
RESEARCH ARTICLE

Spirulina platensis protects against microcystin-LR-induced
toxicity in rats

Mousa O. Germoush1
& Maged M. A. Fouda1,2 & Mohamed Kamel3 & Mohamed M. Abdel-Daim4,5

Received: 25 December 2020 /Accepted: 7 September 2021
# The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Microcystis aeruginosa produces an abundant cyanotoxin (microcystins (MCs) in freshwater supplies. MCs have adverse health
hazards to animals and humans. Microcystin-leucine-arginine (microcystin-LR orMC-LR) is the most studied among theseMCs
due to their high toxicity. So, this study was designed to evaluate the possible therapeutic role of the natural algal food
supplement, Spirulina platensis (SP), against MC-LR-induced toxic effects in maleWistar rats. Forty rats were randomly divided
into five groups. Control and SP groups orally administered distilled water and SP (1000 mg/kg/daily), respectively, for 21 days.
MC-LR group was intraperitoneally injected withMC-LR (10 μg/kg/day) for 14 days. MC-LR-SP500 andMC-LR-SP1000 groups
were orally treated with SP (500 and 1000 mg/kg, respectively) for 7 days and concomitantly with MC-LR for 14 days. MC-LR
induced oxidative hepatorenal damage, cardiotoxicity, and neurotoxicity greatly, which was represented by reduction of reduced
glutathione content and the activities of glutathione peroxidase, catalase, and superoxide dismutase and elevation of concentra-
tions of nitric oxide and malondialdehyde in renal, hepatic, brain, and heart tissues. In addition, it increased serum levels of urea,
creatinine, tumor necrosis factor-alfa, interleukin-1beta and interleukin-6 and serum activities of alkaline phosphatase, aspartate
aminotransferase, alanine aminotransferase, lactate dehydrogenase, creatine kinase, and creatine kinase-MB. However,
S. platensis restored normal levels of measured serum parameters, ameliorated MC-LR-induced oxidative damage, and normal-
ized tissue antioxidant biomarkers. In conclusion, SP alleviated MC-induced organ toxicities by mitigating oxidative and
nitrosative stress and lipid peroxidation.
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Introduction

The blue-green algae (cyanobacteria) inhabit freshwater,
brackish, marine, and terrestrial environments (Hitzfeld et al.

2000; Ward et al. 1998). Their toxins have deleterious effects
on humans, animals, and plants (Carmichael 2001; Corbel
et al. 2014; Wang et al. 2021). Microcystis aeruginosa
(cyanobacteria) produce the most abundant cyanotoxin,
microcystin (MC), into freshwater due to extensive anthropo-
genic eutrophication (Ahmad et al. 2014). MC tolerates high
temperatures (up to 300°C), which increases its stability in the
aquatic environment (Wannemacher 1989). The exposure of
humans and animals toMC occurs through drinking water and
eating contaminated vegetables and seafood (Hu et al. 2016;
WHO 1998). MC-induced toxic effects have been reported in
many countries including Saudi Arabia (Mohamed 2008),
Egypt (Mohamed et al. 2003), Poland (Romanowska-Duda
et al. 2002), China (Chen and Xie 2005), Japan (Yokoyama
and Park 2002), and Brazil (Azevedo et al. 2002). They are
considered a potent neuro- and hepatotoxin (Hu et al. 2016;
Jiang et al. 2013) that can cause liver damage by inhibiting
protein phosphates 1 and 2A (Humpage and Falconer 1999;
Campos and Vasconcelos 2010). MC reaches the hepatocytes
through the biliary system because of its high affinity to
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serine/threonine-containing enzyme phosphatases, which
leads to disruption in signaling pathways and cytoskeleton
integrity (Xu et al. 2013; Basha et al. 2008). Moreover, the
prolonged exposure to MC damages the liver (Chen et al.
2009) and promotes carcinogenesis in humans (Xu et al.,
2013). It has been implicated in promoting colon (Humpage
et al. 2000) and liver tumors (Ito et al. 1997). MC induces its
toxicities by inhibiting cellular antioxidant systems and reac-
tive oxygen species (ROS) overproduction (Jiang et al. 2013;
Wang et al. 2017). Biodegradation of MC includes physical,
chemical, microbiological, and biotechnological methods.
Alternative strategies to detoxify MC have become a global
research interest (Massey et al. 2018). It has been indicated
that reduced glutathione (GSH) plays indispensable roles in
the detoxification of MC as it conjugates with MCS in the
liver of mice, rats, and aquatic organisms forming MCLR-
GSH conjugate (Pflugmacher et al. 1998; Gehringer et al.
2004; Li et al. 2015). Among various MCs, MC-LR is the
most studied one (Li et al. 2021).

