
Viable medical waste chain network design by considering
risk and robustness

Reza Lotfi1,2 & Bahareh Kargar3 & Alireza Gharehbaghi4 & Gerhard-Wilhelm Weber5,6

Received: 2 August 2021 /Accepted: 22 September 2021 /Published online: 2 October 2021

Abstract
Medical waste management (MWM) is an important and necessary problem in the COVID-19 situation for treatment staff. When
the number of infectious patients grows up, the amount ofMWMs increases day by day.We present medical waste chain network
design (MWCND) that contains health center (HC), waste segregation (WS), waste purchase contractor (WPC), and landfill. We
propose to locate WS to decrease waste and recover them and send them to the WPC. Recovering medical waste like metal and
plastic can help the environment and return to the production cycle. Therefore, we proposed a novel viable MWCND by a novel
two-stage robust stochastic programming that considers resiliency (flexibility and network complexity) and sustainable (energy
and environment) requirements. Therefore, we try to consider risks by conditional value at risk (CVaR) and improve robustness
and agility to demand fluctuation and network. We utilize and solve it by GAMS CPLEX solver. The results show that by
increasing the conservative coefficient, the confidence level of CVaR and waste recovery coefficient increases cost function and
population risk. Moreover, increasing demand and scale of the problem makes to increase the cost function.
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Introduction

Medical waste management (MWM) is a critical problem in
the COVID-19 situation. In the COVID-19 condition, amount
of infectious patients grows up and amount of MWMs in-
creases. As a result, we must pay more attention to MWMs
and improve waste disposal. In many workers that do waste

disposal, this subject threatens them very much. MWMs in-
clude infectious waste, hazardous waste, radioactive waste,
and general waste (municipal solid waste). The WHO clas-
sifies medical waste into sharps, infectious, pathological, ra-
dioactive, pharmaceuticals, and other (including toilet waste
produced at hospitals). About 85% of MWMs are general
waste and 15% of MWMs are infectious waste, hazardous
waste, and radioactive waste (Tsai 2021). Therefore, the im-
portance ofMWMsmakes many researchers contribute to this
subject and present mathematical approach and decision sup-
port system. Some researchers consider a location-routing
problem for medical waste management (Suksee and
Sindhuchao 2021; Tirkolaee et al. 2021). Others investigate
reverse logistics by the mathematical model (Sepúlveda et al.
2017; Suksee and Sindhuchao 2021). Also, some scientists
analyze the MWM systems by multi-criteria-decision ap-
proach (Aung et al. 2019; Narayanamoorthy et al. 2020).
The objective of these tools is to improve waste management
performance and decrease risks for workers that we can see in
Figure 1.

One of the new discussions in the present age is the viabil-
ity of network design in post-pandemic adaptation. The via-
bility of networks that are proposed by Ivanov and Dolgui
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(2020) is integrated agility, resilience, and sustainability in the
network. Therefore, it is needed to suggest a systematic and
mathematical model for setting up viable medical waste chain
network design (VMWCND), because improving the perfor-
mance of waste management in urban is needed and makes to
prevent COVID-19 outbreak. Eventually, we should design a
new mathematical model to consider agility, resilience, sus-
tainability, risks, and robustness to cope with environmental
requirements and disruption.

Eventually, the innovation of this research and the main
objective is as follows:

& First time designing viable medical waste chain network
design (VMWCND)

& Considering robustness and risk in VMWCND

The paper is organized as follows. In the “Survey on recent
MWCND” section, we survey on related work in scope of
MWCND. In the “Problem description” section, the
VMWCND and risk-averse VMWCND are stated. In the
“Results and discussion” section, the results of research and
sensitivity analysis are presented. In the “Managerial insights
and practical implications” section, the managerial insights
and practical implications are discussed. In the “Conclusions
and outlook” section, the conclusion is summarized.

Survey on recent MWCND

The amount of waste has increased because of the COVID-19
situation. Therefore, researchers research to manage, improve,
and decrease losses from medical centers. We survey on the
recent investigation on MWCND which is as follows.

