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Abstract
The pollutants degradation rate of iron ore tailings–based heterogeneous catalysts is the main factor limiting its application. 
Herein, an iron ore tailings–based Fenton-like catalyst (I/W(3:1)-900-60) with a relatively fast catalysis rate was constructed 
by co-pyrolysis (900°C, 60 min holding time) of iron ore tailings and wheat straw with a mass ratio of 3:1. With wheat straw 
blending, the generated I/W(3:1)-900-60 presented a larger surface area (24.53  m2/g), smaller pore size (3.76 nm), reduced 
iron species  (Fe2+ from magnetic), and a higher catalytic activity (0.0229  min−1) than I-900-60 (1.32  m2/g, 12.87 nm, 0.012 
 min−1) pyrolyzed using single iron ore tailing under the same pyrolysis conditions. In addition, biochar and iron ore tailings 
in I/W(3:1)-900-60 were tightly combined through chemical bonding. The optimal catalyst remains active after three cycles, 
indicating its catalytic stability and recyclability. The good Fenton-like methylene blue degradation efficiency of I/W(3:1)-
900-60 was ascribed to the sacrificial role of biochar, as well as the electron transfer between biochar and iron active sites or 
the redox cycles of ≡Fe3+/Fe2+. This finding provides a facile construction strategy for highly active iron ore tailings–based 
Fenton-like catalyst and thereby had a great potential application in wastewater treatment.
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Introduction

The mining industry is an important activity to extract min-
eral products around the world. Nevertheless, the mining 
process always brings a certain degree of pollution. Tailings 
are solid waste remaining after mining valuable minerals, 
which are usually disposed of at waste dams or landfills that 
present potential environmental damage (Rico et al. 2008; 

Kossoff et al. 2014). In March 2020, a miserable accident 
involving a waste dam occurred when the Yichun waste dam 
(Harbin, China) for the storage of iron ore tailings collapsed. 
This accident caused 60,000  m3 of mining tailings disclosing 
and 3 million  m3 of wastewater releasing, leading to 70 km 
of river pollution and serious economic loss. A number of 
other tailings dam accidents have occurred in different coun-
tries (Batista et al. 2020). According to statistics (Yi et al. 
2020), the accumulated tailings were about 207 billion tons 
in China, of which the total amount of tailings produced in 
2018 was about 12.11 billion tons. Among all types of tail-
ings, iron ore tailings have the largest amount of production, 
about 4.76 billion tons, accounting for about 39.31% of the 
total tailings production (Huang et al. 2020).

Therefore, it is imperative to explore new technologies 
for reducing iron ore tailings and their reuse as raw materi-
als to produce value-added products. Recently, a promising 
application of iron ore tailings has been utilized as adsor-
bents or catalysts to remove dye compounds (Silva et al. 
2011; Augusto et al. 2018), e.g., as raw/regenerated efficient 
Fenton and Fenton-like catalysts for wastewater treatment. 
Given the high-iron contents observed in iron ore tailing, it 
is reasonable to assume that these wastes are good catalysts 
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for Fenton or Fenton-like processes (Augusto et al. 2018). 
However,  Fe2+ is the effective state for activating the oxi-
dant, while the most common state in iron waste is  Fe3+ 
(dos Santos et al. 2016), and the presence of  Fe3+ modifies 
the degradation rate (reaction time as long as 24 h) of sub-
stance. Some researchers got significant progress in trying to 
enhance the pollutant oxidation rate through reducing  Fe3+ 
to  Fe2+ (Augusto et al. 2018; de Freitas et al. 2019). Freitas 
et al. achieved good results (80% dye decomposed with 3 
h reaction) for the oxidation of methylene blue when iron 
ore tailing pretreated in a  CH4 atmosphere at 550°C for 2 h.