Spirulina platensis (SP) is a nutritionally enriched filamen-
tous cyanobacterium with many biomedical applications
(Khan et al. 2005; Abdel-Daim et al. 2013; Abdel-Daim
et al. 2019a; Abdel-Daim et al. 2015). It contains free radical
scavenging agents and naturally occurring antioxidants, in-
cluding phenolic compounds, tocopherol, β-carotene, γ-
linolenic acid, and phycocyanin (Khan et al. 2005). In addi-
tion, SP and its main constituent, C-phycocyanin, exhibit he-
patoprotective, neuroprotective, anti-inflammatory, immuno-
modulatory, and anticancer action (Reddy et al. 2000; Romay
et al. 2003; Khan et al. 2005). They have been reported to
improve organ toxicities caused by heavy metals (El-Desoky
et al. 2013; Simsek et al. 2009). SP received growing interest
due to its safety, high bioavailability, and significant protec-
tion against organ toxicities induced by different chemicals
and pollutants (Lu et al. 2010; Avdagic et al. 2008; Abdel-
Daim et al. 2013; Abdel-Daim et al. 2019a; El-Desoky et al.
2013; Ibrahim and Abdel-Daim 2015).

Therefore, the current work aimed to evaluate SP protec-
tive, anti-inflammatory, and antioxidant effects against MC-
induced multi-organ toxicities in rats, mainly by examining
liver and kidney functions, proinflammatory cytokines, and
oxidant/antioxidants status.

Materials and methods

Chemicals

Pure powder of Spirulina platensis was obtained from
HerbaForce (UK) and MC-LR was obtained from Sigma-
Aldrich (USA). Kits for oxidant/antioxidant marker determi-
nation and biochemical assay kits (urea, creatinine, alanine
aminotransferase (ALT), aspartate aminotransferase (AST),

and alkaline phosphatase (ALP) were obtained from
Biodiagnostics Company (Egypt). Kits for LDH (lactate de-
hydrogenase) were purchased from Randox Lab. Ltd. (UK),
while CK-MB (creatine kinase-MB) and CK (creatine kinase)
were obtained from StanbioTM (USA). To assess the inflam-
matory response, kits for TNF-α (tumor necrosis factor-α)
was obtained from BioSource Inter. Inc. (USA), while kits
for determination of interleukin-6 (IL-6) and interleukin-1β
(IL-1β) were purchased from Glory Science Co. Ltd. (USA).

Animals

Forty male Albino Wistar rats with an average weight of
170+20 g were obtained from the Egyptian Organization for
Biological Products and Vaccines (VACSERA, Dokki, Giza,
Egypt). Rats were accommodated for a week prior to com-
mencement of the experiment under controlled conditions
with moderate humidity (60+5%) and light/dark cycle
(12:12L/D) and an average temperature of 25 ± 2 °C. Rats
were fed ad libitum. The experiment was approved
(No:2020089) by The Research Ethical Committee of the
Faculty of Veterinary Medicine, Suez Canal University,
Ismailia, Egypt. The international regulations were followed
to care for laboratory animals to avoid animal suffering.