Mantzaras and Voudrias (2017) considered an optimization
model for medical waste in Greece. They tried to minimize
total cost including location and transfer between locations.
The genetic algorithm (GA) is applied to solve the model.
Budak and Ustundag (2017) designed a reverse logistic for
multi-period, multi-type waste products. The model’s

objective was to minimize total cost and the model’s decision
included location, flow, and inventory. The case was in
Turkey. They found that by increasing waste amounts, the
numbers of facilities and strategies are changed. Wang et al.
(2019) designed a two-stage reverse logistics network for ur-
ban healthcare waste with multi-objective and multi-period. In
stage 1, they predicted the amount of medical waste, and in the
second stage, they minimized total cost and environmental
impact.

Kargar et al. (2020a) presented a reverse supply chain for
medical waste. They used mix-integer programming (MIP) to
model problem. The objectives included total costs, technol-
ogy selection, and the total medical waste stored that are min-
imized. A robust possibilistic programming (RPP) approach is
applied to cope with uncertainty. A fuzzy goal programming
(FGP) method is embedded to solve the objectives. The real
case study is investigated in Babol, Iran. Other works of
Kargar et al. (2020b) studied a reverse logistics network de-
sign for MWM in the COVID-19 situation. They minimized
the total costs, transportation, and treatment MW risks, and
maximized the amount of uncollected waste. They employed
the revised multi-choice goal programming (RMGP) method.
Homayouni and Pishvaee (2020) surveyed hazardous hospital
waste collection and disposal network design problem with a
bi-objective robust optimization (RO) model. The objectives
include total costs and total operational and transportation
risk. An augmented ε-constraint (AUGEPS) method is em-
bedded to solve the problem. The real case study is investi-
gated in Tehran, Iran.

Yu et al. (2020b) considered a reverse logistics network
design for MWM in epidemic outbreaks in Wuhan (China).
The objectives included risk at health centers, risk related to
the transportation of medical waste and total cost. They solved
the model by fuzzy programming (FP) approach for multi-
objective. They determine temporary transit centers and
temporary treatment centers in their model. In addition, Yu
et al. (2020a) studied a stochastic network design problem for
hazardous WM. They minimized cost and transportation cost
of hazardous waste and the population exposure risk. They
applied stochastic programming with sample average approx-
imation (SAA) for scenario reduction. They solved the model
by goal programming (GP). Saeidi-Mobarakeh et al. (2020a)
presented bi-level programming (BP) for a hazardous WM
problem. They used an environmental approach for upper lev-
el and routing and cost for lower level. They solve mix-integer
nonlinear programming (MINLP) by GA.

In addition, Saeidi-Mobarakeh et al. (2020b) developed a
robust bi-level optimization model to model hazardous
WCND. They suggested a robust optimization approach to
cope with the uncertainty. Also, the decisions of the model
include location, determining capacity, and routing.
Eventually, a commercial solver is utilized to solve the
model. Tirkolaee et al. (2021) surveyed a sustainable fuzzy
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Figure 1 MWM in the COVID-19 situation



multi-trip location-routing problem for MWM during the
COVID-19 outbreak. They embedded fuzzy chance-
constrained programming (FCCP) technique to tackle the un-
certainty. Therefore, they implemented weighted GP (WGP)
method to analyze and solve the problem. A case study is
determined in Sari, Iran to show the performance of the pro-
posedmodel. Tirkolaee and Aydın (2021) suggested a sustain-
able MWM for collection and transportation for pandemics.
They minimized total cost and the total risk exposure imposed
by the collection. Eventually, a commercial solver is utilized
to solve the model with meta-goal programming (MGP) for
multi-objective. Shadkam (2021) designed a reverse logistics
network for COVID-19 and vaccine waste management. They
utilized cuckoo optimization algorithm (COA). They tried to
minimize total cost. Nikzamir et al. (2021) suggested a
location-routing network design for MWM that tried to min-
imize the total cost and risks of population contact with infec-
tious waste. They offered a mix-integer linear programming
(MILP) and solved it by a hybrid meta-heuristic algorithm
based on imperialist competitive algorithm (ICA) and GA.
Li et al. (2021) surveyed a vehicle routing problem (VRP)
for MWM by considering transportation risk. They suggested
MILP for time window VRP and developed a particle swarm
optimization (PSO) algorithm to solve large-scale problems.

The classification of the literature is addressed in Table 1. It
can be seen that researchers do not survey the VMWCND
problem. This study investigates the VMWCND problem
and used mathematical problems to locate the best place for
MWCND.

