, from a value of 396.6 million tons oil equiva-
lent (Mtoe) in 1978, China’s energy consumption rose to a 
maximum of 3237.5 Mtoe in 2018 (BP 2019). As coal-based 
energy, environmental degradation has become increasingly 
serious along with large energy consumption (Yang et al. 
2017; Withagen 1994; Zhou et al. 2016). In 2013, the haze 

weather posed a massive threat to the nationwide area of 
the country (Nie et al. 2020). Moreover, more than 64% of 
Chinese cities exceeded the standards for air quality in 2018 
(Li et al. 2020).

To deal with the heavy pollution, China formulated a 
series of environmental policies to mitigate pollutant emis-
sions. In 2016, China issued its 13th Five-Year Plan, which 
clearly emphasized its goal of reducing carbon intensity by 
18% and energy intensity by 15%. Facing the increasingly 
severe environmental degradation problems, an effective 
approach to achieving win-win goals for both economic 
growth and emission reduction is to reduce pollutant emis-
sions. China has actively made great efforts to control and 
mitigate the pollution. However, China’s environmental 
emissions are continually growing at an alarming rate. The 
following questions, therefore, arise: (1) Do environmen-
tal emissions have spatial externalities? (2) What are the 
distribution characteristics of environmental emissions? (3) 
Do environmental emissions have a spatial spillover effect 
in China? (4) What is the impact of influencing factors on 
environmental emissions in local and neighboring regions? 
Answers to these four questions are of utmost significance 
in designing reduction policies and further solving environ-
mental pollution problems.
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In summary, scholars have extensively focused on envi-
ronmental emissions and their influencing factors. However, 
few studies focused on the existence and specific mecha-
nisms of environmental emissions from a spatial perspec-
tive. The existing papers mainly evaluate environmental 
emissions using traditional panel methods, ignoring the 
spatial spillover effects when analyzing the driving factors 
of environmental emissions. Moreover, few studies take into 
account both the direct impacts and spatial spillover effects 
of driving factors on environmental emissions and address 
the spatial mechanisms across regions. To fill these gaps, 
using province-level data of 30 provinces spanning from 
the year 2005 to 2017, this paper explores the influencing 
factors on China’s environmental emissions, specifically to 
test the existence and spatial transmission mechanism from 
direct and spillover effects perspectives. More importantly, 
we provide a corresponding tailored strategy that can effec-
tively examine the spatial spillover effects. This mostly dif-
fers from existing literature that hardly focuses on the spa-
tial spillover effects of environmental emissions. Therefore, 
considering the similarity of economic units among regions 
(Tobler 1970), spatial effects cannot be ignored in policy 
effects. By performing these analyses, we expect to offer 
empirical evidence for the existence of spatial agglomera-
tion in environmental emissions and to provide some policy 
implications for alleviating and curbing the growth of pol-
lutant emissions.

This paper contributes to the existing literature in the fol-
lowing four aspects. First, we conduct an in-depth analysis 
of the influencing factors affecting environmental emissions 
from the perspective of direct effects and spatial spillover 
effects, to specifically clarify the potential spatial transmis-
sion mechanism. Our analysis not only contributes to the 
existing literature by investigating the influencing factors 
and mechanisms from a spatial spillover effects perspec-
tive, but also provides a new perspective for policymakers 
to promulgate pollution policies. Second, we quantitatively 
investigate the spatial characteristics and evolutionary pat-
terns of environmental emissions among various regions 
from global and local perspectives. This approach may 
identify the disparities more effectively. Third, considering 
the potential spatial dependence, we extend the existing lit-
erature by integrating the externalities of spatial units into 
the field of environmental economics, which provides some 
reference for future studies. Fourth, this paper also tests 
whether there is an environmental Kuznets curve (EKC) a 
causal relationship between environmental degradation and 
economic growth, which may fill the research gap in this 
field.

The structure of the paper is as follows. “Litera-
ture review” section summarizes the existing literature. 
“Methods and data” section describes the methodologies. 
“Results” section demonstrates the primary results of the 

paper. “Discussion” section discusses the implication of the 
results. “Conclusions” section gives the conclusions.

Literature review

The existing research in the field of environmental emissions 
can be broadly classified into two perspectives: (1) studying 
the influencing factors affecting environmental emissions 
and (2) providing methodologies of empirical studies on 
environmental emissions.