Experimental protocol

The forty rats were classified randomly into five experimental
groups (GI—GV).

& G-I (control): rats received distilled water for 21 days.
& G-II (SP): rats received oral SP (1000 mg/kg BW/day) for

21 days (Abdel-Daim et al. 2013).
& G-III (MC): rats received distilled water orally for 7 days

before IP injection with MC-LR (10 μg/kg/day) for 14
days (Arman et al. 2019).

& G-IV (MC-LR-SP-500) group: rats received SP (500
mg/kg/day), orally for 7 days, and then concurrently ad-
ministrated with MC (10 μg/kg/day, IP) for the subse-
quent14 days.

& G-V (MC-LR-SP1000) group: rats received SP (1000
mg/kg/day), orally for 7 days, and then concurrently ad-
ministrated with MC (10 μg/kg/day, IP) for the subse-
quent14 days.

Collection of blood and tissue samples

Twenty-four hours following the last treatment, rats were
anesthetized by isoflurane. Blood specimens were collected
by cardiac puncture. The coagulated blood was centrifuged
at 3000 rpm for 15 min; serum was collected in aliquots and
preserved at −20°C for biochemical assays. Then rats were
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sacrificed by decapitation, and the heart, brain, liver, and kid-
ney were immediately collected, scrubbed by physiological
saline to be free from blood, and homogenized in 0.2M Tris-
HCl buffer (ice-cold; pH7.4), and then centrifuged for 30min
at (4°C) and 5000 rpm. The resultant supernatants were pre-
served at −80°C to measure tissue oxidative/antioxidant bio-
markers in each tissue.

Biochemical analysis

The activities of and ALT were evaluated according to
Reitman and Frankel (1957), while the activity of ALP was
evaluated as reported by Tietz et al. (1983). Serum creatinine
and urea levels were determined as stated in Larsen (1972 )
and Coulombe and Favreau (1963), respectively, while cardi-
ac biomarkers, CK, CK-MB, and LDH, were estimated as
reported by Szasz et al. (1979), Wurzburg et al. (1976), and
Babson and Babson (1973), respectively.

Estimation of proinflammatory cytokines

The serum levels of pro-inflammatory markers, TNF-α, IL-
1β, and IL-6, were estimated by ELISA kits as reported in
manufacturer’s instructions. Using an automatic ELISA read-
er, the absorbance was determined at 420 nm.

Estimation of the liver, kidney, brain, and heart
oxidant/antioxidant markers

The oxidant/antioxidant biomarkers’ levels were estimated in
the homogenates of the liver, kidney, heart, and brain tissues.
For nitrosative stress, nitric oxide (NO) concentrations were
evaluated as reported by Green et al. (1982), and for lipid
peroxidation, malondialdehyde (MDA) levels were deter-
mined as reported by Mihara and Uchiyama (1978). Further,
reduced glutathione (GSH) was determined as reported by
Beutler et al. (1963), and glutathione peroxidase (GSH-Px)
was evaluated as reported by Paglia and Valentine (1967) in
the tissue homogenates, while catalase (CAT) was determined
as reported by Aebi (1984) and superoxide dismutase (SOD)
was determined as stated in Nishikimi et al. (1972).

Data statistical analysis

For each group, data were presented as mean ± standard error
(mean ± SE). Using SPSS (SPSS Inc., version 21.0, USA), the
data were statistically analyzed. Homogeneity of variance was
checked. The statistical significance was evaluated by apply-
ing one-way analysis of variance (ANOVA) followed by
Tukey’s test under a probability of 0.05.

