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Abstract  
Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater 
treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. 
This study compared the performance of several novel machine learning models developed through hybridizing kernel-based 
extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD 
values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), 
were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input 
combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The 
results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models 
with a minimum root mean square error of 0.058 and mean absolute error of 0.044.

Keywords  Time-series learning · Consumer behaviour · Kernel-based extreme learning machine · Intelligent algorithms · 
Real-time water quality prediction · Wastewater

Introduction

Research background

Chemical oxygen demand (COD) is one of the most impor-
tant indicators used to determine the efficiency of waste-
water treatment plants (WWTPs) (Ibrahim 2019; Tung 
and Yaseen 2020). The COD is also required to assess the 

improvement of automatic control of biological systems of 
a WWTP. Therefore, COD concentration measurement at 
the WWTP inlet is imperative for its performance enhance-
ment (Revilla et al. 2016; Wei et al. 2019; Salih et al. 2020). 
The COD of municipal sewage usually varies with time. 
Therefore, WWTP operators commonly over-aerate the aera-
tion tanks and over-add the chemicals to ensure the treat-
ment quality of sewage (Man et al. 2019; Chen et al. 2020). 
The aeration unit accounts for 40–50% of the total power 
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consumption in a municipal WWTP (Singh and Kansal 
2018; Man et al. 2019). Therefore, over-aeration signifi-
cantly increases operational expenditures. Over-aeration 
also causes poor settling of suspended solids and the qual-
ity reduction of effluent, leading to the destruction of the 
flocculating agent (Al doury and Al samerrai 2019; He et al. 
2019). Therefore, rapid organic matter measurement is vital 
for optimum control of biological units (Yu and Bai 2019) 
and ensure the required effluent quality (Bolyard et al. 2019). 
The optimum operation of biological units is also needed to 
support downstream operations, maintain effluent quality, 
ensure minimum operational cost and provide an intelligent 
environmental solution (Dairi et al. 2019). Sophisticated 
instruments and hardware, generally used to measure COD 
concentrations, are highly expensive (Al-Doury and Alwan 
2019). Besides, the hardware functions are often subjected to 
the limitations of the process conditions (He et al. 2015). A 
large delay in measurement is also a major challenge in pro-
cess control (Wang et al. 2019). This emphasizes the need 
for optimum controlling of amount of aeration and chemical. 
The real-time prediction of the influent COD can help in 
controlling the amount of aeration and chemical. Correla-
tion analysis of different quality parameters with influent 
COD values in wastewater is an inexpensive, reliable and 
continuous technique for assuming influent COD. Tommas-
sen (2014) suggested that electrical conductivity (EC) and 
turbidity can be employed as a proxy for COD estimation. 
They showed that turbidity and conductivity could provide 
fitting formulas to estimate COD in wastewater with reason-
able correlation (r2 = 0.65–0.69). Yu et al. (2019) showed no 
correlation of COD with conductivity but with EC and total 
nitrogen/NH4

+. Overall, the literature suggests that the cor-
relation between wastewater quality parameters and COD is 
not as accurate as the industrial requirement.

Review of artificial intelligence‑related literature

In recent years, artificial intelligence (AI) has been applied to 
overcome the limitation of hardware devices (Sharafati et al. 
2020; Al-Sulttani et al. 2021; Tiyasha et al. 2021). The capability 
of AI to provide intelligent control and monitoring has attracted 
the attention of water treatment engineers in recent years to 
implement them in WWTPs (Abouzari et al. 2021; Wang and 
Man 2021). Mathematical or statistical models based on accessi-
ble historical observation of wastewater can provide an effective 
real-time prediction of current and future water quality param-
eters to control WWTPs (Bernardelli et al. 2020). Such models 
can be divided into four major categories: multivariate statistics, 
machine learning, fuzzy logic and hybrid (Zhu et al. 2018). Sig-
nificant achievements have been made on wastewater quality 
forecasting using those models. However, the model accuracy 
drops significantly when the input data fluctuates sharply. For 
coping with such nonlinear and uncertain situations, heuristic 

algorithms, such as an artificial neural network (ANN), have 
been used, considering their robust adaptability and learning 
ability. Abyaneh (2014) investigated the application of multiple 
linear regression (MLR) and ANN models for COD and BOD5 
prediction in WWTPs and showed a better performance of ANN 
compared to MLR (r = 0.83 and 0.81 in the prediction of BOD 
and COD, respectively). Although ANN has been found fea-
sible in predicting wastewater quality, it was not sufficient for 
industrial process control requirements (Wang et al. 2019). This 
is due to the shortcomings of classical ANN models to local 
trapping and long learning time (Man et al. 2019). According to 
the reported literature in the Scopus database, nearly 30 research 
articles discussed the feasibility of AI models in predicting COD 
at WWTP inlet. Figure 1 exhibits the occurrence of the major 
keywords of those studies. The figure indicates that the topic has 
received major attention in recent years. The determination of 
COD contributed to diverse environmental engineering aspects 
such as pollutant control, removal efficiency and environmental 
monitoring. In addition, it motivated exploring new intelligence 
models such as ensemble machine learning, decision tree mod-
els and others. Hence, the literature review studies emphasize 
the further investigation of the current research topic.

