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Abstract
The increasing use of solar energy as a source of renewable energy has led to increasing the interest in photovoltaic (PV) power
outputs forecasting. In the meantime, forecasting global solar radiation (GSR) depends heavily on weather conditions, which
fluctuate over time. In this paper, an algorithmmethod is proposed, to choose the optimummachine learning techniques and time
series models which minimizing the forecasting errors. The forecasted GSR belongs to the Faculty of Sciences, Abdelmake
Eassadi University, Tetouan, Morocco. The selected machine learning and times series are Autoregressive Integrated Moving
Average (ARIMA), Feed Forward Neural Network with Back Propagation (FFNN-BP), k-Nearest Neighbour (k-NN), and
Support Vector Machine (SVM) compared with persistence model as the reference model. To compare the results, several
statistical metrics are calculated to evaluate the performance of eachmethod. The obtained results indicated that the usedmachine
learning and time series methods were more straightforward to implement. In particular, we find that the Feedforward neural
network (FFNN) and ARIMA perform better and give good approximations with the corresponding GSR output.
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Introduction

Nowadays, the energy demand is increasing worldwide with
increasing population and economic development (Anon
2017). The need for energy has become more important for
satisfying human social and economic development.
Recently, renewable energies are growing field that provides
clean energy without any harmful residue or contamination
alternative to fossil fuel (Kumar and Kumar 2017). Among
the renewable energy sources (RES), solar photovoltaic, solar
thermal, solar cylindrical transform the solar radiation into
electricity and thermal energy. RES has grown in popularity
in recent years and is now successfully reported in a variety of
applications. The generated electricity and energy from solar

radiation require precise knowledge of the power produced for
injection to the grid (Shiva Kumar and Sudhakar 2015).

Morocco has undertaken several renewable energy pro-
jects, including solar, wind, hydraulics, and biomass. The
country has a large capacity for solar radiation in wide regions
with a daily average solar radiation close to 5.80 kW h/m2/day
(Belmahdi et al. 2020b). The key challenge in implementing
these technologies is the use of solar power as a source of
electricity in photovoltaic generators (PVG), thermal solar en-
ergy (TSE), and solar concentration technologies (CPV). Such
a challenge has motivated scientists and researchers to find
successful methods for predicting the value of solar radiation
(Belmahdi et al. 2020a). It was pointed out that the precision
of the solar radiation model is inextricably tied to the accuracy
of power generation from installed solar systems, and that this
has an impact on management. (Badescu et al. 2013). Using
an effective model for predicting solar radiation, it is possible
to monitor the power generated by the photovoltaic system. In
particular, the measurement, analysis, and forecasting of glob-
al solar radiation are important because it is of great signifi-
cance for the success of PVG, TSE, and CPV in the develop-
ment of electrical energy and its incorporation into the electri-
cal grid. In terms of enhancing and maintaining that the elec-
tricity produced from the RES source has been well
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introduced into the electrical grid without disturbances.
Within that aspect, the forecasting of global solar radiation
would have a huge effect on the production and maintenance
of future energy systems. In the research area, there are several
papers proposed and evolved different strategies for forecast-
ing global solar radiation. The forecasting approach chosen is
relevant to the available information and its specific forecast
visibility. The forecast information’s are based on the meteo-
rological conditions, and it is forecasted into three different
categories named i) short-term forecast, ii) medium-term, and
iii) long-term. The forecasting of global solar radiation would
make a meaningful contribution to the modelling, design and
control management of modern energy systems, such as the
connection to the microgrids (Al-Dahidi et al. 2020).

Various methods for forecasting solar radiation have been
recorded in different scientific papers. The most widely used
forecasting methods are grouped into three primary groups,
namely conventional models, machine learning, statistical re-
gression methods, and hybrid methods (Fan et al. 2019)(Wu
et al. 2019). Conventional models (CM), also known as pre-
dictive or mathematical models, may be identified as dynamic
and empiric models (Khorasanizadeh et al. 2014)(Almorox
and Hontoria 2004). In research papers, machine learning
(ML) techniques for time series forecasting have been recom-
mended as supplements to computational methods
(Makridakis et al. 2018). The purpose of the ML methods is
the same as that of the statistical regression methods. Both
attempts to improve forecast accuracy by decreasing any loss
function, usually the number of squared errors. Statistical fore-
casting methods focused on observational and quantita-
tive data gathered, related to time series analysis, based
on the notion that observations from history will con-
tinue in the future.

Researchers have developed a variety of methods, strate-
gies, and algorithms to forecast solar radiation employing
CM, ML, or a combination of both to define hybrid methods.
Artificial neural networks (ANNs) have become the most pop-
ular and commonly utilized type of neural network in litera-
ture (Pazikadin et al. 2020). It has proved high effectiveness in
modelling dynamic non-linear structures relative to traditional
models. For example, in (Mehleri et al. 2010) and (Notton
et al. 2013) have been presented that the ANNs approximate
the inclined global irradiation with high precision relative to
traditional isotropic and anisotropic models Belmahdi et al.
2021. IN Feedforward back propagation algorithm was used
to predict daily global solar radiation in 25 cities around the
kingdom of Morocco. Several meteorological astronomical
and geographical coordinate were employed as inputs data
to predict the out coming output. Multiple combination pa-
rameters were adopted in order to select the most suitable
configuration with optimal input data for each study location.
According to statistical metrics, the obtained result are respec-
tively, 12 inputs for Er-Rachidia, Marrakech, Medilt, Taza,