Results

Impact of SP treatment on serum biochemical
parameters in MC-LR-intoxicated rats

MC-intoxicated rats exhibited a significant increase (P<0.05)
in liver enzymes (ALT, 263.3%; AST, 232.5%; and ALP,
236.9%), renal biomarkers (urea 208.7% and creatinine
551.4%), and cardiac enzymes (CK 224.4% and CK-MB
310.9%; LDH 225.7%) compared with normal control rats,
while MC-intoxicated rats treated with SP at doses of 500
and 1000 mg/kg were associated with significant improve-
ments (P<0.05) in liver (AST, ALT, and ALP), kidney (urea
and creatinine), and cardiac (LDH, CK, and CK-MB) level
recording (66.1%, 68.4%, 60.6%, 65.0%, 42.2%, 67.5%,
67.3%, and 52.2% for SP500 mg/kg and 46.8%, 39.7%,
44.4%, 51.4%, 26.0%, 47.0%, 50.8%, and 37.1% for
SP1000 mg/kg, respectively) when compared with MC-
intoxicated rats (Table 1).

Impact of SP treatment on inflammatory reactions in
MC-LR intoxicated rats

There is a significant increase (P<0.05) in serum level of in-
flammatory markers (TNF-α, IL-1β, and IL-6) in MC-treated
rats compared with normal control rats recording (350.8%,
364.9%, and 363.9%, respectively) (Figure 1), while treat-
ment of MC-intoxicated rats using SP at doses of 500 and
1000 mg/kg explained significant decrease (P<0.05) in serum
TNF-α, IL-1β, and IL-6 concentration recording (44.5%,
48.0%, and 52.5% for SP 500 mg/kg and 67.5%, 32.7%,
and 38.3% for SP1000 mg/kg, respectively) when compared
with MC-intoxicated rats (Figure 1).

Effects of SP on oxidant/antioxidant biomarkers in
MC-LR intoxicated rats

Liver

MC intoxication explained dramatic increase (P<0.05) in liver
NO and MDA concentration recording (263.0% and 209.7%,
respectively), and significantly decreased (P<0.05) in SOD
(32.8%), CAT (44.3%), GSH (50.8%), and GSH-PX
(41.5%) activities, when compared with normal control rats.

On the contrary, handling with SP at doses of 500 and 1000
mg/kg, liver NO and MDA level significantly reduced
(P<0.05) recording (56.0% and 70.7% for SP 500 mg/kg
group and 43.2% and 55.0% for SP1000mg/kg group, respec-
tively, when compared with MC-intoxicated rats), while treat-
ment by SP explained significant increase (P<0.05) in antiox-
idant markers’ (GSH, GSHPX, SOD, and CAT) concentra-
tions (for SP500 mg/kg group: 164.5%, 178.9%, 209.2%, and
174.5%, respectively; while for SP1000 mg/kg group:
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206.5%, 235.7%, 279.9%, and 210.6%, respectively, com-
pared with MC-intoxicated rats) (Figure 2). Therefore, SP
protected liver tissue against the toxicity of MC and normal-
ized the liver tissue levels of antioxidant biomarkers and ox-
idative stress.

Kidney

MC intoxication explained significant increase (P<0.05)
in kidney NO and MDA concentrations (254.3% and
239.6%, respectively), and significantly decreased

(P<0.05) in antioxidant (GSH, GSHPX, CAT, and
SOD) activities (45.9%, 30.7%, 29.6%, and 54.4%, re-
spectively), when compared with normal control rats.

On the contrary, treatment using SP at doses of 500
and 1000 mg/kg was associated with significant de-
crease in renal NO and MDA level (for SP 500 mg/kg
group: 74.1% and 63.2%, respectively; for SP1000
mg/kg group: 43.5% and 44.5%, respectively compared
with MC-intoxicated rats), while treatment with SP
caused significant increase (P<0.05) in kidney antioxi-
dant markers’ (GSH, GSHPX, CAT, and SOD)

Table 1 Effect of Spirulina
platensis (SP) on serum
enzymatic activities and
biochemical parameters of
microcystin (MC)-LR-intoxicated
rats