Studies on influencing factors affecting 
environmental emissions

A considerable amount of research has analyzed the causal 
relationships between environmental degradation and eco-
nomic development, based on the EKC hypothesis. The 
EKC hypothesis was systematically proposed by Grossman 
and Krueger (1995), proving an inverted U-shaped relation-
ship between economic growth and environmental quality. 
Based on this view, many research studies have been carried 
out on environmental pollution (e.g., Guo and Lu 2019; Li 
et al. 2016; Stern et al. 1996; Stern, 2004). There is a great 
number of studies that focus on environmental pollution 
and its determinants. For example, Zhang et al. (2020) ana-
lyzed the influence of environmental regulation on carbon 
emissions using a threshold regression model; Li and Lin 
(2014) measured China’s energy intensity using a nonlinear 
threshold cointegration model and found that the influence 
of industrial structure on energy intensity in different periods 
is relatively different; and Zhao et al. (2020) used carbon-
intensive industries as an example employing a mediating 
effect model, revealing that environmental regulation exerts 
a significant emission reduction effect either through the 
growth of costs, or the improvement of environmental tech-
nology, perspectives. As mentioned previously, many fac-
tors affect environmental emissions, including technologi-
cal progress (Yi et al. 2020), urbanization (Xu et al. 2019), 
transportation (Zhao et al. 2018), environmental regulation 
(Yang et al. 2020; Zhang et al., 2020; Zhao et al. 2020), and 
foreign direct investment (Zhang et al. 2020).

Studies on methodologies for assessing 
environmental emissions

Various methodologies have been used to explore the influ-
encing factors of environmental emissions. From a meth-
odological point of view, the existing research has addressed 
two widely used methodologies, namely, structural decom-
position analysis (Cao et al. 2019) and index decomposition 
analysis (Zhang et al. 2019). However, these studies did not 
take into account the spatial effects, which may result in 
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an insufficient understanding of the impact of influencing 
factors on environmental emissions. Spatial econometric 
models are one of the novel characteristics of this paper, 
suggesting that everything is more closely related to each 
other in spatial distribution (Tobler 1970). Spatial economet-
ric models consider both the effects of influencing factors 
and indirect effects or spatial autocorrelations with neigh-
boring regions. Recently, spatial econometric models have 
been widely applied to tackle environmental problems. For 
instance, Zhong et al. (2018) applied the spatial econometric 
models to analyze the factors influencing embodied emis-
sions; You and Lv (2018) investigated the impact of eco-
nomic globalization on CO

2
 and tested the spatial spillover 

effects; and Zhu et al. (2020) utilized spatial econometric 
models to analyze the relationship between energy technol-
ogy innovation and air pollution.

To the best of the authors’ knowledge, existing research 
ignores the existence and mechanism of environmental emis-
sions from a spatial perspective. Undoubtedly, an accurate 
comprehensive understanding of the spatial transmission 
mechanisms of environmental emissions through a spatial 
econometric approach is a scientific basis for promulgating 
environmental policies to effectively control environmental 
emissions. To expand the existing research, using the provin-
cial-level panel data of 30 Chinese provinces from 2005 to 
2017, we focus on the influencing factors of environmental 
emissions and its mechanism based on the spatial Durbin 
model, taking into account the spatial dependence, from 
the perspective of direct and spillover effects. More impor-
tantly, we provide a corresponding tailored strategy that can 
effectively test the spatial spillover effects using the spatial 
Durbin model. This mostly differs from extant literature that 
hardly focuses on the spatial spillover effects of environ-
mental emissions. Therefore, considering the similarity of 
economic units among regions (Tobler 1970), spatial effects 
cannot be ignored in policy effects. By performing these 
analyses, we expect to offer empirical evidence for the exist-
ence of spatial agglomeration in environmental emissions 
and to provide some policy implications for alleviating and 
curbing the growth of pollutant emissions.

Methods and data

Spatial autocorrelation test

Following Anselin (1988) and Elhorst (2010), potential spa-
tial autocorrelation is vital for spatial econometric analysis. 
The results based on the traditional panel model may be 
biased because the model does not capture spatial autocorre-
lation. Based on this reason, appropriate spatial panel mod-
els should be used. Before performing spatial econometrical 
analysis, it is essential to explore spatial autocorrelation of 

core variables. We use both the global and local spatial auto-
correlation tests for core variables. The calculation formulas 
are denoted as Eqs. (1)–(2):

where x represents the mean of x . Wij represents a spatial 
weight matrix.