Oujda, Nador, Tetouan, Tanger, Al-Auin, Dakhla, Settat,
and Safi, seven inputs for Fes, Ifrane, Beni-Mellal,
and Meknes, six inputs for Agadirand Rabat, five inputs for
Sidi Ifni, Essaouira, Casablanca and Kenitra, four inputs for
Ouarzazate, Larache, and Al-Hoceima In terms of accuracy,
R² of the selected best inputs parameters varies between
0.9860% and 0.9920%, the range value of MBE (%) being
from −0.1076% to −0.5931%, the RMSE between 0.1990 and
0.4580%, the range value of the NRMSE is between 0.0355
and 0.8938, and the lowest value of the MAPE is between 0
.0019 and 0.0060%. This technique could be used to predict
other parameters for locations where measurement instrumen-
tation is unavailable or costly to obtain. Two ANNs were
designed in (Mellit et al. 2013) for use on cloudy and sunny
days, respectively, using more than one year of experimental
data at the Marmara University, Istanbul, Turkey. The two
models are used to forecast the power output of the 50 Wp
Si-polycrystalline photovoltaic module on cloudy and sunny
days. The proposedANNs are composed of 3 layers, one input
layer, a single hidden layer and an output layer. Solar radiation
and ambient temperature are used in the input’s layers, while
the generated power from the photovoltaic module is used as
an output layer with a single node. The results indicate that the
ANNs models outperformed generic polynomial regression
(PR), multiple linear regression (MLR), analytical and one-
diode model. in the (Cervone et al. 2017) authors implement-
ed a method based on the ANNs and Analog Ensemble
(AnEn) method to produce 72 hours deterministic and proba-
bilistic forecasts of a photovoltaic system. the input is the
meteorological conditions (solar radiation, ambient tempera-
ture...) and computed astronomical variables. ANNs and
AnEn are implemented to forecast short-term generated power
from a photovoltaic system installed in Italy. The results show
that the ANN-based AnEn is perfectly adapted for global level
processing. In another paper, the ANNs has proposed to fore-
cast the short-term wind speed, solar radiation, and electrical
power demand (Di Piazza et al. 2021). The methodology is
implanted in the open-loop structure to perform the time series
forecasting of wind speed, solar radiation and load power
demand. The results indicate that the best configuration for
solar radiation forecasting is using two neurons in the input,
five hidden layers and one input layer with a time delay of 7.
The achieved simulation results compared with the experi-
mental data indicate that the ANNs based in the exogenous
inputs model is well adapted to perform energy-related time
series forecasting in the short-term time horizon. In a recent
paper, the authors have proposed and developed six ANNs
models for indigenous and widespread regions around the
world using two datasets (Kılıç et al. 2021). The proposed
method has used the evolutionary algorithm and ANNs to
optimize 19 input parameters, classification and forecasting.
The results have given that the absolute percentage errors
APE=2.45%, validation dataset=9.93% and testing
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dataset=11.03% of the indigenous and widespread regions,
respectively. Fortunately, ANNs have certain drawbacks, such
as the identification of the optimum number of hidden neu-
rons, which is mostly dependent on error checks, the avail-
ability of initial values for synaptic weights, local minima
problems in the learning process, etc. The ANNs or NN have
been widely used as a hybrid model with numerous tech-
niques. For example, the ANNs has combined with satellite-
derived(MODIS) and land surface temperature (LST) to fore-
cast long-term global solar radiation in Queensland, Australia
(Deo and Şahin 2017). LST data from 2012 to 2014 are col-
lected and divided into seven categories, each with three lo-
cations, with the first two groups (2012-2013) used for the
simulation process and the third group (2014) used for
cross-validation. The proposed technique is tuned for the
monthly horizon by testing with 55 neural structures, while
nine neuronal architectures are tailed with time-lagged LST
for seasonal forecasting. The proposed ANNs is training using
55 neural and nine neural for the monthly horizon and season-
al forecasting, respectively. The scaled conjugate gradient al-
gorithm (SCGA) was used in the ANN with zero lagged LST,
while the Levenberg-Marquardt algorithm (LMA)was used in
the ANN with time-delayed LST. The analysis indicates that
an ANN consistently outperforms multiple linear regression
(MLR) and autoregressive integrated moving average
(ARIMA) models, with an examination yielding 39% of cu-
mulative errors in the lowest magnitude bracket, compared to
15% and 25% for MLR and ARIMA, respectively. The
MODIS model was implemented to estimate the monthly
global solar radiation using data from 50 locations around
China, 8 statistical models were investigated and developed
(Chen et al. 2014). The models are based on three parameters
named cloud fraction (CF), cloud optical thickness (COT),
precipitable water vapour (PWV) and aerosol optical thick-
ness (AOT). The first parameters were used in all models for
its crucial component influencing solar radiation in the atmo-
sphere and it used in all models. Model 2 uses both CF and
COT, models 3 and 4 are only modified from models 1 and 2
by adding PWV amount, whereas models 5 and 6 also are the
modified models of models 1 and 2 by adding the AOT. The
last model 8 takes into account all of the variables that make
up the atmosphere. The results showed that all the models
provide a satisfactory result with an average RMSE of
1.247 MJ m-2 and MAPE of 9.9%. The models generated a
reduced RMSE under cool temperature and warm temperate
zones. In Iran and using MODIS model to forecast the global
solar radiation in the urban area applying satellite data to iden-
tify various atmospheric parameters such as CF, COT, AOT,
cloud optical depth (COD), aerosol exponent (AE)(Bamehr
and Sabetghadam 2021). The models were created based on
seven combinations of atmospheric variables developed under
standard statistical methods, namely, MLR, and a specific
class of ANNs, namely, feedforward multilayer perceptron

(FFMP). The results conclude that the ANNs is more accurate
than MLR based in the regression method. On the other hand,
several models and techniques are used in the research papers.
From this, we found the deep learning (DL) model and
Variational Bayesian Inference (VBI) has been developed
and used to forecast the solar radiation using the historical
information by considering the past solar radiation and weath-
er conditions from a multi-site location in China (Liu et al.
2019). The forecasted results have been validated by using
different statistical metrics and compared with Recurrent
Neural Networks (RNN), Long Short-Term Memory
Networks (LSTM), and Gate Recurrent Unit Networks
(GRU). A combination between Autoregressive Integrated
Moving Average (ARIMA) and ANN as a hybrid technique
to forecast the daily global solar radiation in three different
cities in Morocco (Belmahdi et al. 2020a). The historical data
has been transformed to no-stationary data and finding the
optimum of ARIMA and ANN. The results show that by
using the time series data, a significant ACF, PACF, and
AIC criteria allowed a selection of the ARIMA (2. 1. 1),
ARIMA (1.1.1) as adequate models of three sites. In another
paper, the same author has applied the time series models to
forecast one month of mean daily global solar radiation using
Autoregressive Moving Average (ARMA) and ARIMA
methods (Belmahdi et al. 2020b). The ARMA (2, 1) and
ARIMA (0, 2, 1) are selected as optimal models due to the
minimum values of the AIC and BIC criterion. In China three
methods have been applied to forecast daily solar radiation
using Support Vector Regression (SVR), extreme gradient
boosting (XGBoost) and empirical method utilizing different
input data (Fan et al. 2018). The results have shown that the
XGBoost model is best suited to forecasting DSR in humid
subtropical climates. In (Álvarez-Alvarado et al. 2021) a re-
view has presented the hybrid techniques to forecast DSR
using SVM and Search Optimization Algorithms (SOA).
The papers explain and the implementation of different tech-
niques such as ANN and SVM by using the SOA such as
genetic algorithms (GA) and the particle swarm optimization
algorithm (PSO) were used to optimize the prediction accura-
cy by searching the model parameters.