The extreme learning machine (ELM) is a novel neural 
algorithm with fast convergence capacity to global optima. 
The ELM showed outstanding predictive performance in 
different fields of engineering and natural sciences (Yu and 
Bai 2019; Hai et al. 2020; Yaseen et al. 2021). The para-
digm of ELM is a biological learning technique that involves 
kernels, random neurons (with or without unknown mod-
elling/shape) and optimization constraint. ELM is much 
more effective than the traditional ANN in practical appli-
cations in terms of ease of use, efficiency, generalization in 
performance, adaptability to several nonlinear kernel and 
activation functions, and convergence speed (Alaba et al. 
2019). However, the structure of ELM is more complex for 
large data (like WWTP inlet wastewater quality values) as 
the random selection of hidden biases and input weights 
make the classical ELM dependent on more hidden nodes, 
which eventually influence the network generalization ability 
(Alaba et al. 2019). Two approaches are commonly used to 
improve the prediction performance of ELM: (i) the optimi-
zation of parameters and (ii) the changes in learning mode 
(Yu and Bai 2019). The combination of individual mod-
els with specific rules provides the capability of gathering 
comprehensive information about the data to improve the 
precision of predictive models. The hybrid algorithm-based 
prediction methods can reduce prediction error caused by the 
parameters or model misidentification (Wang et al. 2019). 
Therefore, recent studies attempted to enhance ELM perfor-
mance through hybridization with optimization algorithms. 
The kernel extreme learning machine (KELM) can be used 
for speedy processing of large datasets (Li et al. 2019) and to 
avoid computational complexity caused by high-dimensional 
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vectors in inner product space (Zhang et al. 2019). How-
ever, a single kernel function’s learning and generalization 
abilities are limited (Zhang et al. 2019). Therefore, an intel-
ligent optimization algorithm can be combined with KELM 
to enhance accuracy. Lin et al. (2016) proposed a hybrid 
evolutionary ELM by integrating ELM with different intel-
ligent algorithms to improve the prediction capability of 
effluent in a biological unit of WWTP. They showed signifi-
cant improvement in the performance of hybrid evolutionary 
ELM models compared to the basic ELM model. However, 
the application of hybrid KELM with different intelligent 
algorithms in predicting inlet wastewater quality is still lim-
ited in the literature.

Research motivation

Modelling real-time influent quality at the WWTP inlet is 
challenging due to nonlinear relationships of water quality 
parameters with their driving factors and their large tempo-
ral variability. The ELM paradigm can only learn a static 
input–output mapping because it inherently ignores the time 
sequence, leading to unreliable influent prediction in real time. 
The main reason is that the input datasets are processed by 
the layers only one time, which is insufficient for modelling 
a dynamic system with time-variant characteristics. To cope 
with the inherent weakness of ELM, a time-series learning 
algorithm can be integrated with ELM to improve the predict-
ability of an arbitrary process having high dynamics and non-
linearity. For example, Najafzadeh and Zeinolabedini (2019) 
showed a persuasive performance of ANN in predicting the 
daily flow rates of WWTP. They showed minimization of 

prediction error substantially by adding five antecedent val-
ues with the current value as input. The r2 value increased 
from 0.76 to 0.9 by combining historical time-series data up 
to a certain lag along with the present value. However, such 
an approach has not been tested to improve the precision of 
hybrid KELM in predicting inlet wastewater quality.

Domestic wastewater quantity and quality depend on sev-
eral factors, including individual water consumption, climate 
conditions, and diet linked to human behaviours and habits. 
Besides, wastewater characteristics vary for different periods 
of a day and different days of a week (Tchobanoglus et al. 
2003) due to different behaviour and lifestyle of the inhab-
itants and the technical and juridical framework in which 
people are surrounded (Grady Jr et al. 2011). Therefore, the 
consideration of water consumers’ behaviour as an input can 
boost the accuracy of a wastewater quality prediction model. 
However, the influence of consumer patterns on wastewater 
quality has not been considered so far as one of the main 
inputs. The connection between water-use and pollutant 
concentrations, established through daily data, can relate 
consumer behaviour with inlet water quality parameters.

Research objectives

The main objective of this study is to propose a novel soft 
computing algorithm that integrates an intelligent optimiza-
tion algorithm with a KELM for the prediction of inlet COD 
concentrations in a municipal WWTP. The study also com-
pared the performance of different algorithms for optimizing 
KELM for real-time COD prediction in a WWTP. Besides, 
the study employed a time-series learning algorithm and 

Fig. 1   The major keywords 
abstracted from the Scopus 
database for modelling COD 
of wastewater treatment plants 
using artificial intelligence 
models
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simulated water consumer behaviours as supplementary 
inputs for the first time to improve the prediction accuracy of 
the basic KELM model and its hybridized versions, includ-
ing the KELM-salp swarm algorithm (SSA), KELM-firefly 
algorithm (FA), KELM-particle swarm optimization (PSO), 
KELM-genetic algorithm (GA), KELM-grey wolf optimizer 
(GWO) and KELM-sine cosine algorithm (SCA).

Material and methods

Case study

The inlet wastewater quality data of a WWTP (No. 4) located 
in Mashhad, Iran, were collected and employed to construct the 
models. The system receives municipal wastewater with an aver-
age nominal capacity of 80,000 m3 day−1 for 472,000 people in 
Mashhad, Iran (Fig. 2). The plant has been operating since 2016. 
Its biological process is modified Ludzak–Ettinger (MLE), one 

of the most commonly used processes for nitrogen removal in 
municipal WWTPs. The online sensors (Endress + Hauser) 
equipped with a beam were installed at the plant’s inlet to moni-
tor the variations of real-time influent compositions. It measures 
chemical oxygen demand (COD), ammonium ion, temperature, 
EC and pH (Fig. 2). The Parshall flume also measured the flow 
rate with an Endress Hauser flow computer.

The integrated programmable logic controller (PLC) with 
control software installed deals with different operating con-
ditions of the WWTP. The oxygen sensors installed in the 
aerobic reactors detect the COD values at the inlet, while the 
amount of aeration supplied by the blowers is controlled by a 
flowmeter. In addition, the amount of supplied air is necessary 
to be monitored and checked to prevent over-aeration, which 
leads to sludge settling problems in the final clarifiers. As the 
required air directly depends on the values of chemical and 
organic matter at the inlet, the accurate prediction of COD 
provides energy saving in the blower room. It can also avoid 
sludge settling problems due to the over-aeration in the plant.