Better degradation results could be achieved in the case 
of iron waste pretreatment under a reducing atmosphere  (H2, 
CO,  CH4). Biomass could produce reducing gases and com-
pounds during pyrolysis (Williams and Besler 1996; Wang 
et al. 2010). In our previous paper, we found that a unite 
mass wheat straw could produce about 5 mg/g  H2 and 18 
mg/g  CH4 (Gao and Goldfarb 2019). Therefore, if iron tail-
ings and wheat straw blends were pretreated through pyroly-
sis to realize the conversion of ferric iron to a low-valent 
state, it would not only improve the catalytic oxidation effi-
ciency of organic matter but also realize the resource utiliza-
tion of wheat straw, which is of great significance. Therefore, 
this paper applies methylene blue (MB) as a model pollut-
ant to investigate the influence of pyrolysis conditions on 
the catalyzed degradation rate of pollutants. The pyrolyzed 
products’ morphology, physical–chemical properties, stabil-
ity, and catalytic mechanism were discussed. The research 
in this article aims to provide a theoretical basis for iron ore 
tailing catalysts with high degradation rates.

Materials and methods

Materials

Iron ore tailings were kindly provided by the “Hainan’s min-
ing” industry, located in Hainan, China. The sample was 
hematite tailings (I) and ground to 74 μm prior to use. Wheat 
straw was selected as biomass because of the high produc-
tion in China, which was ground in a coffee mill and sieved 
to a particle size between 100 and 300 μm (Gao and Gold-
farb 2019). Supplementary Table S1 showed the characteris-
tics of wheat straw and hematite tailings. MB was purchased 
from Aladdin Chemical Reagent Co., Ltd., China.

Synthesis of the catalysts

Hematite tailings and wheat straw mixed with mass ratio 
1:1, 2:1, 3:1, 4:1, and 5:1. Then, these mixtures were 
treated in a tube furnace using a heating rate of 10°C/min 
(Wang et al. found feedstock pyrolyzed at this heating rate 
could produce more reducing gas, such as CO and  H2) 

(Wang et al. 2018) until different temperatures (while we 
do not have the ability to pyrolyze biochar at a tempera-
ture above 1000°C due to the furnace, so we selected the 
pyrolysis temperature as 500°C, 600°C, 700°C, 800°C, 
and 900) for different holding times (30 min, 45 min, 60 
min, 90 min, and 120 min). The obtained catalyst was 
denoted as I/W(a:b)-T-t, where I is iron ore tailings, W 
is wheat straw, a:b is the mass ratio (w/w), T is the final 
temperature, and t is the holding time.

MB decomposition experiments

To evaluate the decomposition rate of the catalyst produced 
from iron ore tailings, the bath catalytic experiments were 
carried out using 0.3 g of pyrolyzed product in contact with 
100 mL dye solution with initial concentrations of 60 mg/L 
and 16 mmol  H2O2 under a shaker; 1.5 mL of solution was 
pipetted at given time intervals, centrifuged for 1 min, and 
the dye concentration (C) was detected by a UV-vis spectro-
photometer (Unico UV-2800) at 664 nm. A CTL-12 COD 
analyzer was applied for measuring the chemical demand 
oxygen (COD) of the sample catalyzed by I/W(3:1)-900-
60 in the optimal pH value Fenton system. All tests were 
performed in triplicate, the degradation rate (ki) and the 
C/C0 at different degradation times for each sample were 
calculated, and then the results were expressed as mean ± 
standard deviation.

To investigate the stability and reusability of catalyst, 
the optimal pyrolyzed product was reused/recycled four 
times for the MB decomposition under the same Fenton-
like condition.

Analytical method

The phase transformation of the ferrochemical group in 
pyrolyzed solid was analyzed by X-ray diffraction (XRD; 
Bruker D8 Advance, Germany). The morphology and com-
position were characterized by scanning electron micros-
copy and energy dispersive X-ray spectrometer (SEM-EDX; 
FEI QuantaTM 250, USA). The textural properties were 
tested by Brunauer–Emmett–Teller measurement (BET; 
BELSORP-max, Japan). The functional groups of catalysts 
were investigated by Fourier transform infrared spectroscopy 
(FTIR; Bruker Vertex 80v, Germany). Electron paramag-
netic resonance (EPR; Bruker 300E spectrometer, Germany) 
was applied to test the main reactive oxidative species (ROS) 
generated in the system. Fe valence and carbon functional 
group variation of catalysts were characterized by X-ray 
photoelectron spectroscopy (XPS; Thermo Fisher Escalab 
250 Xi, USA), and the C1s1/2(284.6 eV) was used as the 
binding energy calibration standard.
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Results and discussion

