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Abstract
Agricultural eco-efficiency is a meaningful index that assesses agricultural sustainable development. Based on the super SBM-
DEA approach incorporating agricultural carbon emissions and panel data regression, this study evaluates agricultural eco-
efficiency and investigates the influencing factors in the agricultural production zone of Jilin Province. The empirical results
show the following. (1) During the observation period, the average agricultural eco-efficiency exhibits a flat “M-shaped”
fluctuating trend, a trend of fluctuant growth with phase characteristics, and the agricultural eco-efficiency of each county still
has much room for improvement. (2) Significant spatial differences exist in agricultural eco-efficiency across counties. All of the
studied counties, except for Nong’an, Huadian, Lishu, Yitong, Gongzhuling, and Qianguo, need to change their input and output
structure to optimize agricultural eco-efficiency. (3) The panel data regression estimation results indicate that the agricultural
technology extension level, multiple-crop index, agricultural economic development level, agricultural technology extension
level, and urbanization level have close correlations with agricultural eco-efficiency. (4) The research findings have important
implications for policy makers formulating agricultural environmental policies in accordance with the local conditions of various
counties.

Keywords Agricultural eco-efficiency . Spatiotemporal characteristics . Influencing factors . Super SBM-DEA . Agricultural
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Introduction

The ecological and environmental issues caused by the con-
tinuous increase in the carbon emissions accompanying indus-
trialization and urbanization have become increasingly prom-
inent, attracting widespread attention from governments and
scholars in various countries. Some countries, such as the UK

and Japan, have put into practice actions and plans to achieve
energy conservation and emission reduction. Following the
reform and opening up, China has become the world’s largest
carbon emitter and has long regarded energy conservation and
emission reduction as a national development strategy. In ag-
riculture, China has made a significant achievement by feed-
ing 20% of the world’s population with 7% of the world’s
arable land, reaching a sufficiently high level to satisfy the
rising national demand for grain (Jin et al. 2019).
Nevertheless, this achievement has resulted in prominent eco-
logical environment issues, such as the degradation of culti-
vated land and organic material, a decrease in basic soil fertil-
ity, and the excessive consumption of agricultural chemical
material. Here, agricultural carbon emissions refer to carbon
emissions that are directly or indirectly caused by the con-
sumption of fertilizers, pesticides, and energy in the process
of agricultural production and land plowing. Unreasonable
agricultural production activities make agriculture the second
main source of emissions in China. According to the estimated
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data of the Food and Agriculture Organization of the United
Nations, the total carbon emissions in agricultural fields ac-
count for approximately one-third of the global total.
Agricultural carbon emissions caused by agricultural produc-
tion activities account for 17% of the national total carbon
emissions in China, which is second only to the carbon emis-
sions caused by energy consumption activities. Furthermore,
methane and nitrogen dioxide emitted by agriculture produc-
tion activities account for 50% and 92% of the national total,
respectively. It must be recognized that the traditional agricul-
tural production model characterized by high inputs, high con-
sumption, and low efficiency has become unsustainable. To
respond to the severe carbon emissions associated with agri-
culture, the Chinese government has applied the strategy of
zero growth in the usage of chemical fertilizers and pesticides,
advocating the use of “grain storage in the land” and “grain
storage in technology” to address practical problems.
Moreover, agricultural subsidies have been provided to en-
hance agricultural production capacity and reduce agricultural
production risk and to encourage farmers to adopt practices to
protect agricultural resources. To address these issues, this
study applies agricultural carbon emissions as an indicator that
affects the agricultural production environment for the study
of agricultural eco-efficiency. The results may provide impor-
tant practical guidance to achieve the dual goals of agricultural
carbon emission reduction and the transformation of green
agriculture.