The main innovation of this research is as follows:

& First time designing VMWCND
& Considering agility, resilience, sustainability, robustness,

and risk-averse in MWCND

Problem description

In this research, we try to design VMWCND. The previous
section shows a lack of research in resilience, sustainability,
and agility MWCND. In the present study, we have health
center (HC), waste segregation (WS), waste purchase contrac-
tor (WPC), and landfill that wastes move through this net-
work. Eventually, we present VMWCND through resilience
strategy (flexible and scenario-based capacity and node com-
plexity), sustainability constraints (energy and environmental
pollution), and agility (balance flow and demand satisfaction).
We need to locate WS to improve and recover waste and
consider sustainability and environmental requirements in this
situation (Fig. 2).

Assumptions:

& All wastes should be transferred to HC (agility).
& All forward MWCND constraints include flow and capac-

ity constraint is active.
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Figure 2 Viable medical waste chain network design (VMWCND)
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& Sustainability constraints include allowed emission and
energy consumption is added (sustainability).

& Flexible capacity for facilities and node complexity inWS
is considered a resilience strategy (resiliency).

& Using scenario-based robust optimization against risks
(robustness, risk, resiliency) (Ivanov 2020; Lotfi et al.
2021b).

Notations:

Indices:

i Index of health center (HC)i∈I={1,2,…,I},

j Index of waste segregation (WS)j∈J={1,2,…,J},

c Index of waste purchase contractor (WPC)c∈C={1,2,…,C},

k Index of landfill k∈K={1,2,…,K},

t Index of time period t∈T={1,2,…,T},

S Index of scenario s∈S={1,2,…,S},

Parameters:

wwits Waste generated in HC i for time period t under scenario s,

vijijts Variable cost fromHC i toWS j for time period t under scenario
s,

vjcjcts Variable cost from WS j to WPC c for time period t under
scenario s,

vjkjkts Variable cost fromWS j to the landfill k for time period t under
scenario s,

fjj Cost of activation WS j

Emijijts CO2 emission for transferring fromHC i toWS j for time period
t under scenario s

Emjcjcts CO2 emission for transferring from WS j to WPC c for time
period t under scenario s

Emjkjkts CO2 emission for transferring from WS j to landfill k for time
period t under scenario s,

Enijijts Energy consumption for transferring fromHC i toWS j for time
period t under scenario s,

Enjcjcts Energy consumption for transferring from WS j to WPC c for
time period t under scenario s,

Enjkjkts Energy consumption for transferring fromWS j to landfill k for
time period t under scenario s,

Capjjts Capacity of WS j for time period t under scenario s,

ps Probably of scenario s,

λ Coefficient of conservative,

EMSCts Maximum allowed emission for time period t under scenario s,
ENSCts Maximum allowed energy consumption for time period t under

scenario s

ρj Coefficient of availability of WS j,
Mbig Big positive number,

eps Very little positive number,

α The confidence level for conditional value at risk,

π Waste recovery coefficient,

TT Threshold of node complexity for resiliency,

φ The ratio of HC to WS.

Table 2 Number of indices, constraints, and variables for case study

Problem |i|. |j|. |c|. |k|. |t|. |s| Binary variable Positive variable Free variable Constraint Cost function Time solution (second) Population risk

P1-main 118.4.3.1.3.3 4396 4393 12 8818 1,520,407 9.422 54,026.33

Table 3 Parameters of case study
Parameters Value Unit Parameters Value Unit

wwits U (1000, 1100) (0.8 + 0.4
(S-1)/( |s| -1))

Ton λ 50 %

vijijts U (0.5, 1) $/Ton EMSCts U (20,000, 40,000) (|i||j|+
|j||c|+ |j||k|)

Ton

vjcjcts U (0.5, 1) $/Ton ENSCts U (40,000, 50,000) (|i||j|+
|j||c|+ |j||k|)

MJ

vjkjkts U (0.5, 1) $/Ton ρj 90 %

fjj U (500,000, 600,000) $ α 5 %

Emijijts U (2, 4)/1000 Ton π 90 %

Emjcjcts U (2, 4)/1000 Ton TT 3000 (|i||j|+|j||c|+|j||k|) Ton

Emjkjkts U (2, 4)/1000 Ton φ 1 %

Enijijts U (4, 5)/1000 MJ θ 200 ( |i||j|+|j||c|+
|j||k| )/|s|

Person

Enjcjcts U (4, 5)/1000 MJ popijijts [U (100, 200)] Person

Enjkjkts U (4, 5)/1000 MJ popjcjcts [U (150, 200)] Person

Capjjts U (222,222, 233,333) (0.8 + 0.4
(S-1)/( |s|-1))