Parameters CTR SP1000 MCLR MCLR-
SP500

MCLR-
SP1000

AST u/L 51.17+1.51a 48.12+1.68a 118.95+4.35b 78.57+2.8c 55.72+1.73a

ALT u/L 28.94+0.78a 26.77+0.79 a 76.2+2.74b 52.1+1.15c 30.27+1.21a

ALP U/L 72.14+2.2a 68.44+ 1.59a 170.89+5.51b 103.48+2.42c 75.93+5.02a

LDH U/L 215.74+8.74a 211.56+9.55a 486.82+16.33b 328.78+8.33c 228.98+9.54a

CK U/L 102.48+2.66a 100.06+3.32a 229.95+7.35b 154.78+3.0c 116.76+3.63a

CK-MB U/L 33.65+1.37a 32.46+1.69a 104.61+3.21b 54.61+2.26c 38.81+1.53a

Urea mg/dl 31.3+1.15a 29.7+1.18a 65.32+2.64b 42.46+2.62c 33.58+1.3a

creatinine mg % 0.37+0.04ad 0.32+0.03ae 2.04+0.16b 0.86+0.06c f 0.53+0.03d e f

Data are means+SE. Within the same row, values having different superscripts are significantly different
at (P<0.05). Abbreviations: AST aspartate aminotransferase, ALT alanine aminotransferase, ALP alkaline phos-
phatase, LDH lactate dehydrogenase, CK creatine kinase, CK-MB creatine kinase-MB, SE standard error of the
mean. CTR control, SP Spirulina platensis, MCLR microcystin-LR

Fig. 1 Protective effect of Spirulina platensis (SP) against microcystin
(MC)-LR-induced changes in serum level of proinflammatory markers in
intoxicated rats. A Interleukin-1β (IL-1β); B interleukin-6 (IL-6); C

tumor necrosis factor-α (TNF-α). Data are presented as mean+SE values.
Columns labeled with different letters are significantly different at
P<0.05.
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concentrations (for SP500 mg/kg group: 164.0%,
220.9%, 211.7%, and 131.2%, respectively; while for
SP1000 mg/kg group: 212.0%, 316.0%, 318.3, and
174.3%, respectively compared with MC-intoxicated
rats) (Figure 3). Therefore, SP protected the kidney tis-
sue against the toxicity of MC and normalized the kid-
ney tissue concentration of antioxidant biomarkers and
oxidative stress.

Brain

MC intoxication explained dramatic increase (P<0.05) in
brain tissue NO and MDA concentrations (188.9% and
197.9%, respectively), but significantly decreased (P<0.05)
in GSH (48.8%), GSH-PX (41.3%), CAT (42.7%), and

SOD (51.8%) activities, when compared with normal control
rats.

On the contrary, treatment by SP at doses of 500 and
1000 mg/kg significantly decreased brain tissue NO and
MDA concentrations (P<0.05) (for SP 500 mg/kg group:
75.5% and 79.9%, respectively; for SP1000 mg/kg group:
53.8% and 59.9%, respectively, compared with MC-
intoxicated rats), while recorded significant release
(P<0.05) in antioxidant markers’ (GSH, GSHPX, CAT,
and SOD) activities (for SP 500 mg/kg group: 176.8%,
139.3%, 148.57, and 145.6, respectively; for SP1000
mg/kg group: 203.9%, 210.1%, 228.9%, and 181.4, re-
spectively, when compared with MC-intoxicated rats)
(Figure 4). Therefore, SP protected the brain tissue
against MC toxicity and normalized the levels of antiox-
idant biomarkers and oxidative stress.