Determination of optimal pyrolysis based 
on degradation rate

The pyrolysis preparation mass ratio (iron ore tailings to 
wheat straw), reaction time, and heating rate were fixed 

at 3:1, 60 min, and 10°C/min, respectively, and catalysts 
were obtained under different pyrolysis temperatures. Fig-
ure 1(a) showed the comparison of MB removal efficiency 
versus time and pseudo-second-order kinetic constant (k2, 
R2 > 0.994) under different catalysts, in which −5 min 
means that the  H2O2 was added after 5-min adsorption. 
Only approximately 20% of MB was removed after 1 h 

Fig. 1  Degradation of MB by 
pyrolyzed product prepared 
under different conditions
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with a kinetic rate of 0.0139  min−1 when the product 
prepared at 500°C was used. However, the removal rate 
and efficiency were substantially improved as the pyro-
lyzed temperature increased. The best decomposition rate 
(0.0182  min−1) and efficiency (74%) were reached using 
a catalyst prepared at 900°C, which was much higher 
than the generated iron ore tailings catalyst reported by 
Augusto et al. (7.4×10−4  min−1, 63%) (Augusto et  al. 
2018). Considering the dye decomposition rate and effi-
ciency, the optimal pyrolysis temperature for synthesizing 
catalyst was determined to be 900°C.

Setting the pyrolysis temperature at 900°C, the final 
holding time at 60 min, and the heating rate at 10°C/min, 
the removal efficiency and rate of MB were investigated 
by pyrolysis products at different mass ratios. As shown 
in Fig. 1(b), only 10% MB was removed with a removal 
rate k2 of 0.0120  min−1 when the catalyst was prepared by 
hematite tailings only, indicating that the pyrolyzed product 
synthesized from iron ore tailings might not be active for dye 
degradation. While the decomposition efficiency of MB (k2 
increased from 0.0120 to 0.0182/0.0183  min−1) gradually 
increased when the products made from hematite tailings 
and wheat straw blends were used as a catalyst. This may 
be due to biomass blends that helped to reduce the ≡Fe3+ 
to ≡Fe2+ or low-valent iron (Ellison and Boldor 2021). The 
mechanism of  H2O2 activation by iron ore tailings−based 
catalyst with ≡Fe2+ may involve the following reaction 
processes (Luo et al. 2010). Firstly, a complex assigned 
as ≡Fe2+·H2O2 may form between the hydrous surface of 
≡Fe2+·H2O and  H2O2 (Eq.(1)), where ≡Fe2+·H2O represents 
the reduced sites on the iron ore tailings catalyst surface. 
The formed ≡Fe2+·H2O2 can produce ·OH by  H2O2 activa-
tion, which is ready to decompose and oxidize MB (Eqs. 
(2) and (3)).

However, the radical formation mechanism by ≡Fe3+ and 
 H2O2 is proposed as follows:

The formed ≡Fe2+ subsequently produces ·OH (Eqs. 
(1)–(3)). Although ·OH can be generated from  H2O2 when 
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→≡ Fe

2+
· H

2
O

2

(2)≡ Fe
2+

· H
2
O

2
→≡ Fe

3+
+ ·OH + OH

−

(3)·OH +MB → ⋯CO
2
+ H

2
O

(4)≡ Fe
3+

+ H
2
O

2
→ Fe

3+
· H

2
O

2

(5)≡ Fe
3+

· H
2
O

2
→≡ Fe

2+
+ ·OOH + H

+

(6)≡ Fe
3+

+ ·OOH →≡ Fe
2+

+ O
2
+ H

+

either ≡Fe2+ or ≡Fe3+ is present, the generation rates are 
much faster between ≡Fe2+ and oxidant (Kwan and Voel-
ker 2002). Although the degradation efficiency for catalysts 
produced from mass ratio 1:1, 2:1, and 3:1 was equivalent, 
degradation rate k2 values of mass ratio 3:1 (0.0182  min−1) 
and 2:1 (0.0183  min−1) were higher than 1:1 (0.0158  min−1). 
In order to realize the iron ore tailings bulk utilization and 
construct a catalyst with a higher degradation rate, we 
determined that the optimal mass ratio of iron ore tailings 
to wheat straw was 3:1.