Ton popjkjkts [U (100, 200)] Person

ps 100/|s| % []: Sign function

79706 Environ Sci Pollut Res (2022) 29:79702–79717



popijijts Population risk contact from HC i to WS j for time period t
under scenario s,

popjcjcts Population risk contact from WS j to WPC c for time period t
under scenario s,

popjkjkts Population risk contact fromWS j to landfill k for time period t
under scenario s;

Decision variables:

Binary variables:

xj If WS j is established, it is equal to 1; otherwise 0;

Continues variables:

wijijts Waste transshipment from HC i to WS j for time period t under
scenario s,

wjkjkts Waste transshipment from WS j to landfill k for time period t
under scenario s,

wjcjcts Waste transshipment from WS j to WPC c for time period
tunder scenario s;

Auxiliary variables:

FC Fix cost of establishing WS

VCs Variable cost for scenario S,

Γs Fix cost and variable cost for scenario S.
VaR Value at risk

Δ Auxiliary variable for linearization max function,

yijijts Auxiliary and binary variable for linearization sign function for
wijijts,

yjkjkts Auxiliary and binary variable for linearization sign function for
wjkjkts,

yjcjcts Auxiliary and binary variable for linearization sign function for
wjcjcts.

VMWCND mathematical model

Minimize Z ¼ 1−λð Þ∑
s
psΓ s

þ λ
max Γ sð Þ þ CVaR 1−αð Þ Γ sð Þ

2

� �
ð1Þ

subject to:

Γ s ¼ FC þ VCs ð2Þ

FC ¼ ∑
j
f j jx j ð3Þ

VCs ¼ ∑t ∑i∑ jvi jijtswijijts þ ∑ j∑kvjkjktswjkjkts þ ∑ j∑c ∑
c
vjcjctswjcjcts

� �
; ∀s

ð4Þ

Agility constraints (flow constraints):

∑
j
wijijts ¼ wwits;∀i; t; s ð5Þ

∑
j
wi jijts≤ ∑

j
wjkjkts þ ∑

j
wjcjcts; ∀i; k; c; t; s ð6Þ

∑
i
wi jijts ¼ ∑

k
wjkjkts þ ∑

c
wjcjcts; ∀ j; t; s ð7Þ

∑
k
wjkjkts≥ 1−πð Þ∑

i
wi jijts;∀ j; t; s ð8Þ

Resiliency constraints (flexible and scenario-based ca-
pacity and node complexity)

∑
k
wjkjkts þ ∑

c
wjcjcts≤ρ jCapjjtsx j;∀ j; t; s ð9Þ

∑
j
x j

ij j ≥φ; ð10Þ

∑
i
wi jijts þ ∑

k
wjkjkts þ ∑

c
wjcjcts≤TT ;∀ j; t; s ð11Þ

Table 4 Assigning location for
the VMWCND facility Problem: P1 Binary variable Place

Robat Karim Shurabad Parand Nasim Shahr

WPC xjj 1 0 1 0

Table 5 Comparing P1-
VMWCND with risk and worst
case and without risk and worst
case

Model P1-
VMWCND

P1-VMWCND without risk and worst case Gap

P1-main 1,520,407 1,495,346.97 1.65%

Environ Sci Pollut Res (2022) 29:79702–79717 79707



Sustainability constraints (allowed emission and energy
consumption):

∑i∑ jEmijijtswijijts þ ∑ j∑kEmjkjktswjkjkts þ ∑ j∑cEmjcjctswjcjcts≤EMSCts; ∀t; s ð12Þ

∑i∑ jEni jijtswi jijts þ ∑ j∑kEnjkjktswjkjkts þ ∑ j∑cEnjcjctswjcjcts≤ENSCts; ∀t; s ð13Þ

Figure 3 Potential location for
the facilities

Figure 4 Final location for
VMWCND facility
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Pops ¼ ∑t ∑i∑ jpopijijts wi jijts
h i