Fig. 2 Protective effect of Spirulina platensis (SP) against microcystin
(MC)-LR-induced oxidative damage in liver of intoxicated rats. A
Malondialdehyde (MDA); B nitric oxide concentration (NO); C reduced
glutathione concentration (GSH); D glutathione peroxidase activity

(GSH-Px); E superoxide dismutase activity (SOD); and F catalase activ-
ity (CAT). Data are presented as mean+SE values. Columns labeled with
different letters are significantly different at (P<0.05)
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Heart

MC intoxication explained significant increase (P<0.05) in
heart tissue NO and MDA concentration recording (234.2%
and 227% respectively), and significantly decreased (P<0.05)
in heart tissue antioxidant (GSH, GSHPX, CAT, and SOD)
activities (41.9%, 45.0%, 24.9%, and 41.9%, respectively)
when compared with normal control rats.

On the contrary, treatment with SP at doses of 500 and
1000 mg/kg significantly decreased (P<0.05) cardiac tissue
NO and MDA concentrations (for SP 500 mg/kg group:
59.8% and 63.8%, respectively; for SP1000 mg/kg group:
44.8% and 46.4%, respectively compared with MC-
intoxicated rats). Moreover, significant increase (P<0.05)
was recorded in cardiac tissue antioxidant markers’ (GSH,
GSHPX, CAT, and SOD) activities (for SP500 mg/kg group:

168.9%, 158.4%, 200%, and 162.9%, respectively; for
SP1000 mg/kg group: 218.6%, 214.0%, 377.0%, and
221.5%, respectively, compared with MC-intoxicated rats)
(Figure 5). Therefore, SP protected the cardiac tissue against
MC toxicity and normalized the cardiac tissue levels of anti-
oxidant biomarkers and oxidative stress.

Discussion

Spirulina platensis (SP) is a food supplement microalga with
high nutritional importance and a wide range of biomedical
applications. It is rich in potent free radical scavenging agents
including proteins, lipids, carbohydrates, essential amino
acids, essential fatty acids, C-phycocyanin, β carotene, min-
erals, and vitamins. Besides the antioxidant activity, Spirulina

Fig. 3 Protective effect of Spirulina platensis (SP) against microcystin
(MC)-LR-induced oxidative damage in kidney of intoxicated rats. A
Malondialdehyde (MDA); B nitric oxide concentration (NO); C reduced
glutathione concentration (GSH); D glutathione peroxidase activity

(GSH-Px); E superoxide dismutase activity (SOD); and F catalase activ-
ity (CAT). Data are presented as mean+SE values. Columns labeled with
different letters are significantly different at (P<0.05)
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and its active constituents induce neuroprotective, hepatopro-
tective, nephroprotective, cardioprotective, immunomodula-
tory, anti-inflammatory, analgesic, antiaging, and anticancer
activities (Abdel-Daim et al. 2013; Abdel-Daim et al. 2019a;
Abdel-Daim et al. 2015; Abdelkhalek et al. 2015).

This study estimated the preventive role of SP against MC-
LR toxic effects on the liver, kidney, heart, and brain. MC-LR
induced significant increases in serum values of ALT, AST,
ALP, CPK, CK-MB, LDH, urea, creatinine, TNF-α, IL-1β,
and IL-6, tissue NO and MDA, and significant reductions in
tissue GSH, GSH-PX, CAT, and SOD indicated a dramatic
MC-LR toxicity. These data were in consent with the former
reports (Abdel-Daim et al. 2019b; Chen and Xie 2005; Jiang
et al. 2013; Lone et al. 2017; Robinson et al. 1991). The liver
cells represent the essential target of MC-LR intoxication
(Campos and Vasconcelos 2010; Robinson et al. 1991).

MC-LR affinity with hepatic serine/threonine-specific protein
phosphatases induced MC-hepatotoxicity (Greer et al. 2018).
This causes cellular dysfunction, leading to leakage of hepatic
enzymes into the bloodstream (Robinson et al. 1991). Strong
evidence suggests that oxidative stress is implicated in MC-
LR-induced hepatotoxicity (Ahmad et al. 2014; Greer et al.
2018). Further, MC-LR acts as a tumor promoter in the liver
and colon (Ito et al. 1997; Humpage et al. 2000).