Fig. 2   a An aerial view of 
Mashhad WWTP No. 4. b Sen-
sors used for measuring waste-
water quality and quantity

20499Environmental Science and Pollution Research  (2022) 29:20496–20516

1 3



Brief description of kernel‑based extreme learning 
machine

ELM randomly generates its initial weights and biases and 
subsequently fixes the network’s nonlinearities without loop-
ing (Huang et al. 2004). Assume that there are samples (x, 
y) with n instances, the output function of ELM f(x) hav-
ing L hidden neurons and h(x) activation function can be 
expressed as

where β =
[
β1, β2,… , βL

]
 denotes the weight vector that 

links the hidden nodes with the output nodes (Sanikhani 
et al. 2018). H = {hij}(i = 1,… ,N and j = 1,… , L) denotes 
the output of the hidden layer. The function, h(x), maps the 
data from d dimension to L-dimensional hidden notes feature 
space H.

The minimal norm least square is applied to determine 
the output weights,

where H+ indicates the Moore–Penrose generalized 
inverse of the output matrix H of the hidden layer.

Based on the concept of ELM, an improved version was 
proposed by Huang et al. (2012) using radial basis func-
tion (RBF) kernel, known as kernel-based extreme learning 
machine (KELM). The KELM adds a positive value, 1∕c , to 
calculate the output weights as

where the value of C is manually defended, and I denotes 
an identity matrix of N dimension. Accordingly, the f(x) 
function can be expressed as,

When the h(x) is unknown, the kernel matrix for KELM 
is applied in Eq. (5).

where K
(
xi, xj

)
 indicates the kernel function. The output 

function can be computed as,

KELM can use more than one type of kernel function, 
such as RBF, polynomial and linear (Liu et al. 2020). Among 
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them, the RBF is one of the popular kernel functions. It has 
some advantages, such as simplicity and fewer parameters. 
Equation (7) shows the mathematical model of the RBF 
function.

Intelligent optimization algorithms

Salp swarm algorithm (SSA)

SSA is a kind of optimization method developed to solve 
different types of optimization problems. SSA was devel-
oped based on the natural behaviour of the Salpidae’s family 
(Mirjalili et al. 2017). Salp follows a special style in moving 
and foraging called salp chain. This style can be considered 
as swarm conduct, as depicted in Fig. 3.

The first phase of the SSA algorithm is to split the popu-
lation into two levels, namely leaders and followers. The 
leader is the front slap, and the followers are the rest of 
them. The salps change their positions frequently to search 
for the target. The change in the leader’s position can be 
expressed as

where x1
j
 indicates the position of the jth leader and Fj 

denotes the target in this dimension. The lower and upper 
boundaries are the ubj and lbj , respectively. The values of c2 
and c3 are generated randomly in the range [0,1]. The param-
eter c1 is applied to balance between the exploitation and 
exploration phases using Eq. (9).

where t denotes the current iteration, and tmax denotes the 
maximum number of iterations.

The changes in the positions of the followers can be rep-
resented using Eq. (10).

where i > 1 and xi
j
 represents the follower’s position in ith 

dimension.

Salp swarm algorithm (SSA)‑ELM

Hybrid SSA-ELM (SSAELM), proposed in this study, was 
developed in two phases. The first phase optimizes the param-
eters of the KELM using the SSA algorithm. The second phase 

(7)K
�
x, xi

�
= exp

�
−
‖x, xi‖2

�2

�

(8)x1
j
=

{
Fj + c1

((
ubj − lbj

)
ubj − lbj) × c2 + lbj

)
c3 ≤ 0

Fj − c1
((
ubj − lbj

)
ubj − lbj) × c2 + lbj

)
c3 > 0

(9)c1 = 2e
−(

4t

tmax
)
2

(10)xi
j
=

1

2

(
xi
j
+ xi−1

j

)
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improves the performance of the KELM in prediction. The 
optimized parameters are C and � . The SSAELM begins by 
splitting the input data into two groups to train and test the 
method besides initializing all parameter values. In the next 
step, the SSA algorithm optimizes the C and � parameters of 
KELM by exploring the search domain. The KELM objec-
tive function and error evaluate each candidate parameter. The 
process is iterated until the smallest error is achieved or the 
maximum number of iterations is reached. The final optimized 
parameters are passed to optimize the kernel function of the 
KELM to evaluate prediction ability. Figure 4 shows the flow-
chart of the proposed method.

Firefly algorithms (FA)

FA was developed by Yang (2010) based on the movement 
of the fireflies. When fireflies are attracted to the light, the 
swarm moves to the brightest firefly, which can be conceptu-
ally used to solve different optimization problems. The firefly’s 
attraction to the light is directly related to its brightness which 
relies on the intensity of the agent (Naganna et al. 2019). The 
attractiveness (β), the light intensity I(r) and the Cartesian dis-
tance between any two fireflies xi and xj are the primary setup 
variables of the FA algorithm, which can be expressed using 
Eqs. (11) to (13).

(11)I(r) = IOexp
(
−�r2

)

(12)�(r) = �Oexp
(
−�r2

)

where IO and I(r) are the light intensity from a firefly and 
the light intensity at distance r, β(r) and βO are the attractive-
ness β at a distance r and r = 0, xi,k indicates the kth compo-
nent of the spatial coordinate xi of the ith firefly, c presents 
the coefficient of the light absorption, and d denotes the 
dimensionality of the problem.

The next movement of the firefly (i) can be expressed 
using Eqs. (14) and (15).

The first part of Eq. (15) determines the attraction and the 
second part represents the randomization process; α controls 
the randomization values in the range [0,1], and εi presents 
the random number of the Gaussian distribution.

Particle swarm optimization (PSO)

PSO is an intelligent optimization technique inspired by 
the behaviour of birds flocking or fish schooling. Any indi-
vidual in the PSO is known as a particle, and the population 
is called a swarm. Each particle in the PSO has a position 
and a velocity vector in the problem search domain, which 
memorizes the best position using a fitness function value. 
The particles adjust their positions and velocities according 
to the positions of other particles in the swarm. The current 

(13)rij = xi + xj =

√∑d

K=1

(
xi,k − xj,k

)

(14)xi+1
i

= xi + Δxi

(15)Δxi = �Oe
−�r2

(
xj−xi

)
+ ��i

Fig. 3   Example of salps: a one 
salp and b salp chain (swarm) 
(Mirjalili et al., 2017)
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position of the ith particle with D dimensions at tth iteration 
is determined as

Earlier best position and velocity are determined by Eqs. 
(17) and (18).