Forecasting SR seems to have become a popular topic.
Such technology can help solar energy to be implemented into
the grid, generating positive outcomes by improving the effi-
ciency of the energy provided to the grid to minimize the price
of accessories involved with the use of this product. Various
researchers use optimization algorithms with forecasting tech-
niques to improve the efficiency of the estimated results. A
hybrid support vector regression (SVR) was boosted by the
Krill Herd algorithm (KHA) to forecast the SR (Mohammadi
and Aghashariatmadari 2020). Results showed that the test
performance of SVR-KHA has higher accuracy and lowered
error for all target data compared to the classic SVR. in the
other paper, the GSR has predicted through multiple
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meteorological parameters and defines important parameters
based on an interpretation of synaptic weights in an artificial
neural network model using a weight-approach relationship
(Kumar and Kaur 2020). The paper considered that tempera-
ture plays a significant role followed by humidity and pressure
compared to clearness index and precipitation which have the
least effect on the prediction of solar radiations. Results also
suggest that the ANN-based technique is more effective com-
pared to the empirical model. Another paper has used the
Improved Particle Swarm Optimization (IPSO) algorithm to
optimize the SVR parameter for forecasting solar radiation
(Ghazvinian et al. n.d.). An ensemble machine learning with
square root regularization and intelligent optimization. The
fundamental configuration process is based on ensemble
learning, firefly algorithm and square root smoothly clipped
absolute deviation (SRSCAD) using a random subspace (RS)
method, which splits the original data into many covariate
subspaces (Dong and He 2019).

This research is specifically intended to apply an intelligent
paradigm for optimization models, which minimizes the fore-
casting error. The machine learning and time series models
techniques can include the highest potential correlations and
simplifications with our proposed study. The meteorological
experimental data is obtained from the Mediterranean climate
region at Tetouan, Morocco. Relying on the fact that forecast-
ing of the global solar radiation (GSR) output can be enhanced
with machine learning techniques and time series models
based on meteorological data. Once the model is correctly
trained using the optimization method, the model iteratively
creates the forecasted GSR outputs. Four different techniques
named ARIMA, FFNN-BP, K-NN, and SVM are applied to
forecast the hourly global solar radiation (HGSR) output and
compared with a persistence model. The aims are to minimize
the forecasting errors depending on resolution, scale, and fore-
casting variables. The possible reason for using the ML and
Time series model is mainly due to the high potential for
modelling nonlinear dynamic systems with exogenous param-
eters depending on the times. In general, implementing meth-
odological approaches to time series issues involves the de-
velopment of characteristics that define the time series under
consideration, especially time shifts (lags) of the series itself
(Van Belle et al. 2021). In this regard, it is possible to use ML
methods for generalized linear modelling of time series as
well. However, the published results in (Makridakis et al.
2018) and (Makridakis et al. 2020) confirm that the statistical
time series methods typically perform better ML techniques in
a univariate setting. The utility of ML techniques in empirical
forecasting configuration, however, benefits from the purpose
is to be able to determine an arbitrary number of input ele-
ments. These ML strategies also depend on the principle of
pre-processing to deal directly with this issue in order to define
the most important input variables and their corresponding lag
orders. On the other hand, the conventional procedures of

forecasting are focused on modelling the dynamics of the past
time series and extrapolating it into the future. The application
of these approaches ofmultivariate time series is detailed, with
the most well-known exponential smoothing (ETS) and
ARIMA methods (Van Van Belle et al. 2021). There are au-
tomated model selection algorithms focused on minimizing
those knowledge requirements for both ARIMA and ETS.

The remainder of this paper is organized as follows: the
“Material and method” section presents and illustrates the mete-
orological weather station data collection. The “Performance
evaluation” section presents the forecasting methodology. The
“Result and discussion” section indicated and resume the perfor-
mance evaluation. The “Conclusion” section presents the simu-
lation results and comparative analysis of the forecasted HGSR
output. Finally, the conclusion has been drawn in Section 6.

Material and method

This section is divided into three subsections. Detailed infor-
mation is presented about the study site region as first; the
second stage gives a detail about the data collection and pre-
processing. A brief summarization concerning the machine
learning and time series models is given in the last subsection.

Study site

The kingdom of Morocco is a country situated between the
continents of North of Africa and South of Europe. Its lati-
tudes and longitudes are 3–40 and -7–5, respectively.
Morocco has 63 provinces and its total area is 446 550 km2.
Morocco has a great solar energy potential estimated by the
Moroccan Agency for Sustainable Energy (MASEN) to al-
most 2600 kWh/m2/year. This case puts Morocco to an attrac-
tive location for solar energy investments and management.

In this paper, Tetouan city is selected for the prediction of
hourly global solar radiation. The view of the province on the
Morocco map is given in Fig. 1.

Data collection

The present paper focuses on the prediction of hourly
global solar radiation data at one meteorological weather
station (MWS) installed on the rooftop in the Faculty of
Sciences, University Abdelmalek Essadi, Tetouan,
Morocco (Fig. 2), and it covers the term from 1
January 2013 to 31 December 2015.

The data set contains records of hourly global solar radiation,
maximum temperature ( Tmax), the difference of temperature
(ΔT), temperature ratio (Tratio) and average temperature
(TAverage) were included in this study. In addition to these, the
clearness index and the top of atmosphere (TOA) was calculated
by using Eqs. (1)–(2). These parameters are considered as input
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data to forecast the hourly global solar radiation output. Table 1
presents the measured data with its related notation.

The clearness index (kt) is the ratio between the global
irradiance at the surface, arriving on a horizontal plane, and
the corresponding extra-terrestrial global irradiance on the
horizontal planet. The following formulas of hourly clearness
index are presented in equation (1):

kt ¼ TOA
HGSR

ð1Þ

Where the Top of Atmosphere (TOA) is computed by the
following equation (2):

TOA ¼ ∫dayI0E0sin hð Þdt ð2Þ

With I0 is the solar constant, h is the solar elevation and E0

is present the correction of the Earth-Sun distance.

Selection of input parameters data by Pearson
coefficient test

Since solar radiation is perturbed by many meteorological
factors, it is essential to explore the relationships between
solar radiation and the six pre-selected meteorological and
astronomical parameters, for which an ideal forecast model
can be established. The Pearson coefficient test is chosen to
perform a correlation analysis by the Matlab environment.
Table 1 and Appendix Fig. 11 show the values of the correla-
tion coefficients.

The classification of input parameters shows that there is a
strong correlation coefficient between global solar radiation
and other parameters. The significantly correlated value must
be positive and greater than 0.50%. The classification selected
is shown in Table 2.