Fixing the pyrolysis temperature at 900°C, the ratio of 
iron ore tailings to wheat straw at 3:1, and the heating 
rate at 10°C/min, the optimum holding time was inves-
tigated in Fig. 1(c). The dye decomposition efficiency 
of the pyrolyzed product was enhanced when the hold-
ing time for the synthesis catalyst stretched from 30 to 60 
min. However, the degradation efficiency of MB was not 
significantly improved when the holding time was further 
extended to 90 min and 120 min. Interestingly, k2 showed 
a first increasing then decreasing trend as the holding time 
extended and reached the maximum (0.0182  min−1) when 
the holding time was 60 min. Thus, 60 min was the optimal 
catalyst holding time among those investigated parameters.

To sum up, the relative optimal pyrolysis condition was 
a blends ratio of 3:1, a pyrolysis temperature of 900°C, 
and a holding time of 45 min. pH as an important fac-
tor for the efficiency of Fenton-like reaction, the effect of 
pH was investigated in Fig. 1(d). We could see that pH 
could significantly affect the degradation of MB in iron 
ore tailings–catalyzed Fenton-like process. As shown in 
Fig. 1(d), the degradation efficiency was relatively low 
and the k2 values were 0.0104  min−1 and 0.0182  min−1 
at pH 8.1 and 6.8 (did not adjust). While the decomposi-
tion of MB gradually increased as the pH value decreased 
and got the highest/fastest degradation efficiency (84% 
MB removal, 0.0229  min−1) at around pH 3, which was 
consistent with previous studies (Hu et al. 2011). The 
generation of ·OH from  H2O2 is the key step in the entire 
Fenton-like process, and ·OH catalyzed by iron ore tailings 
are gradually limited with pH increasing. The higher pH 
with more  OH− will cause the reaction (Eq. (7)) to shift 
back and reduce the activity of the Fenton reagent (Zheng 
et al. 2016), which resulted in a slow decomposition rate of 
I/W(3:1)-900-60. Meanwhile, the COD removal efficiency 
of I/W(3:1)-900-60 at pH = 3 was shown in Fig. 1(d), and 
the COD removal efficiency was 76.6% after 60 min (from 
141.2 to 32.3 mg/L). Therefore, the heterogeneous reaction 
with I/W(3:1)-900-60 as the catalyst can not only attack 
the MB chromophore group but also realize the degrada-
tion and mineralization of organic matter.

(7)Fe
2+

+ H
2
O

2
↔ Fe

3+
+ OH

−
+ ·OH

Environmental Science and Pollution Research (2022) 29:31567–3157631570



1 3

Catalyst characterization

Since the catalytic efficiency was apparently different 
by I-900-60, W-900-60, and I/W(3:1)-900-60, XRD pat-
terns were collected to indicate the phase information 
of these samples shown in Fig. 2. The XRD pattern of 
I/W(3:1)-900-60 showed diffraction peaks at 2θ=30.3°, 
43.3°, 53.8°, 57.5°, 68.2° corresponded to  Fe3O4, which 
exhibits magnetic characteristics. The peaks of W-900-60 
were noted at 2θ = 21.8°, 26.5°, 28.0°, corresponding to 
 SiO2 crystallites. The diffraction peaks of raw iron ore 
tailings were attributed to α-FeOOH, and α-FeOOH was 
converted to  Fe2O3 when heated to 900°C under  N2 atmos-
phere (Zhang et al. 2018). Therefore, only the pyrolysis of 
iron ore tailings or wheat straw cannot produce a compos-
ite with low-valent iron.