Each location is updated by Eq. (19) during the search 
in space.

The new velocity is updated by Eq. (20).

where i = 1, 2,…, n (n represents the population size), 
t = 1, 2,…, t (t indicates the iterations number), R1 and 
R2 are randomly generated numbers in the range [0, 1], 
ω = factor of inertia, c1 and c2 represent the learning 

(16)Xi(t) =
{
xi1, xi2,… , xid

}t

(17)Pi(t) =
{
pi1, pi2,… , pid

}t

(18)Vi(t) =
{
vi1, vi2,… , vid

}t

(19)Xi(t) = Xi(t − 1) + Vi(t)

(20)
Vi(t) = � × Vi(t − 1) + c

1
× R

1

{
Pi(t) − Xi(t − 1)

}

+ c
2
×R

2

{
Pg(t) − Xi(t − 1)

}

coefficients, Xi(t) is computed by its previous location 
Xi(t − 1), and its current velocity, Vi(t), denotes the parti-
cle’s velocity used to change the location of the particles 
to a better one, Vi(t − 1) denotes the velocity from the 
previous iteration, Pi denotes the best position of each 
particle, and Pg denotes the best location determined by 
any particle.

The inertia weights, ω(t), and learning coefficients (c1 
and c2) are determined by Eqs. (21) through (23).

where T is the iterations numbers, ωmax and ωmin are the 
maximum and minimum inertia weights, c1,min and c2,min 
are the minimum learning factors, and c1,max and c2,max are 
the maximum learning factors.

(21)�(t) = �max −
�max − �min

T
× t

(22)c1 = c1,max −
c1,max − c1,min

T
× t

(23)c1 = c2,max −
c2,max − c2,min

T
× t

Fig. 4   The flowchart of the 
method proposed in this study 
for inlet COD prediction at 
WWTP
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Genetic algorithm (GA)

GA is a population-based stochastic optimization method 
developed based on the perceptions of natural evolution and 
the biological principles of natural selection and genetics. The 
method generates different solutions to optimize a problem by 
carrying out stochastic transformations (Al-Obaidi et al. 2017). 
Each solution is presented in this advanced optimization algo-
rithm by a string of genetic factors known as chromosomes. 
The chromosome is generated through successive iterations, 
which are called generations. In each iteration, the population 
is generated using three genetic operations, selection, crosso-
ver and mutation. A new set of approximations at each genera-
tion of a GA is generated by selecting individuals according 
to their fitness in the problem domain and reproducing them 
using operators borrowed from natural genetics (Srinu Naik 
and Pydi Setty 2014). A fitness value, defined by a fitness 
function, is related to each individual in the population. The 
artificial evolution processes which mimic natural evolution 
are used to generate new candidate solutions. This process 
provides the evolution of individuals of a population better 
suited to their environment than the other individuals. The 
roulette wheel selection method was applied in this research 
which involves the random generation of positional design 
solutions to assess and refine the solutions until a stopping 
criterion is met (Aras et al. 2007). In this method, the parents 
are chosen when the chromosomes with higher fitness have a 
greater chance for selection. The probability for each chromo-
some i is computed using Eq. (24).

where fi denotes the fitness of chromosome i. N denotes the 
population number.

Grey wolf optimizer (GWO)

GWO is developed based on the hunting process of grey 
wolves (Mirjalili et al. 2014). The best solution is called alpha, 
while the second and third best solutions are beta and delta, 
respectively. Omega is the candidate solution. The algorithm 
uses the solutions alpha, beta and delta for hunting guidance, 
and omega follows the three solutions. These stages are repre-
sented by Eqs. (25) and (26) (Mirjalili et al. 2014):

where A and C denote the vector of coefficients, Xp and X 
denote the position of the prey and grey wolves, D denotes 

(24)pi =
fi∑n

j=1
fj

(25)D =
||||
−

C. Xp(t) − X(t)
||||

(26)X(t + 1) = Xp(t) − AD

a vector to determine the new location of GWO, t denotes 
the iteration value, and X(t + 1) indicates the GWO position 
in the next iteration.A and C can be represented using Eqs. 
(27) and (29):

where a is a value that increases linearly from 0 to 2 
through iterations. It is 0 when t hits the max iterations num-
ber;r1 and r2 are random vectors in the range [0, 1].

The alpha, beta and delta (α, β and δ) are used to model 
the hunting behaviour of the GWO. Therefore, the α, β and δ 
are saved, and other search factors are forced to update their 
position based on optimal solutions following Eqs. (30) to 
(32):

where X1 , X2 and X3 are the first three solutions in the 
GWO at t iteration. A contains a random number 
between − 2a and 2a, if |||A

||| < 1, the wolves are not attacking 
the target, and therefore, the wolves need to search for a bet-
ter location.

Sine cosine algorithm (SCA)

SCA, introduced by Mirjalili et al. (2020), where sine and 
cosine functions are applied to update the solutions using 
Eqs. (33) and (34).

The equations are combined as

where Best and Xi indicate the best and the current solu-
tions, respectively; r1 denotes a random variable responsible 

(27)A = 2ar1 − a

(28)a = 2 − t
2

Max(t)

(29)C = 2r2

(30)X(t + 1) =
X1 + X2 + X3

3

(31)
X1 =

|||X� − A1D�

|||, X2 =
|||X� − A2D�

|||, X3 =
|||X� − A3D�

|||

(32)
D� =

|||C1X� − X
|||, D� =

|||C2X� − X
|||, D� =

|||C3X� − X
|||

(33)Xi = Xi + r1 × sin
(
r2
)
× ||r3Best − Xi

||

(34)Xi = Xi + r1 × cos
(
r2
)
× ||r3Best − Xi

||

(35)Xi =

{
Xi + r1 × sin

(
r2
)
× ||r3Best − Xi

||ifr4 < 0.5

Xi + r1 × cos
(
r2
)
× ||r3Best − Xi

||ifr4 ≥ 0.5
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for defining the search domain of the next solution. It is 
updated using Eq. (36) to add a balance between exploration 
and exploitation.

where a and t present a constant and the current iteration, 
respectively, tmax denotes the maximum number of itera-
tions, r2 is a randomly generated parameter used to define 
the movement of the next solution (for instance if it moves 
towards or outwards Best), r3 indicates a random variable 
that determines a random weight for the best solution to 
stochastically emphasize (r3 > 1) or deemphasize (r3 < 1), 
and r4 specifies if the solution will be updated by the sine or 
cosine equations as in Eq. (35).