Fig. 1 Daily global solar radiation on surface horizontal distribution of the province of Tetouan-Tanger-Al Hoceima of Moroccan map

Fig. 2 Meteorological local station in Abdelmalek Essaadi University,
Faculty of Sciences
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Forecasting methodology

In this paper, ML techniques and time-series models are
employed to assess the proposed optimization method and
select the most relevant inputs with the best configuration.
The forecasting result will be compared with the persistence
model as reference results. It should be mentioned that the per-
sistence model estimates the coming output based on a single
data point (i.e., 24 h from earlier HGSR outputs). The selected
methods have been implemented and reported in the previous
literature and have revealed the best performance characteristics.
Each forecasted model is trained based on the previous inputs
data namely K, the expression of the proposed method is struc-
tured as below:

y ¼ f x; x2;⋯⋯; xT−kþ1;⋯⋯; xtð Þ ð3Þ

Where t is the current period (24 Hours).
The training phase method requires certain configuration

parameters (i.e., lags), the lags denotedNwhich depend on the
selected method. The Z parameters require in-depth knowl-
edge of the system or can be found by trial and error. In this
paper, we find the optimal values of K and Z for training the
model by iteratively assessing the ability of the model until K
and Z converge, as shown in Fig. 3A. The flowchart of the
fitness function, noted by adjustment (model,X, Ki, Zi), form
the model using K and z and measures the errors resulting
from the use of the forecasting model on the training data.

Once themodel is correctly trained using the optimal values of
z and K, the model iteratively creates the forecasted of the HGSR
output of the next day, noted by ¼ f bx1;…;bx24ð Þ, based on a
combination of previously forecasted and realized outputs, as
presented in Fig. 3B. In this regard, L denotes the lag parameter
and is can be established from the configuration parameters z.

Persistence model

One of the simplest methods of forecasting the future behavior
of a time series is the so-called persistence model. It implies
that the future values of the time series are calculated by as-
suming that the conditions remain unchanged between the
“current” time t and the future time t + TH. For a stationary
time-series the mean and variance of which do not change
over time, a simple implementation of the persistence model
is presented in Eq. (4):

y tð Þ ¼ y t þ THð Þ ð4Þ

Where y is the earlier hourly global solar radiation output
vector.

This technique simply uses the past recorded value to the
model forecasting. The training phases of this technique is
expressed by the following equation (5):

y ¼ f Persistence; yð Þ ð5Þ

The persistence technique counts on the past output of
HGSR (L=Hours earlier), which is more appropriate when
the fluctuation is smaller. In this context, L takes 24 Hours.

ARIMA model

In the class of forecasting model, the ARIMA model is an
extension of the ARMA model. It is widely used for different
modelling and forecasting applications with an acceptable lev-
el of forecast accuracy (Box et al. 2016) ARIMA for (p,d,q)
can be defined as indicated in Eq. (6):

YT ¼ β1Y t−1 þ β2Y 2−1 þ⋯βpY t−pεt þ ϕ1εt−1

þ ϕ2εt−2ϕεt−2 þ ϕqεt−q þ τ ð6Þ

Where YT present the forecasted HGSR βpYt − p is the linear
combination Lag of Y, ∅qεt − q which presents the linear com-
bination of Lagged forecasting error and τ is the constant.

We adopt in this study a Box-Jenkins method with a simple
function to z = f(p, d, q) obtain the optimal configuration
parameters. Generally, all orders of ARIMA(p,d,q) are smaller

Table 1 Input and output features
and notation Input’s vector Input Parameters Notation Correlation coefficient (%)

x1 Clearness index Kt 0.81

x2 Delta-T ΔT 0.67

x3 Ratio temperature Tratio 0.68

x4 TOA radiation TOA 0.74

x5 Maximum temperature Tmax 0.72

x6 Average temperature. TAverage 0.58

Output Vector Output Parameters Notation

y Hourly global solar radiation output HGSR

Table 2 The classification of six inputs data of Tetouan city

Study site Parameters selected

Tetouan Kt, TOA, Tmax Tratio,ΔT, Taverage
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than or equal to 2 (Wincek 1993). The trained ARIMA model
is obtained by the given equation:

f ARIMA p; d; qð Þ; y½ � ¼ τ þ ∑
p

i¼1
βiY t−i þ ∑

q

i¼1
ϕiεt−i ð7Þ

Where f is the prediction function, which includes the

ARIMA model, τ is the constant. ∑
p

i¼1
βi Y i−1 and ∑

p

i¼1
βi Y i−1

are the amount of linear combination of Lag and linear com-
bination of forecasting error respectively.

K-nearest-neighbours (k-NN) model

The K-NN rules are classified as a no-parametric classification
algorithm in pattern recognition and are commonly used in
many sciences due to their simplicity, feasibility, and intuitive
existence. There are many interesting advantages of the k-NN
algorithm. As a non-parametric classification system, a train-
ing procedure is not required for the k-NN algorithm. In par-
ticular, it needs no advanced knowledge of the statistical fea-
tures of the training instances and can identify the query di-
rectly based on the information presented by the training col-
lection (Li et al. 2008). This method is recognized as lazy
learning because its training lagged during the execution
(Korn et al. 2001). This classifier is also one of the most
straightforward because the classification of the data sets is
based on their class of nearest neighbours. The datasets are
therefore assigned to the more similar class and k must be a
positive integer. The value of k is generally small. When k=1,
the data sets are essentially allocated to the class of its closest
neighbor.

The performance of the k-NN classifier depends on the
optimal distance used. There are four different types of

distance in k-NN, but in this analysis, the Euclidean distance
will be applied because it is commonly used and defined by
default. This distance is calculated between a test sample and
the specified training samples. For example, let Xi be an input
sample with r characteristics (Xi1, Xi2, …., Xir), N noted the
total number of input samples (i=1.2… N) and r the number
total of (j=1,2…,r). The Euclidean distance between the sam-
ple Xi and Xk (k=1, 2…N) is identified as:

Y X i;X kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X i1−X k1ð Þ2 þ X i2−X k2ð Þ2 þ⋯ X ir−X krð Þ2

q
ð8Þ

The trained K-NNmodel is obtained by the given equation:

f k−NN ; yð Þ ¼ ∑
r

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ir−X krð Þ2

q
ð9Þ

Feed-forward neural network with back propagation
(FFNN-BP) model

One of the most widely used methods of forecasting solar
energy production is artificial neural networks. The FFNN-
BP is a relatively less complex neural network architecture.
In FFNN-BP, information passes from the input layer to the
output layer in the forward direction. The FFNN-BP network
can be monolayer or multilayer, but information moves in
only one direction. There is no feedback loop or cycle for
processing information. In the Feed-Forward neural network
(FFNN), the information reaches the output layer via the input
and the hidden layer of the network. The FFNN-BP has also
been used for several forecasting and pattern recognition ap-
plications (Mellit and Kalogirou 2008)(Malki et al. 2004). The
relationship between the output Y(t) and the inputs (Xt − 1; Xt

Fig. 3 A) Optimal forecasted
model selection and B)
forecasting HGSR output
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− 2…Xt − i) can be represented by the following expression
equation:

Y tð Þ ¼ s1 ∑
j

j¼1
wjs2 ∑

i

i¼1
wix t−ið Þ ð10Þ

Where Y(t) is an output from the network, x (t − i) is the
inputs to the network.Wj andWi are the connection weights. S1
and S2 are the activation functions, the most commonly used
function is a logistic sigmoid function given by the equation:

s yð Þ ¼ 1

1þ e−x
ð11Þ

The main control parameters of any FFNN are the weights.
The process of estimating these parameters are known as train-
ing where optimal connection weights are determined by min-
imizing an objective function. The FFNN-BP forecasting
model can be expressed as follows:

f FFNN−BP; yð Þ ¼ s1 ∑
j

j¼1
wjs2 ∑

i

i¼1
wix t−ið Þ ð12Þ

In the training step, z requires several configuration param-
eters. L represents the lag parameters; MN represents the max-
imum number of hidden neurons and FT is the Training
Function. For each iteration, the model training is stopped
when the error is linked below the RMSE%.