Regression models

The specification of the EKC is presented in Eq. (3):

where cit represents the environmental emissions; lnyit and 
(lnyit)

2 represent GDP per capita and squared GDP per 
capita. zit indicates other variables, including foreign direct 
investment (FDI), technology (TEC), urbanization (UR), 
population size (P), and environmental regulation (RE). �

1
 , 

�
2
 , and � are the coefficients of explanatory variables. �i 

represents cross-section effect. �t is the time effect. �it is a 
random error term.

The first law of geography indicates that everything is 
more closely interrelated to each other in spatial distribution 
(Tobler 1970). The results of the traditional panel models 
would lead to bias if omitting the spatial autocorrelation 
(Anselin 1988; Apergis 2016; Maddison 2006). To effec-
tively consider potential spatial dependence, spatial panel 
models are necessary. The spatial panel model expands the 
ordinary least squares model (as shown in Eq. (4)). LeSage 
and Pace (2009) indicate the SDM integrates the spatial lag 
terms of explained variables and explanatory variables. The 
panel data SDM model is specified as Eq. (4):

where � is the spatial autoregression coefficient. � is the 
spatial lag term, denoting the effect from the independent 
variables on the explained variables.

Based on these above analytical models, this paper ana-
lyzes the impact of influencing factors on environmental 
emissions from the perspective of spatial effects. Therefore, 
the detailed effect model of driving factors on environmental 
emissions is constructed, and the basic form of the SDM 
model is established by integrating spatial factors, which is 
specified as Eq. (5):
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where tecit , lnfdiit , lnreit , lnpit , and urit denote technology, 
foreign direct investment, environmental regulation, popula-
tion size, and urbanization of 30 provinces.

Considering that different regions may have adjacent 
boundaries, and a possible spatial relationship among dif-
ferent regions, two kinds of spatial weight matrices are con-
structed (e.g., adjacent and geographical distance weight 
matrices).

The adjacent matrix is based on the geographic location 
between the units, which is calculated as Eq. (6):

The geographical distance matrix is based on the lati-
tude and longitude coordinates of the regions, which is 
calculated as Eq. (7):

Decomposition effects

To consider the potential spatial spillover effects, an 
increase in the explanatory variable will not only bring 
about an increase in local environmental emissions, but 
also exert its spillover effects of adjacent regions through 
spillover effects, and then causes loop feedback effects. 
LeSage and Pace (2009) put forward a method to calculate 
the decomposition effects. The matrix form of the SDM is 
denoted as Eq. (8):

where � is the parametric vector of X . WY  refers to the spa-
tial lag of explained variables. � stands for the coefficient 
of spatial lag regression. Y  is the dependent variable. X is 
the independent variable. � represents the random error. WX 
represents the spatial lag of explanatory variables. � denotes 
the parameter vector, suggesting the impacts of explanatory 
variables of neighboring regions on the dependent variables 
in a given region. W  refer to a spatial weight matrix.

Formally, Eq. (8) can be rewritten as:
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As displayed in Eq. (9), the direct, total, and indirect 
effects can be rewritten as:

where I refers to an n × n identify matrix; (I − �W)
−1 denotes 

the spatial multiplier matrix. M(r)direct , M(r)indirect , and 
M(r)total represent the matrix of direct, indirect, and total 
effects of explanatory variables.

Data

Since the Chinese government has promulgated a lot of 
reduction strategies in 2005, we use the provincial-level 
data of 30 provinces spanning from 2005 to 2017 for analy-
sis. The raw data employed in this paper are derived from 
the China Statistical Yearbook. The descriptions of all vari-
ables are shown in Table 1. Existing studies generally adopt 
a more comprehensive indicator to calculate pollution (Liu 
and Lin, 2019). In this paper, per capita industrial sulfur 
dioxide emissions ( SO

2
 emissions) are selected as environ-

mental emissions indicators based on the following reasons. 
Traditional pollutants, such as SO