Data learning methods and scenario description

The combined KELM network with intelligent optimiza-
tion algorithms was applied in this study to predict real-time 
COD concentrations at the inlet of WWTP. The quality of 
influent exhibits nonlinear patterns and large temporal vari-
ability, which inherently reduce the model prediction accu-
racy in real time. Two approaches were used in this research 
to maximize the prediction accuracy of hybrid KELM mod-
els: (i) consideration of record time of measured data as 
input (hour of a day and day of a week) to simulate the pat-
tern of water consumption and organic pollutant discharge 
and (ii) incorporation of time-series data learning method by 
adding COD values up to n lags of the current time as inputs 
to map not only the nonlinearity of the influent character but 
also its time variability.

The current inlet COD concentration at any time depends 
on the previous concentration values. Therefore, the machine 
must have an awareness of the past. However, which past 
values are critical and how long they remain important 
depend on model training, and thus, the system must be flex-
ible in that regard. The standard KELM model does not map 
the temporal dependence of variables. Hence, the network 
is not proper for modelling time-series data. Since no infor-
mation of past values is stored, the model fails to simulate 
time-series data accurately. Therefore, a function for inform-
ing input and output variables (window of data) needs to be 
constructed to model time-dependent variables for predict-
ing current value (t) from the n lag values (Najafzadeh and 
Zeinolabedini 2019). Such historical values of the variables 
are known as memory values (Verma et al. 2013). As the 
memory captures the past time-series information, the model 
can learn the dynamic behaviour (Wei and Kusiak 2014) and 
nonlinearity in time series.

The available wastewater parameters used in this study 
include flow rate, NH4, pH, EC and temperature. In the 
modified model, the current values except COD denoting as 

(36)r1 = a − t
a

tmax

xi(t) and the COD values for the past n days along with the 
other parameters denoting yi(t) as inputs are presented in Eqs. 
(37) and (38). Thus, the time and historical COD values are 
externally embedded as short-term memory in the function 
presented in Eq. (39). The networks exposed to deep learn-
ing can be enhanced by increasing the numbers of input 
variables and strengthening the prediction accuracy because 
enhanced supervised learning can be achieved through the 
construction of background information.

where xi(t) is the set of input parameters at time (t) and yi(t) 
is the set of input parameters at time t along with the COD 
concentration at one step back from t.

As the meaningful time lags between time-series vari-
ables are unknown, the model should cover the maximum 
time length to reduce the risk of missing important past data 
points (Kim et al. 2018). Therefore, the process of history 
extension continues until the maximum prediction accuracy 
is achieved. The best model topology is the one having the 
best fit based on the evaluation metrics. As the database 
should be divided into learning and test sets, they should 
be independent to provide an unbiased estimate of error, 
usually ensured by randomized splitting. Nevertheless, the 
time correlation between input datasets would be lost in 
that case. To cope with this issue, datasets were chronologi-
cally arranged and then divided into training and test sets. 
In this study, seven models were trained with input datasets, 
including yi(t − 1) in scenario III, and deep learning models 
with different input datasets, including yi(t − 1) and yi(t − 2), in 
scenario IV.

This study compared the performance of the basic KELM 
model and hybrid KELM models and six advanced algo-
rithms for four different input combinations/scenarios. The 
available wastewater parameters (xi(t)) were considered input 
data for the scenario I. The hour of the day and day of the 

(37)

Input data sets =

⎛⎜⎜⎜⎜⎜⎜⎝

Flow rate
t

Tem
t

pH
t

NH4
t

EC
t

⎞⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

COD
t−1

Flow rate
t−1

Tem
t−1

pH
t−1

NH4
t−1

EC
t−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

COD
t−2

Flow rate
t−2

Tem
t−2

pH
t−2

NH4
t−2

EC
t−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,… ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

COD
t−n

Flow rate
t−n

Tem
t−n

pH
t−n

NH4
t−n
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t−n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(38)Input data sets = xi(t), yi(t − 1),… , yi(t − n)

(39)CODin(t) = f
(
xi(t), yi(t − 1),… , yi(t − n)

)
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week were added to (xi(t)) as the supplementary input data in 
scenario II. Scenarios III and IV are the models that include 
the time of data recorded and the time-series data learning 
method, respectively. In scenario III, the models are trained 

by input datasets of xi(t), yi(t − 1) and time of data (hours 
and days). The input datasets were xi(t), yi(t − 1) and yi(t − 2) in 
scenario IV. Figure 5 shows the predictive models’ structures 
and training for different scenarios.

Fig. 5   The predictive model structure and the modelling scenarios employed in this study

Table 1   Characteristics of 
inlet wastewater in Mashhad 
WWTP No. 4 and comparison 
of wastewater quality variations 
in weekdays and workdays 
(± indicates standard deviation)

Parameter and unit Raw wastewater Workdays Weekends

Ave Max Min Ave Max Min Ave Max Min

COD (mg l−1) 787 ± 87 985 554 783 ± 84 982 563 798 ± 94 985 554
EC (µS cm−1) 1839 ± 119 2359 1449 1839 ± 120 2359 1449 1838 ± 115 2170 1630
pH 8.4 ± 0.1 8.8 7.9 8.4 ± 0.1 8.8 8.1 8.4 ± 0.2 8.8 7.9
NH4 (mg l−1) 58 ± 14 89 29 58 ± 13 89 31 57 ± 15 89 29
Temperature (°C) 27.4 ± 0.5 28.3 25.6 27.4 ± 0.4 28.2 25.9 27.4 ± 0.5 28.3 25.6
Flow rate (m3 h−1) 3304 ± 444 4286 1915 3296 ± 445 4061 1915 3326 ± 443 4286 2048