Support vector machine (SVM) model

The SVM has been introduced by Vapnik et al. based on
statistical learning methodology and optimization theory as a
rather strong and excellent pattern classification method
(Takruri et al. 2020)(Awad et al. 2015). The main objective
of SVM classification is to create a combination of simulta-
neous hyperplanes to maximize the minimum distance be-
tween two classes of samples. The SVM is considered an
effective machine learning method and has attracted wide at-
tention for its high performance on binary classification prob-
lems (Wu et al. 2021). Themost important distinction between
SVM and other methods of machine learning based on the
Empirical RiskMinimization (ERM) paradigm is that not only
analytical risk but also generalization flexibility is taken into
account in the SVM models. In addition, the SVM describes
the nonlinear response and one or multi-descriptors. The SVM
output may be regular, binomial, or Poisson, as opposed to a
simple linear or exponential regression, whose output has a
normal distribution. In the SVM a connection objective func-
tion is introduced to the linear representation. SVM regulari-
zation is a type of shrinkage that applies a penalty function to
minimize a model’s difficulties, which can define significant
descriptors, choose descriptors and generate fewer model for-
mula coefficients. Based on the principle of Structured Risk

Minimization (SRM), SVMs seek to minimize an upper limit
of the generalization errors instead of the empirical error as in
other neural networks. Also, SVMmodels generate the regres-
sion function by applying a set of high dimensional linear
functions. in order to solve the nonlinearity of the parameters
X is introduced at first and mapped to m-dimensional feature
space. A linear relationship was then established in the feature
space, which obtains:

Y ¼ ∑
M

m¼1
wmψ X ;Xmð Þ þ c ð13Þ

Where ψ(X) is called the feature, which is a nonlinear map-
ping function from the input space the coefficients using ker-
nel function (e.g linear function) w and c are the weight vector
and the bias. The data are usually supposed to be zero and the
variance term after preprocessing is negligible.

Performance evaluation

To achieve the performance accuracy of each model forecast-
ing, analyze every parameter and case in a better way, it was
necessary to use some statistical measured tools, which are
very common in the kind of studies (Tian et al .
2016)(Emery et al. 2017). The calculated statistical errors
are presented in Table 3.

In Table 3 υmax is the number of observations at time t, bX t

and X t are the forecasted and measured hourly global solar
radiation at time t respectively.

These statistical indicators are commonly used to assess the
obtained results and to compare the performance success of
the proposed models used in the present study.

Result and discussion

The present study deals with the prediction of hourly global
solar radiation on the horizontal surface of Tetouan city using
five different forecasting models. To evaluate the adopted
forecasting methodology, we applied multiple statistical per-
formance indicators that are commonly used in the literature,
are discussed. Tables 4, 5, 6, 7, 8, and 9 give multiple results
of the selected models according to these metric indicators to
assess the performance of these models in order to select the
most appropriate one.

The measurements data cover the period from 1 January
2013 to 31 December 2015 and were carried out in a
Meteorological station placed at the top of a building of the
Faculty of Sciences of Abdelmalek Essaadi Tétouan
University. These data are divided into the training and the
testing set. The training set includes the cover the date from 1
January 2013 to 31 December 2014, which occupies 80% of
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the entire data. The testing set to cover the data from 1 January
2015 to 31 December 2015, which occupies the rest of the
data (20%).

In this section, the results of each prediction model are
studied individually by introducing several trial to select the
performance of the appropriate model, therefore we have
briefly presented the appropriate models in order to illustrate
the prediction of 24 h of global solar radiation of two typical

summer and winter days and compare it with the measurement
data located at the local meteorological station of the Faculty
of Sciences Abdelmalek Essadi.

The former author points out a multi-step optimization
method:

& Collect the data.
& Initial and create the configuration parameters.

Table 3 Statistical metrics used in the study

Statistical
performance
indicator

Equation Description Performance information

Mean Bias Error
(MBE)

MBE ¼ 1
vmax

∑
t¼1

vmax

X t−X tð Þ Denotes the arithmetical mean of
the error and provides
long-term status reports; as a
condition, a small value is pre-
ferred.

The Positive value MBE means that the forecasted model is an
overestimation, while the negative value means is an
underestimation. Nevertheless, the low value of MBE indicates
that the model is suitable and exhibits good performance.

Root Mean Square
Error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

vmax
∑
t¼1

vmax

X t−X tð Þ
s

2 used to assess if the existing
measured and experimental
values for the observational
current values were adequate.

The small value of RMSE indicates the model performs better.

Normalized Root
Mean Square
Error (NRMSE)

NRMSE ¼ RMSE= 1
vmax

∑
t¼1

vmax

X t it easier to compare datasets or
models of various levels.

The low value of NRMSE indicates the model performs better.

Mean Absolute
Percentage Error
(MAPE)

NRMSE ¼ RMSE= 1
vmax

∑
t¼1

vmax

X t It is a measure of the forecasting
performance of a forecasting
method.

MAPE is always positive

Test Statistic (TS) TS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vmax−1ð Þp

MBE2

SMSE2−MBE2 A Test Statistic is identified to
evaluate behaviours, which
would differentiate the zero
from the dependent variable in
the collected data.

The low value of TS indicates the model performs better.

Standard Deviation
(σ)

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vmax MSE2−MBEð Þ

vmax−1ð Þ

r
Standard Deviation presents the

calculation of the level
difference or deformation of a
range of values.