2
 emissions, cause severely 

affect human health and environment in China than CO
2
 

does (Xia et al. 2017; Wang and Luo 2020; Xin and Zhang 
2020). Similar to previous studies (Xin and Zhang, 2020), 
this paper selects the following variables as independent 
variables: economic development (PGDP), which is defined 
by the per capita GDP of each province. To control the EKC 
hypothesis, GDP per capita and squared GDP per capita are 
employed (Xie et al. 2019). Foreign direct investment (FDI), 
which is defined by the actual foreign investment of each 
province. Many studies confirmed that FDI is a key fac-
tor affecting environmental pollution (Zhang et al. 2020). 
Technology (TEC), which is measured by the number of 
patents granted. Theoretically, the higher the technology, 
the better the environment will be (Liu and Lin 2019; Sun 
et al. 2019). Urbanization (UR), measured by the propor-
tion of the urban population (Zhu et al. 2019). Population 
size (P), measured by the total population of each province. 
Environmental regulation (RE), which is represented by the 
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share of the total industrial pollution-elimination in the GDP 
(Yin et al. 2015). In this study, all empirical analyses are 
calculated by MATLAB15 software. We further conduct a 
multicollinearity test for all variables in the model, and the 
test results show that the maximum VIF is 4.78, the average 
value is 2.85, and the VIF of all variables is less than 10, 
indicating that there is no multicollinearity in our model.

Results

Spatial autocorrelation analysis

The economic structure in various regions leads to signifi-
cant differences in regional development modes. So, how are 
these differences reflected in the spatial distribution patterns 
and trends of provincial SO

2
 emissions? Is SO

2
 emissions 

dependent and clustered in space? According to the first 
law of geography, the spatial units on a geographical loca-
tion are interrelated, which means that no region is isolated. 
Based on the above hypothesis, the quartile maps are mainly 
used to explore the tendency of provincial SO

2
 emissions. 

Fig. 1 shows the quartile maps of provincial SO
2
 emissions 

in 2005, 2009, 2013, and 2017. As seen in Fig. 1, SO
2
 emis-

sions display both spatial disparity and clustering. In addi-
tion, Fig. 1 shows that the provinces with the highest SO

2
 

emissions include Ningxia, Inner Mongolia, Guizhou, Xinji-
ang, Shanxi, and Qinghai while Hunan, Henan, Guangdong, 
Hainan, Shanghai, and Beijing had the lowest SO

2
 emissions 

in 2017. In summary, there is a spatial agglomeration trend 
of the SO

2
 emissions in regions.

To further investigate the existence of spatial autocorrela-
tion, the Moran’s I indices are listed in Fig. 2. As shown in 
Fig. 2, Moran’s indices from 2005 to 2017 are greater than 
0, suggesting that the spatial distribution of SO

2
 emissions 

among different regions present positive spatial autocorrela-
tion. That is, China’s SO

2
 emissions exhibit obvious spatial 

agglomeration characteristics. This indicates that provinces 
with higher SO

2
 emissions are surrounded by provinces with 

higher SO
2
 emissions, while those with lower SO

2
 emis-

sions are surrounded by provinces with lower SO
2
 emissions. 

Meanwhile, the Moran’s I index exhibits a slightly up to 
2012, then it decreases, suggesting that the positive spatial 
autocorrelation gradually decreases.

To reveal the spatial autocorrelation in each province, the 
Moran scatter plots of SO

2
 emissions in 2005, 2009, 2013, 

Table 1   The descriptive 
statistics of variables

Variable Unit Definition Mean S.D

SO
2

Tons/person Industrial sulfur dioxide emissions 
per capita

0.016 0.011

pgdp Yuan GDP per capita 10.023 0.589
pgdp2 − Squared GDP per capita 100.812 11.805
fdi Yuan The ratio of FDI in the GDP 12.294 1.638
tec One piece/ten thousand 

people
Number of patents granted 6.048 8.633

ur % Urbanization rate 52.963 13.957
p Thousand people The total population 4452.069 2671.46
re – The share of industrial pollution-

elimination in the GDP
0.16 0.153

Fig. 1   Quartile maps of SO
2
 emissions
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and 2017 are reported in Fig. 3. The SO
2
 emissions can be 

broadly divided into four levels. Specifically, in 2017, the 
“H-H”-type includes Xinjiang, Chongqing, Shanxi, Yunnan, 