The agricultural production zone in this study is perceived
as a natural agricultural space occupied by cultivated landwith
advantageous agricultural conditions, high resource endow-
ment, and high productivity. In 2011, China officially issued
the national policy of major function zoning, a national terri-
torial development plan intended to achieve a sustainable geo-
graphic and landscape pattern (Fan and Li 2009). To manage
the national territorial space, this plan creates a new organiza-
tional unit of regional functions (Wang and Fan 2020) involv-
ing three spatial organizations: the urbanization zone, the ag-
ricultural development zone, and the ecological security zone
(Fan et al. 2012). For the agricultural development zone, the
plan creates a new agricultural spatial organization with seven
districts and twenty-three zones to ensure the safety of agri-
cultural products in China. Specifically, as agricultural pro-
duction zones are primarily oriented towards agriculture, their
principal functions concern the effective supply of agricultural
products and the comprehensive agricultural production ca-
pacity. With the gradual strengthening of resource and envi-
ronmental constraints, the national agricultural economic de-
velopment goals involve improvements not only in grain pro-
duction and the quantity of agricultural products but also in
the quality of agricultural economic growth to achieve a bal-
ance between the agricultural economy and resource supply.
Accordingly, facing the severe constraints of the agricultural
environment, promoting agricultural eco-efficiency, and

achieving green agriculture are increasingly seen as the re-
search frontier in geography and economics. In this context,
how to coordinate the relationship between agricultural pro-
duction and ecological civilization construction needs to be
studied in depth. A comprehensive study focusing on how
influencing factors affect agricultural eco-efficiency over time
would thus have great practical significance and could provide
references for the agricultural policy makers.

Jilin agricultural production zone, a crucial component of
the Northeast agricultural production zone that is recognized
worldwide for its advantages in commodity grain cultivation,
has strategic significance for national grain security in China.
Thus, it is adopted as our empirical study area. Facing the
situation of resource restraints and increasing grain demand,
what are the spatiotemporal characteristics of agricultural eco-
efficiency in the Jilin agricultural production zone during the
period 2005–2017? How do influencing factors accelerate or
hinder the enhancement of agricultural eco-efficiency in this
agricultural production zone? What corresponding policy im-
plications can be obtained from the empirical results to sup-
port policy makers? The findings regarding these key scien-
tific issues can provide a theoretical reference with practical
significance for accomplishing the country’s carbon emission
reduction targets ahead of schedule, optimizing the allocation
of agricultural resources and promoting the green agricultural
transition.

The remainder of this study is organized in five sections.
The “Literature review on agricultural eco-efficiency” section
reviews the relevant literature and the theoretical analysis on
agricultural eco-efficiency. The “Data, methodology, and var-
iable selection” section introduces the study area, data
sources, methodology, and variable selection for empirical
analysis. The “Empirical results” section provides an assess-
ment of agricultural eco-efficiency, illustrates the spatial dy-
namics characteristic of agricultural eco-efficiency, and inter-
prets the driving mechanism. The “Conclusion and policy
suggestions” section describes the relevant conclusions and
proposes corresponding policy suggestions for policy makers.

Literature review on agricultural
eco-efficiency

Eco-efficiency emerged in the 1990s, when Schaltegger and
Sturm (1990) first proposed the concept as a quantitative tool
of environmental management. In 1998, the Organization for
Economic Co-operation and Development mentioned the con-
cept of eco-efficiency with the purpose of addressing the re-
lationship between environmental impacts and agricultural
production (Camarero et al. 2013). Eco-efficiency conven-
tionally refers to a process that seeks to maximize economic
effectiveness while minimizing environmental impacts
(Sinkin et al. 2008; Burnett and Hansen 2008). Over time,
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eco-efficiency has been conceptualized and considered a topic
of interest in an increasing range of fields (Reith and Guidry
2003). The international and national research content of eco-
efficiency is multi-dimensional and diversified (Zhang et al.
2008), covering the aspects of eco-efficiency evaluation
(Huang et al. 2018; Czyżewski et al. 2019; Baum and
Bieńkowski 2020), the temporal evolution characteristics
and spatial differentiation of eco-efficiency(Liu et al. 2020a;
Chen et al. 2017), the influencing factors leading to changes in
eco-efficiency(Moutinho et al. 2020), the evolution pattern of
eco-efficiency, and strategies supporting the improvement in
eco-efficiency. As the understanding of eco-efficiency grows,
the number of related studies focusing on specific industries is
gradually increasing. International and Chinese scholars have
increasingly applied the lessons learned in the economic sec-
tor to other industrial sectors from different angles (Lio and
Hu 2009). For the eco-efficiency evaluation of a specific in-
dustry, studies have gradually come to concentrate on specific
kinds of eco-efficiency, considering eco-efficiency at the re-
gional level (Zhou et al. 2020), in the tourism sector (Gössling
et al. 2005; Liu et al. 2017; Peng et al. 2017), in various
economic sectors (Xing et al. 2018), and in urban areas (Yin
et al. 2014; Ren et al. 2019).