Table 2   The correlation values between the input parameters and the predicted COD

COD (mg l−1) EC (µs) NH4 (mg l−1) pH Temperature Flow rate (m3 h−1)

COD (mg l−1) 1.0000
EC (µs) 0.1850 1.0000
NH4 (mg l−1)  − 0.1455 0.2134 1.0000
pH  − 0.2824 0.3268 0.2807 1.0000
Temperature (°C) 0.0275  − 0.1816  − 0.1320  − 0.4559 1.0000
Flow rate (m3 h−1) 0.4489 0.2382  − 0.0962  − 0.5109 0.3542 1.0000
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Data collection and pre‑processing

Mean hourly records of wastewater parameters measured by 
sensors over a season from July to September 2018 were col-
lected and pre-processed. The database includes 1644 values 
with a total number of data points of 9858. Table 1 shows 
the descriptive statistics of inlet variables on workdays and 
weekends separately. Table 2 reports the correlation to show 
the association between the predictors and the COD. The 
table shows that the flow rate has a substantial influence on 
the COD amount.

Before building the modelling networks, the data points 
were normalized between 0 and 1. Datasets were then chron-
ologically arranged and divided into training and test sets. 
The database was similarly partitioned into two subsets for 
all paradigms and scenarios. Seventy-five percent of the 
first part of the dataset was used to train the model, and 
the remaining 25% was used to test the models’ precision. 
The models were built using MATLAB 9.2 mathematical 
software.

Model accuracy criteria

Different statistical metrics were used to evaluate the per-
formance of the models developed in this study, including 
root mean square error (RMSE), mean absolute errors 
(MAE), mean absolute percentage error (MAPE), the 
Nash–Sutcliffe efficiency (NSE), Willmott Index of 
agreement (WI) and coefficient of determination (r2) 

(Sharafati et  al. 2018). The metrics can be calculated 
using Eqs. (40) to (45) (Yaseen 2021).

where n is the number of the observed data and Yobs,i, 
Ypred,i and Yobs are the observed, predicted and mean 
observed values, respectively.

(40)RMSE =

√√√√1

n

n∑
i=1

(Yobs,i − Ypred,i)
2

(41)MAE =
1

n

n∑
i=1

|||Yobs,i − Ypred,i
|||

(42)MAPE =
1

n

n∑
i=1

|||||
Yobs,i − Ypred,i

Yobs,i

|||||

(43)NSE = 1 −

∑n

i=1
(Yobs,i − Ypred,i)

2

∑n

i=1
(Yobs,i − Yobs)

2

(44)WI = 1 −

∑n

i=1
(Yobs,i − Ypred,i)

2

∑n

i=1
(
���Ypred,i − Yobs

��� +
���Yobs,i − Yobs

���)
2

(45)r2 = 1 −

∑n

i=1
(Yobs,i − Ypred,i)

2

∑n

i=1
(Yobs,i − Yobs)

2

Table 3   The statistical 
performance of the hybrid 
models for COD prediction 
in training and testing phases 
(scenario I)

Models RMSE MAE MAPE NSE WI R2

Training
KELM-SSA 0.107 0.086 0.207 0.721 0.907 0.727
KELM-FA 0.116 0.091 0.381 0.676 0.888 0.681
KELM-PSO 0.143 0.116 0.335 0.499 0.788 0.512
KELM-GA 0.121 0.093 0.215 0.634 0.871 0.636
KELM-GWO 0.119 0.095 0.345 0.649 0.874 0.656
KELM-SCA 0.129 0.099 0.228 0.584 0.845 0.587
KELM 0.136 0.109 0.345 0.539 0.817 0.546
Testing
KELM-SSA 0.130 0.105 0.428 0.567 0.848 0.569
KELM-FA 0.144 0.118 0.269 0.471 0.811 0.479
KELM-PSO 0.157 0.126 0.298 0.406 0.734 0.410
KELM-GA 0.151 0.119 0.466 0.482 0.817 0.487
KELM-GWO 0.146 0.112 0.271 0.496 0.808 0.497
KELM-SCA 0.151 0.116 0.452 0.496 0.809 0.496
KELM 0.170 0.132 0.304 0.331 0.698 0.336
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Fig. 6   The scatterplots of the 
observed and predicted inlet 
COD concentrations by differ-
ent KELM models in testing 
phase (scenario I)
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Modelling results and analysis

As this study focuses on predicting real-time COD con-
centrations, the performance of different models was 
compared based on their relative efficiency. Obtained 
results for different input scenarios are presented in the 
following subsections.

The performance of basic and hybrid models 
(scenario I)

The basic and hybrid models’ performance for scenario I 
during the training and testing phases is presented in Table 3. 
The results show the better capability of KELM-SSA in pre-
dicting inlet COD concentrations in the current time (with 
RMSE = 0.129 and NSE = 0.566) compared to other models. 
The performance of KELM-FA, KELM-GA, KELM-GWO 
and KELM-SCA networks was found relatively similar. The 
KELM-PSO and KELM showed the lowest performance 
with RMSE = 0.157 and 0.169 and NSE = 0.405 and 0.330, 
respectively.

To evaluate the performance of the paradigms and the 
influence of training in different scenarios, the r2 values of 
the predicted and measured data were compared using scat-
terplots for the testing phase. The results presented in Fig. 6 
reveal a better correlation (r2 = 0.5688) for hybrid KELM-
SSA than for the other models. The lowest coefficient of 
0.3358 was obtained using the basic KELM network. The 
results indicate that the performance of models is unsatisfac-
tory and needs to be improved.

The performance of models trained by input 
variables and time of records (scenario II)

Table 4 shows the effectiveness of adding the time of data 
(hour and day) as inputs. Following the addition of hours 
and weekdays, the networks showed different behaviour. The 
results showed significant improvement in the accuracy of 
all the models. The KELM-SSA model was found more reli-
able with minimum prediction errors. Though improvement 
in prediction accuracy was noticed for all the models, the 
ranking of the models based on the prediction accuracy was 
the same as that obtained for scenario I.