Ningxia, Inner Mongolia, Shaanxi, Jilin, Qinghai, Heilongji-
ang, Gansu, and Liaoning. The “H-L”-type includes Henan, 
Guangxi, and Sichuan. The “L-L”-type includes Zhejiang, 
Hainan, Shanghai, Fujian, Beijing, Hunan, Guangdong, 
Anhui, Tianjin, Jiangxi, Hubei, and Jiangsu. The “L-H”-
type includes Hebei, Shandong, and Guizhou. Fig. 3 shows 
that most provinces are located in the “H-H”-type and 
“L-L”-type. In particular, 24 cities (“H-H” and “L-L”) had 
the same spatial autocorrelation, accounting for 80% of 
the total proportion. Six cities (HL and LH) had different 
negative spatial autocorrelations, accounting for 20% of the 
total proportion. More specifically, in 2005, the “H-H”-type 
include Liaoning, Gansu, Ningxia, Inner Mongolia, Hebei, 
Xinjiang, Shaanxi, and Shanxi. Those with high SO

2
 emis-

sions levels are spatially unchanged, indicating that there 
exists a stable agglomeration characteristic of SO

2
 emis-

sions. Consequently, these results show the significance of 
using spatial autocorrelation for the analysis of pollution. In 
summary, most branches of pollution are characterized by 
similar spatial correlation, and few branches show dissimilar 
spatial correlation.

Analysis of regression results

The estimation results for the SDM model with matrices 
W

1
 and W

2
 are shown in Table 2. It is noteworthy that R2 are 

relatively high, with values of 0.9465 and 0.9448, which 
suggests better fitting models. Thus, an analysis of the SDM 
model will then illustrate its driving factors. Specifically, the 
spatial lag coefficients have passed the 1% significant tests 
with matrices W

1
 and W

2
 , which consequently confirms the 

presence of spatial autocorrelation of environmental emis-

sions during the research period. More importantly, the 
coefficients are significantly positive with matrices W

1
 and 

Fig. 1   (continued)

Fig. 2   Histogram of Moran’s I 
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W
2
 , suggesting that growth in environmental emissions of 

adjacent regions increases the local environmental emis-
sions. This result implies that spatial spillover effects are 
significant on environmental emissions in thirty provinces 
of China. Thus, it is vital for performing spatial econometric 
models, considering spatial effects, to analyze the driving 
factors affecting environmental emissions and to examine 
the spatial spillover effects.

As seen in Table 2, TEC exerts a negative impact on 
environmental emissions with matrices W

1
 and W

2
 , indicat-

ing that a higher technological level will result in less envi-
ronmental emissions. One possible reason, as suggested by 
the finding of Liu and Lin (2019), argues that the improve-
ment of technology can alleviate environmental emissions. 
However, the coefficient of W*TEC is significantly positive 
with matrices W

1
 and W

2
 , suggesting that the development of 

technology in other regions increases environmental emis-
sions in the local region. The coefficient of UR is both sig-
nificantly positive with matrices W

1
 and W

2
 , indicating that a 

higher proportion of the urban population will result in more 
environmental emissions. However, the coefficient of W*UR 
is significantly negative with matrix W

1
 , suggesting that the 

increase of local urbanization reduces environmental emis-
sions. Meanwhile, the impact of FDI is significantly negative 
with matrix W

2
 , indicating that the increase of foreign direct 

investment exerts a negative impact on local environmen-
tal emissions. Also, the coefficient of W*lnFDI negatively 
influenced environmental emissions with matrix W

1
 , indicat-

ing that an increase in FDI of adjacent provinces decreases 
the local environmental emissions. Moreover, the influence 
of RE is not significant with matrices W

1
 and W

2
 , indicat-

ing that the increase of environmental regulation exerts no 

Fig. 3   Scatter plots of SO
2
 

emissions
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remarkable impact on local environmental emissions. Fur-
thermore, the impact of population size is significantly posi-
tive with matrix W

1
 , indicating that the increase of popula-

tion size exerts a positive impact on local environmental 
emissions. However, the coefficient of W*lnP negatively 
influenced environmental emissions with matrix W

1
 , indicat-

ing that an increase in population size of adjacent provinces 
decreases the local environmental emissions. The coeffi-
cients of PGDP and squared PGDP are significantly posi-
tive and negative with matrices W

1
 and W

2
 , respectively. It 

indicates an inverted U nexus between environmental emis-
sions and economic growth. Besides, W*lnPGDP positively 
influenced environmental emissions with matrix W

2
 , sug-

gesting that higher economic growth of adjacent provinces 
could increase the local environmental emissions.