Significant transformation of  Fe2O3 to  Fe3O4 was 
observed at 700–900°C. When the temperature reached 
above 700°C, most of the  Fe2O3 peaks disappeared and the 
diffraction peaks of magnetite appeared. It can be concluded 
that  Fe2O3 with trivalent could be reduced to  Fe3O4 dur-
ing high-temperature pyrolysis. More  Fe2O3 spindles were 
converted to  Fe3O4 as the temperature increased. This is 
due to that there were organic matters such as cellulose, 
hemicellulose, and lignin in wheat straw, and these organic 
matters could be cracked and devolatilized into reducing gas 
or liquid, such as  H2,  CH4. In our previous study, we noted 
that wheat straw could devolatilize 2.1 mg/gws  H2 and 15.7 
mg/gws  CH4 at a temperature of 650°C. Meanwhile, the rate 
of devolatilization and the amount of thermal creaking gas 
increase as the temperature increases (Gao and Goldfarb 
2019). In addition, some literature reported that pyrolyzed 
gases could lead to a ferric iron reduction (Gong et al. 2012; 
Sharma et al. 2015; Pang et al. 2019; Xun et al. 2019). In 
summary, in the process of co-pyrolysis of wheat straw and 

iron ore tailings, the reducing substances such as  H2 or  CH4 
produced from wheat straw exhibited strong reducibility 
to reduce iron ore tailings to magnetite. Furthermore, the 
reduction degree increased as the pyrolysis temperature 
increased.

To illustrate the effect of biomass/wheat straw on the high 
degradation efficiency catalyst formation, the morphologies 
of I-900-60 and I/W(3:1)-900-60 were further compared. 
The surface morphologies of I-900-60 and I/W(3:1)-900-60 
were shown in Supplementary Fig.S1. The I-900-60 pre-
sented a large flaky structure with a flat and non-porous sur-
face after pyrolysis, mainly because of the natural structure 
of iron ore tailings. In the case of I/W(3:1)-900-60, SEM 
images showed that most particles had a smaller flake struc-
ture with porous surfaces. This result indicated that mixing 
wheat straw promotes the formation of a porous and smaller 
flake structure.

As observed from SEM images, I/W(3:1)-900-60 had a 
smaller particle than I-900-60.  N2 adsorption–desorption 
isotherm was applied to calculate the surface area, pore 
volume, and pore size distribution. As shown in Table 1 
and Supplementary Fig. S2, the average pore sizes of 
I-900-60 and I/W(3:1)-900-60 were 12.87 nm and 3.76 
nm. However, the total pore volumes were 0.00387  cm3/g 
and 0.0225  cm3/g, respectively. Thus, we can conclude 
that wheat straw addition increased the pore volume and 
decreased the average pore size. Additionally, although 
I/W(3:1)-900-60 had a much larger specific surface area 
(24.53  m2/g) than I-900-60 (1.32  m2/g), its surface area 
was smaller than those reported iron-load-activated car-
bon adsorbent (300–600  m2/g) (Park et al. 2015; He et al. 
2016; Saleh et al. 2017). This result further verified that 
prepared catalysts from iron ore tailings had weak adsorp-
tion ability. Therefore, we speculated that MB degrada-
tion by I/W(3:1)-900-60 was due to catalysis instead of 
adsorption. I/W(3:1)-900-60, with relatively larger sur-
face area and richer pore volume, could provide greater 
active catalysis sites and increase catalysis performance 
(Neamţu et al. 2004; Duarte et al. 2012), agreed with 
the improved MB degradation efficiency catalyzed by 
I/W(3:1)-900-60.

There is an important question to further discuss that 
whether composites (wheat straw biochar and iron ore 
tailings) were simply mixed and exist alone or integrated 
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Fig. 2  XRD patterns of the raw and prepared samples

Table 1  BET and BJH results of prepared catalysts

Samples Surface area 
 (m2/g)

Pore volume 
 (cm3/g)

Average 
pore size 
(nm)