þ ∑ j∑kpopjkjkts wjkjkts
� �þ ∑ j∑cpopjcjcts wjcjcts

� �� �
; ∀s ð14Þ

∑
s
psPops≤θ; ð15Þ

Decision variables:

x j∈
n
0; 1; ∀ j ð16Þ

wijijts;wjkjkts;wjcjcts≥0;
∀i; j; c;
k; t; s

ð17Þ

Objective (1) considered minimizing the weighted expect-
ed value, minimax, and conditional value at risk of the cost
function and for all scenarios. This form of the cost function is
proposed for robustness and risk-averse against disruption
with worst condition. Constraint (2) includes the fix and var-
iable costs. Constraint (3) shows the fix costs that include fix

cost activating WS for all periods. Constraint (4) indicates the
variable costs of HC, WS, WPC, and landfill. Constraint (5)
shows the waste transshipment from HC to WS. Constraints
(6)-(7) are the flow constraints in forwarding VMWCND.
Constraint (8) determines the ratio of waste that goes to the
landfill. Constraint (9) is the flexible capacity constraints for
WS that is less than the capacity of the WS system. Constraint
(10) is the resilience constraints and the number of WS is
greater than the coefficient of HC. Constraint (11) is the resil-
ience constraints and shows node complexity inWS that sum-
mation of input and output of everyWS is less than the thresh-
old. Constraint (12) guarantees that the network’s total envi-
ronmental emissions are less than the allowed emission.
Constraint (13) guarantees that the network’s total energy
consumption is less than the allowed energy consumption.
Constraint (14) is the risks related to the transportation of
medical waste. Constraint (15) shows the summation risks
related to medical waste transport that contact with population

Table 6 Effects of variation of
conservative coefficient Problem Conservative coefficient

(λ)
Cost
function

Time
solution

Cost
variation

Population
risk

P1 0.00 1,495,346.97 6.289 −1.65% 54,026.33

P1 0.25 1,507,877.11 5.52 −0.82% 54,026.33

P1-main
model

0.5 1,520,407.25 9.422 0.00% 54,026.33

P1 0.75 1,532,937.39 5.526 0.82% 54,026.33

P1 1.00 1,545,467.53 6.4 1.65% 54,026.33

Figure 5 Cost function for
different lambda

Environ Sci Pollut Res (2022) 29:79702–79717 79709



is less than the threshold. Constraints (16)-(17) are the deci-
sion variables, and Constraint (16) is the facility location for
WC and binary variables and Constraint (17) is the flow var-
iables that are positive between facilities.

Linearization of max, sign, and CVaR (preliminary)

The objective function (1) is nonlinear and makes the model
mixed-integer nonlinear programming (MINLP). We trans-
form them to mixed-integer programming (MIP) by mathe-
matical method to improve time solution and solve smoothly
(Gondal and Sahir 2013; Sherali and Adams 2013).

Linearizing max and sign function:

Suppose If, β = max(Ωs), then we can change β ≥ Ωs, ∀ s.
Suppose If βs = [Ωs], then we can

change βs≤1þ Ωs
Mbig−eps;βs≥ Ωs

Mbig;∀s.

Linearizing CVaR:

We used conditional value at risk (CVaR), which is a co-
herent risk measure. Uryasev and Rockfeller designed the
CVaR criterion applied to a novel embed risk measure
(Soleimani and Govindan 2014). CVaR (also known as the
expected shortfall) is considered a measure for assessing the
risk. CVaR is embedded in portfolio optimization to better
risk management (Goli et al. 2019; Kara et al. 2019). This
measure is the average of losses which are beyond the VaR
point in confidence level. CVaR has a higher consistency,
coherence, and conservation than other risk-related criteria.
This measure is the average of losses which are beyond the
VaR point in confidence levelα. CVaR has a higher consis-
tency, coherence, and conservation than other risk-related
criteria.

min CVaR 1−αð Þ ΓΓ sð Þ ¼ VaRþ 1

1−α
∑sprsvs ð18Þ

vs≥ΓΓ s−VaR; ∀s ð19Þ
vs≥0 ð20Þ

Figure 6 Time solution for
different lambda

Table 7 Effects of the confidence
level of CVaR Problem Confidence level Cost function Time solution Cost variation