To overcome the limitations due to “point” parameter 
estimates in multivariate spatial regression, we examined 
the decomposition effects of the SDM, which bases its 
knowledge upon the methods presented by LeSage and Pace 
(2009). However, one change in the independent variables 
will not only bring about the growth of local environmen-
tal emissions, but also affect the increase of environmental 
emissions in its neighbors through spillover effects. Moreo-
ver, the gravitational effects of spatial units can lead to spa-
tial correlations among variables. However, the aggregated 
composite effect cannot effectively capture the potential 
relationships between variables. Therefore, we apply this 
decomposition effect to the analysis of each influencing fac-
tor on pollution. In general, the decomposition effects can 
be divided into three categories: direct, total, and indirect 
effects. Specifically, the direct effect indicates the influence 
of factors on the local region’s environmental emissions, 

whereas the indirect effect suggests the influences of factors 
on other regions’ environmental emissions. The decomposi-
tion effects are calculated in Table 3.

As listed in Table 3, the first column displays the direct 
effects. The direct effect of TEC is significantly negative 
with matrices W

1
 and W

2
 . This indicates that the technology 

is further improved; the industrial structure has been gradu-
ally upgraded and optimized, and thus reducing the envi-
ronmental emissions. By using innovative clean technolo-
gies, the cost of producing and using clean energy is greatly 
reduced. Therefore, wider use of clean energy may be possi-
ble, which significantly decreases environmental emissions. 
The direct effects of PGDP and UR are significantly posi-
tive with matrices W

1
 and W

2
 , indicating that the develop-

ment of economic and urbanization increase environmental 
emissions. However, the direct effect of FDI is significant 
with matrix W

1
 whereas not significant with matrix W

2
 . The 

direct effect of RE is not significant with matrices W
1
 and 

W
2
 . Moreover, the direct effect of lnP is significantly positive 

with matrix W
1
 , indicating that the development of popula-

tion size increases environmental emissions.
In column 2 of Table 3 shows the indirect effects. The 

indirect effect of PGDP is positive and significant with 
matrices W

1
 and W

2
 , implying that an increase in economic 

growth in neighboring provinces drives up the environmen-
tal emissions. The indirect effect of RE is also positive and 
significant with matrices W

1
 and W

2
 . The indirect effect of 

UR influences environmental emissions significantly nega-
tive with matrix W

1
 , indicating that urbanization negatively 

affected environmental emissions in neighboring regions 
through the spatial spillover effects. The indirect effect of 
FDI that influences environmental emissions is negative and 

Table 2   Regression results with 
SDM

*, **, and *** respectively represent significance at 10%, 5%, and 1%. T-statistics in parentheses

Variable Coefficient Variable Coefficient

W
1

lnFDI −0.0301 (−1.4299) W*lnFDI −0.0831** (−2.4427)
lnPGDP 4.7437*** (4.4900) W*lnPGDP 0.5074 (0.3305)
lnPGDP

2 −0.2215*** (−4.4024) W*lnPGDP2 −0.0018 (−0.0239)
TEC −0.0171*** (−5.1707) W*TEC 0.0116** (2.4463)
lnRE 0.0219 (1.0561) W*lnRE 0.0492 (1.4686)
UR 0.0588*** (7.1967) W*UR −0.1223*** (−9.1295)
lnP 2.3352*** (4.4240) W*lnP −3.4210*** (−3.8119)
� 0.5630*** (12.4754) R2 0.9465

W
2

lnFDI −0.0460** (−2.0911) W*lnFDI 0.3042* (1.9564)
lnPGDP 2.7065** (2.3234) W*lnPGDP 15.5573*** (2.7566)
lnPGDP

2 −0.1418** (−2.5192) W*lnPGDP2 −0.8398* (−2.5552)
TEC −0.0244*** (−7.6341) W*TEC 0.0968*** (3.6649)
lnRE 0.0261 (1.2394) W*lnRE 0.1506** (−2.1240)
UR 0.0425*** (4.9106) W*UR 0.0280 (0.4717)
lnP −0.3755 (−0.8232) W*lnP −7.8034 (−1.3559)
� 0.6110*** (9.0118) R2 0.9448
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significant with matrices W
1
 and W

2
 . Moreover, the indirect 

effect of TEC is positive with matrix W
2
 . Furthermore, the 

indirect effect of lnP is negative with matrix W
1
.