σ is always positive

Table 4 Statistical tool’s performance of ARIMA (p, d, q) models

Models MBE MBE% RMSE RMSE% NRMSE MAPE TS σ σ% AIC BIC

ARIMA(1,0,0) 15,3876 32,252 25,951 6,815 1,1623 2,76 5,478 24,102 7,903 121.5222 122.7159

ARIMA(1,2,0) 16,0851 39,954 25,651 5,82 1,1724 2,77 8,728 20,771 8,903 114.2099 114.8016

ARIMA(1,0,2) 12,33 32,803 45,089 1,135 1,2956 2,86 6,658 19,032 2,701 132.6962 134.6857

ARIMA(2,1,0) 19,08 25,812 52,955 5,242 1,236 1,862 6,876 24,33 6,907 115.4747 116.2636

ARIMA(1,2,1) 18,992 77,443 15,711 8,379 1,0986 0,412 1,438 36,307 4,322 116.1671 116.956

ARIMA(2,1,1) 13,525 53,747 14,389 8,491 1,4848 2,414 6,876 24,5395 3,702 117.3987 118.3849

ARIMA(1,1,2) 13,418 35,875 14,387 7,811 1,4845 2,41 8,874 24,5364 2,877 111.756 113.2689

ARIMA(1,1,0) 15,183 25,652 14,453 4,638 1,4443 2,732 6,295 24,607 3,96 114.2345 115.1423

ARIMA(1,1,1) 13,0942 43,982 32,951 7,813 1,1916 1,76 9,778 27,722 2,083 115.7155 116.9259

ARIMA(2,0,0) 10,2341 34,079 34,713 7,356 0,0738 1,852 6,118 25,013 5,252 110.5625 111.7728

ARIMA(2,0,2) 11,234 43,072 54,151 6,311 0,197 0,782 4,379 46,811 6,206 109.4006 111.2161

ARIMA(2,2,0) 10,229 37,063 16,017 9,418 0,1374 1,102 9,677 41,017 7,914 116.1366 116.4544

ARIMA(2,2,2) 12,668 45,223 13,515 5,814 0,3457 0,972 9,419 9,954 6,07 114.3527 114.8293

ARIMA(2,2,1) 9,538 22,923 22,014 4,774 0,0467 0,642 8,619 14,814 0,173 99.6896 101.2026
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& Training the optimization method
& Validate and compute the statistical error measures.

Figure 4 presents the monthly average of daily global solar
radiation on surface horizontal. It can be computed by the
average of each month. The performances of the pro-
posed models depend on the season of the year. For

example, the monthly average of daily global solar ra-
diation in winter is more fluctuate than in summer,
which means that the global solar radiation is more
difficult to forecast in winter. Solar radiation generates
a satisfactory solar potential when the sunrise between
6:00 a.m. and 7:00 p.m., and it reaches to increase until
its maximums (generally between 12:00 p.m. and 2:00

Table 5 Statistical tool’s performance of k-NN models

Model K MBE MBE% RMSE RMSE% NRMSE MAPE TS σ σ%

K-NN 1 29,766 7,102 22,69342 10,51552 9,53064 11,998 18,56077 29,884 0,87

9 29,889 8,107 22,99866 10,65696 9,53064 11,998 19,61049 29,884 1,218

14 30,012 8,308 23,09258 10,70048 9,53064 11,998 19,74366 30,008 1,479

16 30,627 8,643 23,25694 10,77664 9,68436 11,998 21,4406 30,256 2,61

10 25,584 6,7 19,15381 8,87536 8,60832 11,998 18,33721 28,396 0,774

12 30,627 8,509 23,25107 10,77392 9,68436 11,998 19,75792 30,256 2,349

40 30,873 9,313 23,79111 11,02416 9,68436 11,998 21,65979 30,38 3,393

34 30,996 9,648 23,79698 11,02688 9,83808 11,998 21,69521 30,38 3,567

28 31,242 9,916 23,88503 11,06768 10,29924 11,998 21,85437 31,496 4,785

20 31,857 10,184 24,0083 11,1248 10,29924 11,998 23,6946 31,62 4,872

24 33,087 10,586 25,28796 11,71776 12,2976 17,997 26,12524 44,64 5,307

18 33,21 10,586 25,59907 11,86192 12,45132 17,997 26,17699 45,012 6,09

8 33,948 10,787 25,72234 11,91904 12,75876 12,097 26,25979 45,508 8,526

32 34,317 10,854 26,1215 12,104 12,91248 17,997 26,52222 45,632 8,874

4 34,44 11,122 26,19781 12,13936 12,91248 11,999 26,52222 45,632 8,961

28 38,622 11,256 29,56719 13,70064 13,8348 17,997 26,62618 47,244 10,701

15 39,237 11,39 29,98396 13,89376 13,8348 17,997 26,67793 47,492 10,875

18 39,36 11,926 30,16006 13,97536 13,8348 17,997 27,53215 47,492 10,962

22 39,729 12,395 30,54748 14,15488 13,98852 17,997 27,54204 47,616 11,049

Table 6 FFNN-BP model
architecture Input combination Activation

function
Training
Function (TF)

Number of neurons

in the hidden layer (MN)

Final FFNN-BP
Architectures

Kt, TOA, TmaxTratio,

ΔT, Taverage

Sigmoid SCG 10 6×10×1

2 6×2×1

15 6×15×1

7 6×7×1

22 6×12×1

18 6×18×1

23 6×23×1

26 6×26×1

Kt, TOA, TmaxTratio,

ΔT, Taverage

LM 10 6×10×1

2 6×2×1

15 6×15×1

7 6×7×1

22 6×12×1

18 6×18×1

23 6×23×1

26 6×26×1
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p.m). In many cases, the solar radiation reaches a max-
imum between 10 a.m. and 2 p.m. After peak hour, it
then decreases until sunset.

It is well-known that global solar radiation is related to
multiple meteorological parameters.(Malvoni et al. 2016,
2017). The main meteorological data that influenced global
solar radiation are presented in Table 1 and 2. The dynamic
variations of each parameter make the forecasting methodol-
ogy very difficult. These parameters are also significant for

such issues as renewable energy. For example, the evaluation
and interpretation of solar energy intensity are only possible in
comparison with meteorological data acquired concurrently.

In this subsection, the training steps of our models
ARIMA, FFNN-BP, K-NN, SVM and persistence model are
tested and evaluated by minimizing the forecasting errors
which depending on the hourly global solar radiation as output
parameter and analysis of several performance metrics. In ad-
dition, the appropriate value of K and z indicate that’s the