P1 1% 1,519,419.405 5.92 −0.06%
P1 2% 1,519,658.805 5.666 −0.05%
P1 3% 1,519,903.141 5.751 −0.03%
P1-main model 5% 1,520,407.25 5.45 0.00%

P1 6% 1,520,667.342 5.544 0.02%

P1 7% 1,520,933.032 5.728 0.03%
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Linearization of VMWCND

We used linearization for model (1) by operational research
method. Solving the model by MIP is more straightforward
than MINLP in the solver and this method decreases time
solution and the complexity of the model. We linearized ob-
jective (1) for max and CVaR, and linearized Eq. (14) for sign
function; as a result, we change to Eqs. (21)-(33):

Linearization of VMWCND

Minimize Z ¼ 1−λð Þ∑
s
psΓ s

þ 0:5 λΔþ CVaR 1−αð Þ Γ sð Þ� 	 ð21Þ

subject to:

Δ≥Γ s; ∀s ð22Þ

CVaR 1−αð Þ Γ sð Þ ¼ VaRþ 1

1−α
∑spsvs; ∀s ð23Þ

vs≥Γ s−VaR; ∀s ð24Þ
vs≥0; ∀s ð25Þ

Pops ¼ ∑t ∑i∑ jpopijijtsyi jijts þ ∑ j∑kpopjkjktsyjkjkts þ ∑ j∑cpopjcjctsyjcjcts
� �

; ∀s ð26Þ

yi jijts≤1þ
wijijts
Mbig

−eps; ∀i; j; t; s ð27Þ
yi jijts≥

wijijts
Mbig

;∀i; j; t; s ð28Þ

Figure 7 Effects of the
confidence level of CVaR

Table 8 Effects of changing
waste recovery coefficient Problem Waste recovery

coefficient
Cost
function

Time
solution

Cost
variation

Population
risk

P1 30% 1,523,371 6.004 0.19% 54,196

P1 25% 1,522,667 5.436 0.15% 54,142.3

P1 15% 1,521,177 5.676 0.05% 54,112.7

P1-main
model

10% 1,520,407 5.45 0.00% 54,026.3

P1 5% 1,519,622 5.967 −0.05% 53,897.7

P1 0% 1,518,823 6.07 −0.10% 53,662.3
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yjkjkts≤1þ wjkjkts
Mbig

−eps; ∀ j; k; t; s ð29Þ

yjkjkts≥
wjkjkts
Mbig

; ∀ j; k; t; s ð30Þ

yjcjcts≤1þ wjcjcts
Mbig

−eps; ∀ j; c; t; s ð31Þ

yjcjcts≥
wjcjcts
Mbig

; ∀ j; c; t; s ð32Þ

yi jijts; yjkjkts; yjcjcts∈ 0; 1f g; ∀i; j; c;
k; t; s

ð33Þ

Constraints (2)-(13) and (15)-(17).
The complexity of linearization of VMWCND includes

numbers of binary, positive, free variables, and constraints
which is indicated in Eqs. (34)-(37). As can be seen, one of

the essential factors for constraints and positive and free var-
iables is scenario sets. Relation between scenario and con-
straints and positive and free variables is completely linear.

Binaryvariables ¼ jj j þ tj j: sj j ij j: jj j þ jj j: cj j þ jj j: kj jð Þ; ð34Þ
Positivevariables ¼ tj j: sj j ij j: jj j þ jj j: cj j þ jj j: kj jð Þ þ 1 ð35Þ
Freevariables ¼ 6þ 2 sj j ð36Þ
Constraints ¼ 6þ 4 sj j þ tj j: sj j ij j þ ij j⋅ kj j⋅ cj j þ 4 jj j þ 2þ ij j: jj j þ jj j: cj j þ jj j: kj jð Þ

ð37Þ

We suggested scenario reduction and new algorithms to
remove constraints and binary variables. This subject can help
solve minimum time.

Figure 8 Effects of variation
waste recovery coefficient on the
cost function

Figure 9 Effects of variation
waste recovery coefficient on
population risk
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Results and discussion

We surveyed hospitals in Tehran, Iran, and estimated param-
eters from data of MWCND by managers of health centers.
The performance of the mathematical model is presented. The
number of indices is defined in Table 2 and the values of the
parameters are determined in Table 3. The probability of oc-
currence is the same and optimistic, pessimistic, and possible
scenarios have happened.