The scatterplots showing the performance of the models for 
scenario II are presented in Fig. 7. By adding time records, the 
highest correlation coefficients were obtained for KELM-FA 
(r2 = 0.6780) and KELM-SSA (r2 = 0.6768) for scenario II. 
However, the highest enhancement was noticed for KELM-
FA, KELM and KELM-GWO by 41.55%, 35% and 34.7%, 
respectively.

The performance of models trained by the time 
of records and time‑series data learning (scenario 
III)

Table 5 shows a significant increase in the performance of all 
models by incorporating a time-series pattern learning tech-
nique. Comparison of results obtained for scenarios II and III 
revealed that a higher improvement is possible using time-
series learning than consumer patterns as input. The KELM-
SSA model was still found to provide the highest prediction 
accuracy for scenario III. However, the highest enhancement 
in accuracy was obtained for KELM-PSO.

Table 4   The statistical 
performance of the hybrid 
models for COD prediction 
in training and testing phases 
(scenario II)

Models RMSE MAE MAPE NSE WI R2

Training
KELM-SSA 0.071 0.053 0.573 0.876 0.965 0.877
KELM-FA 0.078 0.056 0.615 0.847 0.956 0.849
KELM-PSO 0.143 0.117 0.286 0.495 0.781 0.512
KELM-GA 0.116 0.080 0.234 0.671 0.903 0.679
KELM-GWO 0.097 0.070 0.248 0.768 0.931 0.769
KELM-SCA 0.128 0.105 0.306 0.597 0.838 0.620
KELM 0.149 0.122 0.348 0.429 0.730 0.453
Testing
KELM-SSA 0.120 0.092 0.218 0.664 0.903 0.677
KELM-FA 0.120 0.092 0.282 0.666 0.904 0.678
KELM-PSO 0.145 0.119 0.748 0.492 0.788 0.503
KELM-GA 0.129 0.091 0.207 0.582 0.877 0.600
KELM-GWO 0.115 0.089 0.226 0.668 0.897 0.670
KELM-SCA 0.135 0.111 0.273 0.550 0.815 0.571
KELM 0.169 0.137 0.381 0.415 0.704 0.453
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Fig. 7   The scatterplots of the 
observed and predicted inlet 
COD concentrations by differ-
ent KELM models in testing 
phase (scenario II)
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Scatterplots showing the model performance for scenario II 
(Fig. 8) support the results obtained using the statistical met-
rics. The performance of KELM, KELM-PSO and KELM-
SCA showed the highest increase in correlation (125.8%, 
106.6% and 67.7%, respectively) compared to that obtained 
for scenario I. KELM-SSA and KELM were still the highest 
(r2 = 0.876) and lowest (r2 = 0.7584) performing models in pre-
dicting real-time inlet COD concentration, respectively. The 
largest improvement in the rank was noticed for KELM-PSO, 
which attained 2nd rank compared to 6th rank for scenario I.

The performance of models trained by the time 
of records and time‑series data learning (scenario 
IV)

The statistical performance of the models for scenario IV 
is presented in Table 6. The incremental trend of model 
precision remained relatively constant for scenario IV. 
The results indicate that adding historical data up to two 
lags is optimum to obtain the best accuracy. However, 
the progress in the performance is still obtainable for the 
other models. Like the previous scenarios, the KELM-SSA 
model showed the best performance with RMSE = 0.072 
and NSE = 0.870 (testing phase), while the KELM model 
still provided the poorest results.

Scatterplots of the models for scenario IV are presented 
in Fig. 9. The scatterplots show an inconsistency in results 
obtained using statistical metrics. The correlation coef-
ficient of KELM-SSA dropped slightly (r2 = 0.8717). The 
KELM still provides the least correlation but a slight 
improvement in accuracy (up to 5.3%) for this scenario. 

The results revealed that the training paradigms consider-
ing time lag values as input and time-series learning up 
to a maximum of two lags can improve model prediction 
accuracy.

Comparison of scenario performance

Taylor diagrams were prepared to compare the prediction 
ability of the models for each scenario. The diagram can 
compare models’ precision based on multiple statistical indi-
ces (Abba et al. 2020). The Taylor diagram for each scenario 
is given in Fig. 10. The distance of a model on the diagram 
from the observation (actual) exhibits their efficiency. The 
model which lies nearer to the actual point gives the best per-
formance. The RMSE error is presented as proportional to 
the distance from the actual point, while the standard devia-
tion (SD) of the predicted COD values is proportional to the 
radial distance from the origin of the diagram. In general, if 
the SD of the predicted values is higher than the SD of the 
observed data, the model is considered to overestimate the 
observation and vice versa. Figure 10 a shows that KELM-
SSA and KELM-FA models could simulate the amplitude 
of the variations (i.e. the standard deviation) much better 
than the other models, leading to a smaller RMS error. The 
KELM-GA, KELM-SCA and KELM-GWO showed nearly 
the same correlation with the observed data. In contrast, the 
poorest performing models were KELM and KELM-PSO, 
which were far away from the SD line of observed data and 
showed the lowest correlation coefficient. Figure 10 b viv-
idly demonstrates the increase in the accuracy of all mod-
els in scenario II. However, the models showed different 

Table 5   The statistical 
performance of the hybrid 
models for COD prediction 
in training and testing phases 
(scenario III)