I-900-60 1.32 0.00387 12.87
I/W(3:1)-900-60 24.53 0.0225 3.76
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together. Figure  3(a) showed that the catalysts were 
attracted as a whole by a magnetic device, indicating iron 
ore tailings and biochar combined as a whole. This binding 
form is beneficial to remove the catalyst from wastewater 
after the reaction. In addition, FTIR spectra in the wave-
number range between 4000 and 400  cm−1 were shown in 
Fig. 3(b). The peak at 3643/3646  cm−1 was attributed to 
O-H stretching and bending vibrations (Zhang et al. 2018). 
Similar peaks were observed in the spectra of both I-900-
60 and I/W(3:1)-900-60, including Si-O stretching vibra-
tions of the Si-O-Si, Si-O-Al, and Si-O-Fe groups (1074 
 cm−1, 957/981  cm−1, 472  cm−1), although their intensi-
ties varied (Doelsch et al. 2003). The silicon content in 
iron ore tailings was much higher than that in wheat straw 
(Supplementary Table S1). Therefore, the intensity of 
Si-O stretching vibration in I-900-60 was stronger than in 
the spectrum of I/W(3:1)-900-60. Meanwhile, new peaks 
associated with the -C=O and -C-H stretching vibration at 
1224  cm−1 and 876  cm−1 were observed in the spectrum 
of I/W(3:1)-900-60; these peaks were assigned mainly 
to the formed biochar that has the corresponding groups, 
such as carboxyl and ester groups. In addition, as shown 
in Fig. 3(c), a new peak at 573  cm−1 attributed to an asym-
metric Fe-O stretching vibration was observed. It might be 
caused by loading iron into biochar or  Fe3O4 itself (Yuan 
and Dai 2014). Therefore, the new bond Fe-O on I/W(3:1)-
900-60 may indicate the combination of iron and biochar 
that occurred through chemical bonds.

The catalyst’s stability and reusability analysis

It is important to evaluate the stability of a heterogeneous 
catalyst. As illustrated in Supplementary Fig. S3, I/W(3:1)-
900-60 was stable in the first three runs and remained high 
MB degradation efficiency. At the 4th run, the activity of 
I/W(3:1)-900-60 reduced slightly, but the degradation effi-
ciency is still higher than 80%, showing that the iron ore 
tailings–based catalyst can be reused for at least 4 Fenton-
like cycles without significant activity loss. This slight activ-
ity loss is probably due to the small molecules produced 
during MB degradation occupying part of the active sites, 
leading to a decrease in catalytic efficiency (Zhang et al. 
2018). In addition, the concentration of leaching iron ions 
after the first three runs was measured. As shown in Supple-
mentary Table S2, the concentrations of leached iron were 
0.089 mg/L, 0.085 mg/L, and 0.093 mg/L, which were only 
0.8% of the iron content in I/W(3:1)-900-60. Low-leached 
iron concentration also indicated that heterogeneous Fenton 
catalysis was the dominant reaction for MB removal (Gao 
et al. 2017). Meanwhile, XRD and SEM were applied to 
examine the structural stability of I/W(3:1)-900-60. As illus-
trated in Supplementary Fig. S4, compared with fresh cata-
lyst, the crystalline nature and morphology of used I/W(3:1)-
900-60 did not change significantly. These results indicated 
that the cost-effective I/W(3:1)-900-60 was a promising 
heterogeneous catalyst in Fenton-like catalytic degradation 
of organic wastewater due to its significant stability and 
reusability.

Fig. 3  (a) The photos of the 
products attraction to a mag-
netic device; (b) FTIR spectra 
of I-900-60 and I/W(3:1)-900-
60 in the wavenumber range 
between 4000 and 400  cm−1; 
(c) zoomed FTIR spectra in the 
wavenumber range between 540 
and 600  cm−1
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Reactive oxidative species and catalysis mechanism

ROS produced in I/W(3:1)-900-60 was detected by an EPR 
spin-trap technique with DMPO. Figure 4(a) showed the 
EPR spectrum of the generated adducts during the 10-min 
reaction. On the EPR spectrum, there was observed a four-
fold peak with an intensity of 1:2:2:1, which was labeled 
to the DMPO-OH (Yang et al. 2013). However, the four-
fold peak has not appeared in the presence of 300 mmol/L 
T-Butyl alcohol (TBA, OH scavenger). Therefore, OH was 
the key ROS produced in I/W(3:1)-900-60 catalyzed Fen-
ton-like reactions. Figure 4(b) showed the effect of ·OH on 
MB degradation. We can see the removal efficiency of MB 
significantly decreased from 84 to 29% in the presence of 
300 mmol/L. This result indicated that ·OH played a domi-
nant role in MB degradation in I/W(3:1)-900-60 catalyzed 
Fenton-like reactions.