We applied a computer with this configuration: CPU 3.2
GHz, processor core i3-3210, 6.00 GBRAM, 64-bit operating
system. Finally, we solve the mathematical models by GAMS
CPLEX solver.

We show the potential location for assigning HC, WS,
WPC, and landfill in Tehran, Iran (cf. Figure 3). After solving
the model, it suggests that we activate WS and determine the
location and the flow of VMWCND components (Table 4).
The objective function is 1,520,407 in Table 2 and the final
location-allocation is drawn in Figure 4. Finally, we calculate
population risk (left-hand side of Constraint (15)) that are
54,026.33 persons. Eventually, we compare VMWCND with
risk and worst case and without risk and worst case in Table 5.
We can see that by embedding risk and worst case, the cost

function is almost 1.65% greater than without risk and worst
case.

Variation on the conservative coefficient

The conservative coefficient (λ) is the amount of conservative
decision-makers. We change it by varying between 0 and 1
that the conservation of decision-maker has been changed.

If the conservative coefficient increases to 1, the cost func-
tion grows as shown in Table 6, Figure 5, and Figure 6. If the
conservative coefficient increases by 50%, the cost function
will increase by 1.65%, but time solution and population risk
do not change significantly.

Variation on confidence level of CVaR

The confidence level of CVaR (α) is the amount of risk-averse
decision-makers. If the confidence level grows up, we can see
that the cost function will increase (cf. Table 7 and Figure 7).
By increasing 2% for confidence level, the cost function in-
creases by 0.03%.

Table 9 Effects of changing
demand Problem Changing demand Cost function Time solution Cost variation Population risk

P1 −50% 1,277,474.078 5.941 −15.98% 53,843.001

P1 −40% 1,326,060.712 5.888 −12.78% 53,906.334

P1 −20% 1,423,233.979 6.528 −6.39% 53,965.334

P1-main model 0% 1,520,407 5.45 0.00% 54,026.334

P1 +20% 1,617,580.513 6.295 6.39% 54,026.334

P1 +40% 1,714,753.780 5.963 12.78% 54,026.334

Figure 10 Effects of variation
demand on cost function
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Variation on waste recovery coefficient

The waste recovery coefficient (π) is the ratio of waste that
goes to landfills. If the waste recovery coefficient grows, we
can see that the cost function and population risk will decrease
(cf. Figure 8, Figure 9, and Table 8). Increasing waste recov-
ery coefficient, transportation to WPC increases and then the
cost function increases. But this issue helps systems to use and
recover waste.

Variation on demand

We test the effects of changing demand. By increasing the
demand, the cost function increases, too (cf. Table 9). As
can be seen, when the demand increases by 40%, the cost
function grows by 12% and when demand decreases by
50%, it grows down by 16% (cf. Figure 10 and
Figure 11).

Variation on scale of the main model

The several large-scale problems are defined in Table 10.
When the scale of problems is increased, the time solution

and cost function increase as shown in Figure 12 and
Figure 13. As can be seen, the proposed model shows the
NP hard and the behavior of this model is exponential for large
scale. Therefore, we need to solve the model by heuristic,
meta-heuristic, and new exact solution in minimum time on
large scale.

Managerial insights and practical implications

We surveyed viable waste medical chain network design
(VWMCND). We try to pay more attention to five concepts
in medical waste network design. We design VWMCND that
considers agility, resilience, sustainability, risks, and robust-
ness to cope with disruption and requirements of the govern-
ment. As managers of the VWMCND, we should move for-
ward to applying the novel concept to decrease cost and pop-
ulation risk, and increase the resiliency of facility, robustness,
risk-averse, and agility of WMCND. In this research, we have
health center (HC), waste segregation (WS), waste purchase
contractor (WPC), and landfill. We propose to locate WS to
decrease waste and recover them and send to the WPC.
Recovering medical waste like metal and plastic can help the

Figure 11 Effects of variation
demand on population risk

Table 10 Cost and time solution for several problems

Problem |i| ∙ |j| ∙ |c| ∙ |k| ∙ |t| ∙ |s| Binary var. Positive var. Free var. Constraint Cost function Time solution Population risk