In column 3 of Table 3 shows the total effects. The total 
effect of PGDP positively influenced environmental emis-
sions with matrices W

1
 and W

2
 . The total effect of RE is also 

positive and significant with matrices W
1
 and W

2
 . However, 

the total effect of UR negatively influenced environmental 
emissions with matrix W

1
 . FDI is also negative and signifi-

cant with matrices W
1
 . lnP is also negative and significant 

with matrices W
1
.

Discussion

Based on the decomposition effects of the SDM, foreign 
direct investment, economic growth, technology, environ-
mental regulation, and urbanization all exert different spatial 
effects.

Our results suggest that the direct effect of FDI is nega-
tive though insignificant with matrix W

2
 , indicating that 

the effect of FDI on environmental emissions is not clear 
yet. This is coherent with prior results from Cheng et al. 
(2017). On one hand, FDI can improve environmental 
emissions through technology spillover effects. On the 
other hand, FDI can exacerbate environmental emissions 
by transferring high-polluting industries. The interaction 
between two mixed effects makes the significance of FDI, 
which is not significant. Therefore, China should not only 
optimize the FDI structure in terms of quantity but also 
promote the FDI quality. In addition, technology has a 
negative effect on environmental emissions, which is con-
sistent with the finding by Sun et al. (2019). This indi-
cates that the development of technology can remarkably 

decrease environmental emissions, that is, the improve-
ment of technological progress is helpful to reduce envi-
ronmental emissions. Technology brings negative impacts 
on environmental emissions through the optimization of 
industrial structure, which greatly reduced a greater reduc-
tion of pollutant emissions, through the development of 
low-emission technologies, to reduce its production cost 
and to enhance environmental quality.

Our results indicate that economic growth will not only 
promote the increase of local environmental emissions 
through direct effects, but also bring about the growth of 
environmental emissions in neighboring regions through 
spatial spillover effects and enhance the influence on local 
environmental emissions through feedback effects. Since 
the spillover effect being about much bigger than the direct 
effect, ultimately leads to the increase of neighboring envi-
ronmental emissions. The coefficients of PGDP and squared 
PGDP are significantly positive and negative, respectively. It 
indicates an “inverted U” nexus between economic growth 
and environmental emissions, that is, environmental emis-
sions rise first and then drops with economic growth. This 
result is consistent with the results of Grossman and Krue-
ger (1995), Apergis (2016), and Bae (2018). An increase 
in economic growth may inevitably increase environmental 
emissions. This may be because economic growth consumes 
more fossil energy, thus increasing environmental emissions 
in the local region (Mikayilov et al., 2018; Zhang et al., 
2013).

Our results also indicate that the direct effect of urbaniza-
tion is positive, which is consistent with the results of Zhu 
et al. (2019). The increase in urbanization in the region may 
give a significant boost to environmental emissions, possi-
bly because higher urbanization leads to more fossil energy 
consumption, thus further contributes to environmental 

Table 3   Decomposition effects 
of SDM

*, **, and *** respectively represent significance at 10%, 5%, and 1%. T-statistics in parentheses

Variable Direct Indirect Total

W
1

lnFDI −0.0494* (−1.9422) −0.2108** (−2.4182) −0.2603** (−2.4793)
lnPGDP 5.3327*** (5.1292) 6.7378** (2.4702) 12.0704*** (4.0303)
lnPGDP

2 −0.2451*** (−4.9286) −0.2673* (−1.9337) −0.5124*** (−3.3958)
TEC −0.0167*** (−4.8575) 0.0045 (0.4418) −0.0122 (−1.0072)
lnRE 0.0331 (1.5258) 0.1282* (1.9260) 0.161356** (2.1328)
UR 0.0418*** (5.1380) −0.1894*** (−7.1494) −0.1476*** (−5.2176)
lnP 1.9065*** (4.0652) −4.4439*** (−2.9283) −2.5375* (−1.7320)

W
2

lnFDI −0.0307 (−1.1896) 0.6957* (1.7641) 0.6650 (1.6263)
lnPGDP 3.7092** (2.6955) 44.3964*** (2.8539) 48.1056*** (2.9258)
lnPGDP