Models RMSE MAE MAPE NSE WI R2

Training
KELM-SSA 0.067 0.049 0.107 0.890 0.969 0.892
KELM-FA 0.073 0.052 0.300 0.873 0.964 0.874
KELM-PSO 0.073 0.052 0.309 0.871 0.964 0.871
KELM-GA 0.076 0.054 0.174 0.856 0.958 0.858
KELM-GWO 0.078 0.055 0.313 0.851 0.957 0.852
KELM-SCA 0.070 0.048 0.995 0.880 0.966 0.880
KELM 0.106 0.087 0.222 0.720 0.888 0.794
Testing
KELM-SSA 0.071 0.051 0.117 0.876 0.966 0.876
KELM-FA 0.091 0.064 0.139 0.781 0.936 0.782
KELM-PSO 0.076 0.055 0.114 0.846 0.956 0.847
KELM-GA 0.091 0.063 0.140 0.803 0.944 0.803
KELM-GWO 0.090 0.060 0.157 0.797 0.940 0.798
KELM-SCA 0.083 0.059 0.134 0.831 0.954 0.832
KELM 0.116 0.093 0.353 0.687 0.871 0.758
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Fig. 8   The scatterplots of the 
observed and predicted inlet 
COD concentrations by differ-
ent KELM models in testing 
phase (scenario III)
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behaviours with the addition of new inputs. The accuracy 
enhancement of KELM-PSO, KELM-SCA and KELM 
models was lower than that of KELM-SSA, KELM-FA and 
KELM-GWO models. However, hybrid models were still 
superior to the basic KELM model, which shows the influ-
ence of optimization algorithms on the accuracy of ELM 
models. The performance of the KELM-SSA model was still 
closest to the actual point, with a correlation coefficient of 
nearly 0.7.

Figure 10 c shows the response of the models to the 
addition of time records and data of wastewater quality 
up to an hour antecedent value as inputs. A promising 
improvement was noticed for all the models. Unlike 
scenarios I and II, more similarity among the mod-
els except KELM was seen in correlation coefficient 
and SD. The KELM-PSO and KELM-SCA showed the 
poorest performances for scenario I, whereas the mod-
els rose to the second and third ranks in scenario III, 
respectively. This enhancement indicates a significant 
influence of time-series data learning on model perfor-
mance. The KELM-SSA network as the best model for 
predicting real-time COD concentrations appeared to 
be much closer to the actual point for scenario III than 
scenarios I and II.

The performance of the model for scenario IV is 
presented in Fig. 10d. The figure shows a significant 
enhancement in the accuracy of the models by adding 
two lag values coupled with the time of records as inputs. 
In this scenario, the similarity of the model’s response 
rose substantially. The accuracy enhancement of mod-
els was considerably effective, particularly for KELM 
and KELM-PSO networks. The KELM-SSA was still the 

closest to the actual point, with a standard deviation very 
similar to the observed one. As the precision improve-
ment in RMSE and correlation coefficient were negligible 
for the best network (KELM-SSA), historical data and 
time-series learning as inputs were not further considered. 
Therefore, the hybrid KELM-SSA model was considered 
the best model for predicting real-time influent COD. 
It can be remarked that time-series learning and adding 
the time of records as inputs led to a significant increase 
in the precision of KELM models. However, the SD of 
KELM-SSA simulated COD for all scenarios was less 
than the observed SD. Therefore, it can be inferred that 
the paradigms still do not simulate expected fluctuations, 
particularly above the average values.

Since Mashhad WWTP is known as a large-scale 
sewage treatment plant, energy-saving and cost-effec-
tive management is vital in the operation of the plant. 
Excess energy in aeration tanks is sometimes consumed 
in WWTP because the operators believe more oxygen is 
required for effluent treatment. The over-aeration is not 
cost-effective and environmentally friendly. The excess 
aeration leads to sludge settlement problems in the sec-
ondary clarifiers, which cause the sludge washout from 
the system. As a result, accurate prediction of real-time 
wastewater qualities, particularly COD value, can help 
to reduce extra costs in operation through automation. 
The results in this study show that the incorporation of 
advanced algorithms, time-series learning and consider-
ing water consumption patterns can enhance real-time 
COD prediction for providing optimum oxygen amounts 
linked directly to the PLC and control software.

Table 6   The statistical 
performance of the hybrid 
models for COD prediction 
in training and testing phases 
(scenario IV)

Models RMSE MAE MAPE NSE WI R2

Training
KELM-SSA 0.058 0.044 0.101 0.918 0.977 0.920
KELM-FA 0.073 0.055 0.119 0.870 0.962 0.872
KELM-PSO 0.070 0.052 0.114 0.878 0.987 0.881
KELM-GA 0.066 0.049 0.108 0.893 0.970 0.895
KELM-GWO 0.071 0.052 0.115 0.877 0.964 0.880
KELM-SCA 0.063 0.045 0.103 0.901 0.972 0.902
KELM 0.095 0.075 0.513 0.781 0.926 0.801
Testing
KELM-SSA 0.073 0.054 0.118 0.871 0.963 0.872
KELM-FA 0.085 0.063 0.132 0.812 0.945 0.813
KELM-PSO 0.081 0.058 0.131 0.847 0.955 0.850
KELM-GA 0.078 0.055 0.129 0.847 0.956 0.848
KELM-GWO 0.090 0.065 0.139 0.802 0.941 0.804
KELM-SCA 0.083 0.057 0.136 0.840 0.956 0.841
KELM 0.089 0.070 0.160 0.787 0.930 0.799
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Fig. 9   The scatterplots of the 
observed and predicted inlet 
COD concentrations by differ-
ent KELM models in testing 
phase (scenario IV)
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Conclusion

The present study compared the performance of different 
hybrid machine learning models (i.e. KELM-SSA, KELM-
FA, KELM-PSO, KELM-GA, KELM-GWO, KELM-SCA 
and standalone KELM) in predicting COD at the inlet of a 
WWTP. Several wastewater parameters, consumer behaviour 
and COD’s time lag values were used to construct different 
modelling scenarios. The finding of the study can be sum-
marized as follows:

•	 The hybrid machine learning models are robust and reliable 
methods for estimating COD at the inlet of a WWTP.

•	 KELM-SSA showed the best prediction capacity, which is 
apparently due to hybridization with the SSA optimization 
algorithm.

•	 The COD of the studied WWTP showed a high fluctua-
tion, emphasizing the necessity for developing advanced 
machine learning models for COD prediction.

•	 Incorporating time lag values of COD as input is the most 
effective measure for improving hybrid KELM model per-
formance.

By linking an accurate COD prediction model to an auto-
mation system, it is possible to manage the aeration supply 
precisely and prevent the sludge settling problems and mal-
functions caused by the over-aeration in the WWTP.
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