P1 118.4.3.1.3.3 4396 4393 12 8818 1,520,407 9.422 54,026.33

P2 10.8.4.2.7.7 6280 6273 20 12,380 609,257 6.796 9201.68

P3 118.4.3.1.3.5 7324 7321 16 14,694 1,591,272 13.49 54,408.4

P4 120.5.4.1.5.3 9380 9376 12 18,721 1,906,117 21.548 91,725.33

P5 120.5.4.2.7.3 13,235 13,231 12 36,388 2,160,152 72.426 128,016.7

P6 120.8.4.2.7.3 21,176 21,169 12 44,578 2,152,882 249.904 127,924
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environment and return to production cycle. In this situation
of COVID-19 and because of economic problem, we should
use all power to utilize waste and move to circular economy
and sustainable development. This issue is compatible with
sustainable development goal (SDG12—Ensure sustainable
consumption and production patterns) and the circular econo-
my pillars. The maximum benefit from the proposed paper is
people and service providers of the medical waste chain.

Conclusions and outlook

Medical waste management (MWM) is an important and nec-
essary problem in the COVID-19 situation for treatment staff.
The number of infectious patients grows up and the amount of
MWMs increases day by day. We should think about this
issue and find a solution for this issue. We suggest to recover

MWM by waste segregation. Therefore, we proposed a novel
viable medical waste chain network design (VMWCND) that
considers resiliency (flexibility and network complexity) and
sustainable (energy and environment) requirement. Finally,
we try to tackle decrease risks and increase robustness and
agility to demand fluctuation and network. We utilize a novel
two-stage robust stochastic programming and solve with a
GAMS CPLEX solver.

Therefore, the results are as follows:

1. If the conservative coefficient increases up to 1, the cost
function grows up. If the conservative coefficient in-
creases to 1, the cost function grows as shown in
Table 6, Figure 5 and 6. If the conservative coefficient
increases by 50%, the cost function will increase by
1.65%, but time solution and population risk do not
change significantly.

Figure 12 Cost function for
several problems

Figure 13 Time solution for
several problems
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2. If the conservative coefficient increases up to 50%, the
cost function will increase by 1.65%, but time solution
and population risk do not change significantly.

3. If the confidence level of CVaR grows up, we can see that
the cost function will increase (cf. Figure 7 and Table 7).
Increasing for confidence level by 2%, the cost function
increases by 0.03%.

4. If the waste recovery coefficient grows, we can see that
the cost function and population risk will decrease (cf.
Figure 8 and 9, and Table 8). By increasing the waste
recovery coefficient, transportation to WPC increases
and then the cost function increases. But it helps systems
to use waste and recover them.

5. When demand increases by 40%, the cost function grows
by 12% and when demand decreases by 50%, it grows
down by 16% (cf. Figure 10 and 11).

6. When the scale of problems is increased, the cost function
and time solution grow up as shown in Figure 12 and 13.
As can be seen, the behavior of the proposed model is NP
hard and exponential on large scale. Therefore, we need to
solve the model by heuristic, meta-heuristic, and new ex-
act solution in minimum time on large scale.

Finally, solving the main model on a large scale is the
research constraint. We propose to apply exact algorithms like
bender decomposition, branch and price, branch and cut, col-
umn generation, and heuristic and meta-heuristic algorithms
to solve models in minimum time (Fakhrzad and Lotfi 2018;
Lotfi et al. 2017; Maadanpour Safari et al. 2021). We can add
other resilience and sustainable tools to the model until in-
creasing the resiliency and sustainability of the model like
backup facility and redundancy. Also, we suggest to apply
multi-objective for environmental, energy, and occupational
objective (Das et al. 2021; Ghosh et al. 2021;Mondal and Roy
2021; Pourghader Chobar et al. 2021).

Furthermore, we suggest adding coherent risk criteria like
entropic value at risk (EVaR) (Ahmadi-Javid 2012) for con-
sidering risks. Researchers intend to investigate method un-
certainty like robust convex (Lotfi et al. 2021a). Using new
and novel uncertainty methods like data-driven robust optimi-
zation and fuzzy programming (Midya et al. 2021) is advan-
tageous for a conservative decision-maker in the recent de-
cade. Eventually, we suggest equipping VMWCNDwith nov-
el technology like blockchain and neural learning
(Khalilpourazari et al. 2020) for the viability of MWCND.
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