The electron exchange between Fe(II)/Fe(III) and  H2O2 
can induce the formation of ·OH in the heterogeneous Fen-
ton-like reaction. XPS was applied to analyze the chemical 
state of iron species on I/W(3:1)-900-60 before and after the 
catalysis reaction. Figure 5 shows XPS results of Fe2p in 
fresh and used I/W(3:1)-900-60. The peaks located at 724.8 
eV and 710.9 eV were attributed to Fe 2p1/2 and Fe 2p3/2 
states of Fe2p orbits, respectively (Gao et al. 2017; Li et al. 
2018). Furthermore, the Gaussian-Lorentzian was applied 
to decompose these two peaks into 6 different fitting peaks 
(Ding et al. 2016). Among them, the fitting peaks located at 
719.1 eV and 729.9 eV attribute to satellite peaks, as well 
as at 712.0 eV and 725.3 eV assign to  Fe3+, and at 710.6 

eV and 723.8 eV correspond to  Fe2+, respectively (Li et al. 
2018). A summary of deconvoluted peaks’ area and the  Fe2+/
Fe3+ ratio was presented in Fig. 5(a). Apparently, the ratio 
value of  Fe2+/Fe3+ decreased from 2.18 to 2.17 after the 
reaction, demonstrating only a small amount of ≡Fe2+ lost 
electrons and oxidized to ≡Fe3+ during the catalysis reac-
tion. These XPS results are in accordance with the good 
recyclability and stability of I/W(3:1)-900-60 catalyst, which 
may attribute to the protective effects of the biochar (Li et al. 
2018).

To further verify the protective role of biochar during 
Fenton-like reaction. XPS analysis was conducted to inves-
tigate the functional groups’ changes of I/W(3:1)-900-60 
catalyst. As illustrated in Fig. 5(b), the C1s spectra can be 
decomposed into three fitting peaks with C=C  sp2/C-Csp3 
(284.7 eV), C-O (286.1 eV), and C=O (288.8 eV) (Li et al. 
2017b). Apparently, compared with the fresh I/W(3:1)-
900-60, the relative content of C=C  sp2/C-Csp3 carbon was 
reduced by 5.8% and C-O and C=O increased by 4.4% and 
1.4% after catalysis reaction. This indicates that biochar was 
oxidized during the Fenton-like process with turning C=C 
 sp2/C-Csp3 carbon to C-O or C=O. Therefore, the recycla-
bility and stability of the I/W(3:1)-900-60 catalyst may owe 
to the existence of biochar which acted as a sacrificial role 
and limited the oxidation of iron active sites in the cata-
lyst. Actually, the biochar can act as a catalyst with electron 
donor-accepter for the induction of  H2O2 into ·OH or ·OOH. 
The persistent free radicals (PFRs) on the surface of biochar 
formed by the thermal decomposition of organic compounds 
can be the reduced and oxidized active sites through electron 

Fig. 4  (a) DMPO-ROS adducts 
generated from I/W(3:1)-900-
60 Fenton catalysis reactions at 
10 min. (b) Influence of radical 
scavenger (TBA) on the cata-
lytic degradation of MB
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Fig. 5  XPS spectra of Fe 2p (a) 
and C1s (b) on I/W(3:1)-900-
60 before and after catalysis 
reaction
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transfer to form radical species ((Khachatryan and Dellinger 
2011; Zhu et al. 2018). Fang et al. found that PFRs on the 
surface of biochar have an important influence on the pro-
duction of •OH by  H2O2 activation (Fang et al. 2014). In 
addition, the PFRs on the biochar surface lead to the exist-
ence of unpaired electrons, which can exchange electrons 
directly with organic matter, accelerating the MB degrada-
tion efficiency (Fang et al. 2013; Yang et al. 2016).