Due to lipid peroxidation, the cell membrane integrity is
lost and LDH has released increasing serum levels (Jovanović
et al. 2010; Abdel-Daim et al. 2019b). Through the aerobic
glycolysis (along the electron transport chain), there is a de-
crease in ATP production. The reaction shifts to anaerobic
glycolysis increasing lactates and LDH (Lone et al. 2017;
Jovanović et al. 2010). The MC possibly affects the electron
transport chain (Campos and Vasconcelos 2010; Fischer et al.

Fig. 4 Protective effect of Spirulina platensis (SP) against microcystin
(MC)-LR-induced oxidative damage in brain of intoxicated rats. A
Malondialdehyde (MDA); B nitric oxide concentration (NO); C reduced
glutathione concentration (GSH); D glutathione peroxidase activity

(GSH-Px); E superoxide dismutase activity (SOD); and F catalase activ-
ity (CAT). Data are presented as mean+SE values. Columns labeled with
different letters are significantly different at (P<0.05)
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2005). In addition to hepatotoxicity, nephrotoxicity, and
cardiotoxicity, MC-LR can pass the blood-brain barrier induc-
ing neurotoxicity through oxidative damage and phosphatase
inhibition (Hu et al. 2016; Fischer et al. 2005).

Oxidative stress in the biological systems occurs through a
sequence of events which include the excessive generation of
reactive oxygen species (ROS) and NO, which are freed inside
the mammalian body due to exposure to endogenous metabol-
ic processes or exogenous drugs in our environment (Sun
1990). Free radicals cause many degenerative diseases like
cardiac disease, cataracts, diabetes, cancer, ageing, and stroke
(Yeung et al. 2019; Sies et al. 2017). Excessive ROS produc-
tion overcomes the cellular antioxidant defense mechanisms,
which has harmful effects on cellular macromolecules induc-
ing lipid peroxidation, DNA damage, mitochondrial dysfunc-
tion, protein oxidation, and ATP reduction (Sies et al. 2017;

Salzano et al. 2014). Hydroxyl radicals (•OH) attack the cel-
lular membrane causing MDA production, which binds to
other cell molecules increasing the damaging effect. Cellular
antioxidants as GSH-PX, GSH, and CAT are required; due to
the depletion of these antioxidants, large amount of •OH are
formed from H2O2 as it shifts to Fenton’s reaction (Sies et al.
2017). In this study, the significant increase in NO and MDA
concentrations with reduction of cellular antioxidants, GSH-
Px, GSH, CAT, and SOD, in the liver, kidney, heart, and brain
tissues suggested implication of oxidative stress in MC-LR-
induced toxicity. MC evoked lipid peroxidation, reducing he-
patocyte membrane efficiency and efflux of transaminases
into blood stream (Abdel-Daim et al. 2019b; Campos and
Vasconcelos 2010). MC accumulation in the liver forms he-
patic GSH complex (MC-GSH) as a part of its detoxification
process; this leads to GSH exhaustion that is necessary for

Fig. 5 Protective effect of Spirulina platensis (SP) against microcystin
(MC)-LR-induced oxidative damage in heart of intoxicated rats. A
Malondialdehyde(MDA); B nitric oxide concentration (NO); C reduced
glutathione concentration (GSH); D glutathione peroxidase activity

(GSH-Px); E superoxide dismutase activity (SOD); and F catalase activ-
ity (CAT). Data are presented as mean+SE values. Columns labeled with
different letters are significantly different at (P<0.05)
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GSH-PX recycling through hydrolysis of hydrogen peroxide
to water (Nordberg and Arnér 2001; Greer et al. 2018).