Table 7 Statistical tool’s performance of FFNN-BP models

FFNN-BP MBE MBE% RMSE RMSE% NRMSE MAPE TS σ σ%

SCG FFNN-BP.10 26,42575 15,504 16,91 6,54 0,616132 1,80106 7,128387 24,05057 0,92137

FFNN-BP.2 26,86802 15,752 17,10 8,58 0,626233 1,80106 7,174755 24,25183 0,91938

FFNN-BP.15 27,53143 16,228 17,41 6,93 0,636333 1,80106 7,273476 24,55372 0,91938

FFNN-BP.7 27,86314 16,372 17,55 9,62 0,646434 1,80106 7,311654 24,65435 0,91838

FFNN-BP.12 29,85336 17,848 18,55 5,83 0,676736 1,80106 7,551558 25,56002 0,91838

FFNN-BP.18 29,85336 17,832 18,55 6,93 0,676736 1,80106 7,542486 25,66065 0,91739

FFNN-BP.23 30,51677 17,184 22,95 4,95 0,838344 2,70159 5,351472 36,93121 0,90943

FFNN-BP.26 33,61267 19,356 24,20 8,63 0,888847 2,70159 5,731425 37,93751 0,90644

LM FFNN-BP.10 23,88269 13,532 15,80 5,24 0,57573 1,80106 6,684111 23,24553 0,22037

FFNN-BP.2 29,07938 17,344 18,20 6,71 0,666635 1,80106 7,458444 25,35876 0,91838

FFNN-BP.15 29,52166 16,428 22,55 7,15 0,828243 2,70159 5,212557 36,62932 0,90744

FFNN-BP.7 29,85336 17,836 18,55 6,05 0,676736 1,80106 7,545636 25,66065 0,91739

FFNN-BP.12 30,07451 16,841 22,90 5,83 0,838344 2,70159 5,278644 37,03184 0,90644

FFNN-BP.18 30,84847 17,452 23,10 8,55 0,848445 2,70159 5,410314 37,03184 0,90843

FFNN-BP.23 32,06472 18,256 23,65 6,38 0,868646 2,70159 5,537637 37,53499 0,90644

FFNN-BP.26 34,49722 19,964 24,60 7,45 0,898947 2,70159 5,841801 38,2394 0,90545

Table 8 Statistical tool’s performance of SVM models

Model Kernel Function K Z MBE MBE% RMSE RMSE(% NRMSE MAPE TS σ σ%

SVM RBF with simplex Optimization method 10 360 47,7034 25,437 20,52 7,19 1,411 6,4627 10,1088 49,044 7,664

1 360 46,8485 25,687 20,83 8,16 1,428 5,3398 10,2753 49,446 8,816

25 360 46,8485 25,659 20,43 2,92 1,394 6,5753 9,9505 49,044 7,125

17 360 46,6775 25,632 20,38 5,21 1,394 5,4507 9,9036 49,044 7,045

20 360 46,3356 25,381 20,25 2,91 1,394 5,5299 9,8663 48,776 6,565

14 360 46,3356 25,298 19,82 2,43 1,365 5,5968 9,4586 48,374 5,776

32 360 46,1646 24,047 16,92 4,55 1,156 3,6326 14,4592 34,438 8,288

50 360 45,8226 23,631 16,92 3,45 1,156 4,7802 14,4661 34,438 8,464

3 360 45,6516 22,851 16,74 5,46 1,139 4,8189 14,3934 34,170 6,848

12 360 45,3097 22,824 16,69 6,46 1,139 5,0623 14,3554 34,173 6,192

27 360 45,1387 22,629 16,69 5,46 1,139 4,6094 14,4572 34,036 6,464

34 360 44,6258 22,574 16,42 4,80 1,122 4,4458 14,2071 33,768 5,552

38 360 42,9161 22,575 16,29 4,91 1,122 4,7027 14,1451 33,543 5,328

45 360 41,8901 22,101 15,48 5,44 1,054 4,4415 13,7292 32,428 2,656

29 360 41,2062 22,017 15,33 6,55 1,054 5,0459 13,6190 32,162 2,592

7 360 40,8642 20,182 15,21 7,55 1,037 5,0621 13,5631 32,026 2,032

5 360 40,8642 20,155 15,21 9,55 1,037 3,8597 13,5357 32,026 1,445

15 360 34,7089 20,099 13,59 4,64 0,935 3,4211 9,30636 29,882 0,948
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forecasting models are performing well which provide a suit-
able platform to study the solar field

ARIMA model

Based on the proposed methodologies illustrated in Fig. 3 A)
and B), several testing were found to select the appropriate
and optimal values for the parameters K and Z = {p, d, q},
some values can be excluded and inferred from z. Figure 5
presents the Autocorrelation Function (ACF) and the Partial
Autocorrelation Function (PACF) plot of HGSR output which
indicates a significant fluctuation of the daily cycle, while the
PACF does not decay. It should be mentioned that the insola-
tion decreases from summer to winter and increases fromwin-
ter to summer. In this regard, we further assume that the
differencing d=2 is non-negligible because the records data
is taken from the middle of the summer, where the impact of
difference is acceptable.

After several trials, we find that the K=720 (i.e., 30 days),
p=2, d=2, and q=1 as optimal values for the ARIMA model.

Figure 6a and b illustrates the training set of the forecasting
ARIMA (p,d,q) models measured by RMSE% and MAPE%.
It should be mentioned that the lower values of these indica-
tors yielded the highest forecasting accuracy with the optimal
configuration of the ARIMA (p,d,q) models.

From the figures concerning changes in the order of p, d,
and q, it appears clearly that the lower value of the median of
NRMSE and MAPE are shown for ARIMA (2, 2, 1). The
median value of RMSE and MAPE area 0, 0467 %, and
0,642 %. The presented values indicate that the ARIMA (2,
2, 1) performs better than other models and is the optimal one.

For more details, Table 4 presents the mean values of the
statistical indicators for ARIMA (p, d, q). Based on this mean,
it appears clearly that the ARIMA (2, 2, 1) shows the best and
optimal performance than other models. As a result, the
ARIMA (2, 2, 1) presents an adequate result and better than
other ARIMA configurations.

k-nearest neighbour (k-NN) model

In the case of the k-NN model, the forecasting accuracy using
various parameters of K to select the appropriate and optimal
configuration of the proposed model by adopting the consid-
ered methodologies (Fig. 3 A and B). A different formulation
for short-term global solar radiation output forecasting using
the k-NN model based on meteorological data.

Figure 7 depicts the training set of the k-NN model mea-
sured by (a) NRMSE% and (b)MBE%; it is quite obvious that
the NRMSE and MBE of k-NN have large values (K=40) and
give the best performance accuracy. The mean, median and
standard deviation (Sd) are 11.34 %, 10.3 %, and 1.896 % for
NRMSE%, 9.68 %, 10.18 %, and 1.604 for MBE% respec-
tively. Based on this result, it appears clearly that the optimal
configuration of the k-NN model corresponding to the K=10.

Table 5 shows several results values of the k-NN model
with multiple K. All of this K yielded the best performance,
the lower value of the optimal configuration (K-NN with
K=10) are 25.584 (6,7 %) for MBE%, 19.15381 (8,87536
%) for RMSE, 8.60832 for NRMSE, 11.998 for MAPE,
18.33721, 28.396, and 0.174 for T-statistic and σ %
respectively.