2 −0.1960*** (−2.8496) −2.3900** (−2.6562) −2.5860** (−2.7302)
TEC −0.0196*** (−5.2236) 0.2096*** (3.0714) 0.1900** (2.6940)
lnRE 0.0354 (1.6875) 0.4258** (2.5084) 0.4612** (2.6381)
UR 0.0462*** (4.1005) 0.1473 (0.8435) 0.1935 (1.0568)
lnP −0.8714 (−1.1530) −21.2381 (−1.2547) −22.1095 (−1.2587)
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emissions in the local region. However, urbanization indi-
rectly influences environmental emissions, suggesting that 
the increase of urbanization will depress the growth of envi-
ronmental emissions in its neighboring regions. This may be 
because, with the growth of urbanization, the government 
has sped up the environmental regulation, allowing high-
polluting enterprises to close down and encouraging enter-
prises to develop environment-friendly products, resulting 
in a greater reduction of pollutant emissions.

Conclusions

Due to the existence of spatial autocorrelation in environ-
mental emissions across regions, the spatial dependence of 
units is incorporated into research. Using province-level 
data of 30 provinces spanning from the year 2005 to 2017, 
this paper explores the influencing factors on China’s envi-
ronmental emissions from the direct and indirect effects 
perspectives, in order to make the results more reliable 
and robust. The empirical analyses confirm the existence 
of regional disparity and strong spatial autocorrelation in 
China’s environmental emissions. Moreover, both per capita 
GDP and urbanization have positive impacts on environ-
mental emissions, but the impact of environmental regu-
lation is insignificant. Decomposition effects indicate that 
urbanization has not only direct, but also indirect influence 
on environmental emissions. Based on these results, several 
corresponding policy implications are proposed.

1.	 Policy implementation needs to be differentiated based 
on local conditions and economic development levels. 
As the disparities of pollution among different regions 
vary tremendously, the government should promulgate 
corresponding tailored strategies to control pollutant 
emissions. For instance, the eastern region should take 
advantage of the rapidly increasing economic growth 
and advanced technology to continuously accelerate 
industrial restructuring and upgrading. Therefore, the 
local government should attach great importance to the 
continuous optimization of service-oriented industries. 
Also, the local government should establish a benign 
competition mechanism to improve the management 
experience and efficiency of enterprises. The central 
region should utilize its resource endowment advan-
tages, adjust and optimize the industrial structure, and 
take advantage of the quality of industrial restructur-
ing to control pollution. In contrast, the economy in the 
western regions is relatively backward. Thus, it is nec-
essary for the region to digest and absorb the advanced 
low-carbon technologies and energy-saving experience 
with the eastern region, for example, taking advantage 

of the technical progress to control pollution through 
cooperation with the eastern region.

2.	 Promotion and strengthening of interregional coop-
eration under the principle of a cross-regional joint 
mechanism. The local governments should establish a 
cross-regional joint mechanism and stronger regional 
cooperation to combat pollution. Since there is valid 
evidence for the existence of spatial spillover effects in 
pollution, the governments should take into considera-
tion the status of neighboring regions when promulgat-
ing environmental policies. The governments should not 
copy the experiences of neighboring regions to develop 
pollution-intensive enterprises with the pursuit of eco-
nomic growth. Specifically, governments should actively 
develop energy-conservation and emission-reduction 
technology. Furthermore, the governments should attach 
great importance to strengthen the links among regions, 
to establish an efficient cooperation mechanism that can 
effectively control pollution.

3.	 Promulgation of stringent environmental regulation poli-
cies to improve FDI quality. Since China has uneven 
resource endowments and remarkable regional differ-
ences, the central government should develop differenti-
ated investment policies to allocate the resources opti-
mally based on local conditions and economic levels. 
For example, for the regions with relatively low levels of 
FDI quality, the government should effectively expand 
the scale of foreign investment based on the considera-
tion of promoting FDI quality, learn management expe-
rience, and implement technology innovation strategies; 
for the regions with generally high levels of FDI, the 
government should actively improve the quality of FDI, 
optimize FDI structure, expand the introduction of for-
eign investment in high-quality and low-pollution ser-
vice industries, and subsequently promote low-carbon 
transformation.
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