According to the above analysis results and discussion, 
the possible Fenton-like reaction mechanism was illus-
trated in Fig. 6. In the beginning, the MB molecules were 

adsorbed onto biochar of I/W(3:1)-900-60 from aqueous 
solution through surface action and pore diffusion. Then, 
the iron active sites of ≡Fe2+ and PFRs in biochar simul-
taneously transfer an electron to  H2O2 to generate ·OH for 
MB degradation. According to the previous research (Zhang 
et al. 2018), the degradation process of MB can be described 
as that under the bombardment of ·OH, the N-C5H5, and 
S-C5H5 on the MB molecule is first broken and formed 
4-(N,N-dimethylamino) phenyl isothiocyanate. Secondly, 
·OH radicals combined with aromatic rings to form mono-
cyclic aromatic intermediates through hydroxylation and 
oxidation reactions. Finally, ring-opening products, such 
as methyl methacrylate and isopropyl methyl ketone, were 
produced and then mineralized into  CO2 and  H2O. Moreo-
ver, the electron transfer between PFRs and iron active sites 
or the redox cycles of ≡Fe3+/Fe2+ combined results in the 
enhanced degradation efficiency and rate of heterogeneous 
Fenton-like reaction. Significantly, the stable performance of 
I/W(3:1)-900-60 with good reusability is due to the sacrifi-
cial effect of biochar for limiting the oxidation of iron active 
sites. In addition, the presence of unpaired electrons in PFRs 
contributes to a certain extent to improve the degradation 
efficiency of pollutants.

Table 2 showed the MB decompose rate k2 for various 
Fenton-like catalysts. We can see that I/W(3:1)-900-60 
(0.0229  min−1) exhibited a higher k2 than or comparable 
to most reported kinetic rate data, which indicates that the 
co-pyrolysis of iron ore tailings and biomass waste is an 
effective way to improve the degradation rate/efficiency of 
iron ore tailings–based heterogeneous catalysts. Meanwhile, 
it is of great significance to realize the resource utilization 
of iron ore tailings. However, these kinetic rate dates are 
far less than the degradation rate of homogeneous Fenton 
catalysis (Gou et al. 2021). Thus, the performance optimiza-
tion of iron ore tailings–based heterogeneous catalysts based 
on porous and low-valent iron still needs further study.Fig. 6  Proposed mechanism for Fenton catalysis reaction of I/W(3:1)-

900-60

Table 2  Comparison of MB 
removal by Fenton-like methods 
with different catalysts

Catalyst MB (mg/L) Catalyst dos-
age (g/L)

Time (min) k  (min−1) Reference

I/W(3:1)-900-60 60 3 60 2.29×10−2 This study
Fe3O4 100 3 30 1×10−3 Costa et al. 2008
Fe3O4/H2/300/1h 100 3 30 4×10−3 Costa et al. 2008
Fe3O4/H2/400/1h 100 3 30 2×10−2 Costa et al. 2008
Ferrocene 10 0.372 120 6.17×10−3 Wang et al. 2014
Fe3O4/rGO 10 0.3 120 2.6×10−3 Liu et al. 2013
Fe3O4/SiO2/C 50 1 140 3.6×10−2 Liu et al. 2013
Fe3O4/CeO2 100 1 120 2×10−2 Li et al. 2017a
Fe3O4/galic acid/GO 64 1 200 1.2×10−2 Hua et al. 2017
N,C/CuO-Fe2O3 75 0.1 180 1.08×10−2 Ren et al. 2019
FeNi/C-300 30 1 30 1.05×10−2 Li et al. 2020
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Conclusions

An iron ore tailings–based Fenton-like catalyst (I/W(3:1)-
900-60) with a relatively fast catalysis rate was constructed 
by co-pyrolysis (900°C, 60 min holding time) of iron ore 
tailings and wheat straw with a mass ratio of 3:1. Com-
pared with single pyrolyzed iron ore tailing, the catalytic 
efficiency and rate of I/W(3:1)-900-60 (0.0229  min−1, 84% 
) were considerably enhanced for the decomposition of 
MB due to the electron transfer between biochar and iron 
active sites or the redox cycles of ≡Fe3+/Fe2+. As a result 
of the sacrificial effect of biochar, oxidizing C=Csp2 bonds 
and limiting the deactivation of iron active sites (≡Fe2+), 
I/W(3:1)-900-60 showed good reusability and stability. 
Moreover, the presence of unpaired electrons in persistent 
free radicals (PFRs) of biochar accelerated the electron 
exchange and further enhanced the MB decomposition 
rate. This work opens up a way to synthesize an iron ore 
tailings–based Fenton-like catalyst with a higher degrada-
tion rate as well as realize the utilization of solid wastes.
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