Feed forward neural network (FFNN-BP) model

In the class of the FFNN-BP model, the best forecasting ac-
curacy is obtained by using multiple training functions, differ-
ent input combinations, several numbers of neurons in the
hidden layer and the activation function is sigmoid. The

Table 9 Statistical tool’s performance of optimal models

Models MBE MBE% RMSE RMSE% NRMSE MAPE TS σ σ%

ARIMA (2,2,1) 9,538 22,923 22,014 4,774 0,047 0,642 8,619 14,814 0,173

SVM (K=15, Z=360) 34,709 20,099 13,59 4,64 0,935 3,421 9,306 29,882 0,948

FFNN-BP.10 23,883 13,532 15,8 5,24 0,575 1,801 6,6841 23,245 0,221

k-NN (k=10) 25,584 6,7 19,154 8,875 8,608 11,998 18,337 28,396 0,774

Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec
Time (Month)

0

200

400

600

800

1000

1200

1400

M
on

th
ly

A
ve

ar
ge

D
ai

ly
G

lo
ba

lS
ol

ar
R

ad
ia

tio
n

(k
W

/m
².d

ay
)

Measured data of 2013

Fig. 4 Monthly average of daily global solar radiation of the year 2013
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accuracy of the model is assessed with various statistical in-
dicators such as MBE% RMSE, NRMSE, MAPE, TS, and
σ%. The forecasting accuracy of the optimized FFNN model
is presented in Fig. 8, the training data set is larger than 26.
The size of the training set that yielded presents the highest
performance corresponding to the 10 neurons with the
Gaussian activation function, 1000 epochs with the LM algo-
rithm (the damping parameter μ = 0.05), all other parameters
are taken by default.

Figure 9 and Table 7 depict the training set with two algo-
rithms named Levenberg-Marquardt(LM) and Scaled
Conjugate Gradient (SCG) in terms of FFNN-BP measured
by NRMSE% and MBE%. The range values of NRMSE and
MBE are 3.41 %, 4.675%, 3.852 %, and 6.432 % for both LM
and SCG, respectively. Based on these results, the LM algo-
rithm performs better than the SCG training algorithm.

Table 7 presents the statistical measure of the two-training
function with the optimal input combination and several hid-
den layers. It should be mentioned that the optimal configura-
tion that they have a lower value of the forecasting accuracy.
From the table, it appears clearly that the FFNN-BP.10 with
the LM training function presents the best performance accu-
racy than other models. The lower values of MBE, NRMSE,
RMSE, MAPE, and T-statistic are 23.88269, 0.57573, 15.8,

1.80106, and 6.684111, respectively. Based on this result the
FFNN-BP.10 is the optimal configuration with the LM train-
ing algorithm and performs better than the SCG training
algorithm.

Support vector machine (SVM) model

In the class of the Support Vector Machine (SVM) model, we
use the radial basis function (RBF) with the kernel function and
optimization method to select the optimal configuration that pro-
duces the smaller value of forecasting error measures. In Fig. 9a,
the training set is larger than 50. The size of the training set that
yielded the highest accuracy corresponding to 15 days (i.e.,
K=360), concerning the change of SVM parameters, the mean,
median and Standard deviation (Sd) values of the NRMSE using
the optimization method (Radial Basis Function with Kernel
function method and optimization) are 1.193, 1.139 and
0.1585, respectively. While the range min and max value of
the MBE% are 5.588, 20.1, and 25.69, respectively.

Table 8 describes the statistical error measure of several
SVM forecasting s and multiple kernel function and optimi-
zation values. It appears clearly from the table that the lower
value forecasting accuracy of SVM is K=360, the MBE%,
RMSE%, NRMSE, MAPE, TS, and σ% for the optimal
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SVM configuration are 34.70 (20.09 %), 34.70894, 20.0994
(13.59 %), 4.64, 0.935, 3.42112, 9.30636, and 29.882
(0.848%), respectively.

Global solar radiation output forecasting

The objective of this subsection is to summarize the forecast-
ing accuracy of the selected models using hourly global solar
radiation output data from 15 January 2013 to 15 November
2015. Only the hourly global solar radiation forecasting is
presented for the two typical summer and winter days. All
these models used various inputs parameters (Kt, TOA,
TmaxTratio, ΔT, Taverage ). Table 9 shows the achieved model
with the optimal configuration. The FFNN-BP.10 and
ARIMA (2, 2, 1) models’ forecasting s are outperformed ones
than SVM (k=15, Z=360) and k-NN (K=10) models.

Figure 10A to F depicts the experimental and the forecasted
HGSR output for the two typical summer and winter days
(over 1000 w/m2 to 1200 w/m2 for summer, and 800 w/m2

to 1000 W/m2 for winter) from 3 years. In this case, the
ARIMA (2, 2, 1) and FFNN-BP.10 forecasting are the appro-
priate, and forecasted curves fit the actual global solar radia-
tion output curves well. However, some peaks and the turning
point for the GSR output are not forecasted accurately. The
SVM and k-NN models generate relatively less accurate

forecasting and the Persistence model is approximately close
to the actual GSR output. The HGSR forecasted by several
selected models is almost superimposed with those measured
by the local metrological station from summer and winter days
when the sun reaches the highest and lowest elevations.

In summer and winter days, it is also observed from the
figures that the forecasted value of ARIMA (2, 2, 1) and
FFNN-BP.10 are close to the experimental GSR. While the
SVM and k-NN models show the underestimation cases for
the forecasting GSR and the persistence model present slightly
over forecasting and close to the corresponding GSR.
Although the corresponding profile of time series data varied
greatly due to varying weather conditions. The output results
on the clear days provide a good platform to study the influ-
ence of cloudiness and deviation between the forecasted
values by each forecasted model. In other to select the optimal
and gives good approximations with the corresponding GSR.

Conclusion

This paper presents the performance of five different machine
learning (Persistence, k-NN, ARIMA, FFBP, and SVM) in the
forecasting optimization of hourly global solar radiation. The
current study considers multiple inputs data (clearness index,
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TOA radiation, maximum, average, delta and ratio tempera-
ture are used as attributes) from local stations installed on the
rooftop of the University Abdelmalek Essaadi of Tetouan. To
assess the performance of the proposed models, six metrics
(MBE (%), RMSE (%), NRMSE, MAPE (%), Ts and σ (%))
are discussed in this study. Then the following conclusions
can be drawn based on the present investigation.

1- The forecasting methodology used in the study location
has shown good results.

2- The RMSE (%) and MBE (%) values of several models
employed in this study were computed to be mostly pos-
itive. The range value of the selected model measured by
RMSE (%) and MBE (%) varied between 4.64 to 8.87 %
and 6 to 22.93 %.

3- Based on all statistic metrics, the lower value of the se-
lected model corresponds to the neural FFBP (6×10×1) in
comparison with the others models. The appropriate one
performs well and is close to the measured data.
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