The oxidative stress and excessive ROS production initiate
the intracellular cascade signaling which enhances proinflam-
matory cytokines expression (Salzano et al. 2014). The current
data revealed that MC-LR elevated serum TNF-α, IL-1β, and
IL-6 levels because it might induce oxidative stress in the
tissues of the liver, kidney, heart, and brain. These data
highlighted that the inflammatory reaction might be due to
oxidative damage, which was in line with previous findings
(Ahmad et al. 2014; Lone et al. 2017). Interestingly,MC could
contaminate many SP products, which cannot be ignored as
many human beings consume SP on a regular basis as a food
supplement (Jiang et al. 2008).

Spirulina platensis supplementation at doses of 500 and
1000 mg/kg significantly decreased the serum injury bio-
markers, in addition, lipid peroxidation, as well as it protected
liver, kidney, cardiac, and cerebral tissues. SP normalized the
elevated activities of serum LDH, CK, and CK-MB and de-
creased the TIL-induced lipid peroxidation and oxidative
stress in a dose-dependent manner (Ibrahim and Abdel-Daim
2015). SP decreases serum concentrations of ALT, AST,
ALP, uric acid, urea, and creatinine in deltamethrin-treated
animals. In addition, it reduces deltamethrin-induced lipid per-
oxidation and oxidative stress (Abdel-Daim et al. 2013). This
is probably due to the inimical effect of SP that contrary toMC
induced oxidative damage through improving SOD and CAT
activities or by inhibition of NO andMDAbesides scavenging
of free radicals (the cellular free radicals’ scavengers and en-
dogenous enzymatic antioxidant). The SP antioxidant and
protective effects may be due to its richness with antioxidant
active constituents, like β carotene, C-phycocyanin, proteins,
lipids, essential fatty acids, essential amino acids, carbohy-
drates, minerals, and vitamins that are characterized by anti-
inflammatory and potent antioxidant activities (Upasani and
Balaraman 2003; Abdel-Daim et al. 2015; Abdelkhalek et al.
2015). Numerous studies explained the cardioprotective, he-
patoprotective, and nephroprotective role of SP and its active
ingredients in contrary to drugs, chemicals, and xenobiotics
(Karadeniz et al. 2008; Ibrahim and Abdel-Daim 2015;
Kuriakose and Kurup 2011). Moreover, feeding pregnant rats
on SP improves the newborns brain damage (Gargouri et al.
2012).

Pre-treatment with SP markedly alleviated the heavy
metals’ (cadmium, lead, and mercury) toxicities in rats and
mice. SP protective effects is due to its antioxidant roles that
are obvious by the decrease in NO and MDA concentration
and the increase in GSH levels and SOD action in hepatic
tissue (El-Desoky et al. 2013; Karadeniz et al. 2009; Simsek
et al. 2009). Moreover, SP has hepatorenal-protective effects
by reduction of the contents of NO, MDA, urea, and creati-
nine, while it increases GSH concentration and GSH-Px,
SOD, and CAT activities that indicate the therapeutic effect

of SP contrary to cyclosporine, gentamicin, and cisplatin-
induced oxidative stress and nephrotoxicity (Lu et al. 2010;
Avdagic et al. 2008; Mohan et al. 2006; Khan et al. 2006;
Karadeniz et al. 2008; Abdel-Daim et al. 2019a).
Antioxidant properties of SP protect against cerebral ischemia
injury (Thaakur and Sravanthi 2010). Further, SP reduces
lead-induced neurotoxicity in rats (Gargouri et al. 2012).
Therefore, our results confirmed SP must play an essential
role in avoiding and curingMC-induced cardiac, neurological,
hepatic, and renal damage via its powerful antioxidant
activities.

Conclusions

MC-LR intoxication caused a significant elevation in serum
biomarkers, proinflammatory cytokines, and lipid peroxida-
tion while it suppressed the activity of the antioxidant en-
zymes. On the other hand, SP could prevent all these changes
and normalize all parameters, especially at high concentration
doses via its antioxidant and anti-inflammatory activities,
which counteract the oxidative stress and inflammatory cas-
cade induced by MC-LR toxicity.
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