Among the in-depth studies on eco-efficiency, many have
centered on agricultural production and grain security in the
agricultural field. For instance, Picazo-Tadeo et al. (2011)
assessed farming eco-efficiency applying data envelopment
analysis (DEA) techniques. Gómez-Limón et al. (2012) eval-
uated the farm-level eco-efficiency among Andalusian olive
farmers. Vlontzos et al. (2014) evaluated the agricultural
energy and environmental efficiency of EU countries using
the DEA approach. Todorovic et al. (2016) conducted the
eco-efficiency assessment of agricultural water systems at
the meso-level by using the life cycle system-based approach.
Saravia-Matus et al. (2019) measured the relationship between
greenhouse gas efficiency and agricultural production in the
agricultural sector. Deng and Gibson (2019) estimated the
agricultural eco-efficiency of Shandong in 1990–2010 based
on stochastic frontier analysis. By applying the nonseparable
hybrid DEA model considering undesirable outputs, Han and
Zhang (2020a) evaluated environmental efficiency and the
total factor productivity of cultivated land use. Moreover,
scholars of agricultural economics have made considerable
efforts to explore the influencing factors that shape the spatio-
temporal distribution characteristics of agricultural eco-effi-
ciency. Gkiza and Nastis (2017) empirically verified the effect
of human health on agricultural production efficiency.
Czyżewski et al. (2020) examined the effect of the European
Union Common Agricultural Policy on environmental sus-
tainable value, confirming that the higher investment support
and capital–labor ratio contributed to eco-efficiency. Coluccia
et al. (2020) assessed the eco-efficiency of the Italian agricul-
tural sector and demonstrated that the Common Agricultural

Policy weakened the specific environmental externalities via
environmentally friendly land use management. These studies
apply a wide range of methods to comprehensively measure
the eco-efficiency level, spatiotemporal characteristics, and
influencing factors of agriculture from different perspectives
(Ma et al. 2018a; Ma et al. 2018b). Zeng et al. (2020) analyzed
the relationship between crop diversity and agricultural eco-
efficiency and found that crop diversity has a positive effect
on agricultural eco-efficiency overall in China and important
regional differences were apparent in 34 provinces. Liu et al.
(2020b) estimated the agricultural eco-efficiency of Chinese
provinces over the period 1978–2019 and found that the cur-
rent agricultural eco-efficiency had a declining trend and
efficiency had remarkable staging features including free
development, reform promotion, market regulation, and
policy incentives. Liao et al. (2021) evaluated the spatial dif-
ferentiation characteristics and driving factors of agricultural
eco-efficiency and found that the average agricultural eco-
efficiency level can still be improved and the agricultural
eco-efficiency development of each province is not balanced.

Among the models used for assessment, the ecological
footprint method (He et al. 2016; Yang and Yang 2019), ratio
method (Schmidheiny and Timberlake 1992), SFA, and DEA
are widely applied for the analysis of eco-efficiency, incorpo-
rating a multitude of input and output indicators. The calcula-
tion of the ratio method is simple and easy to understand. The
major advantage of the DEAmodel over the SFA is that it can
effectively eliminate the effect of random errors, and the func-
tion form need not be set in advance. Hence, various scholars
have increasingly applied the DEAmodel and improved DEA
model to measure agricultural eco-efficiency. Summarizing
the existing research methods on efficiency evaluation, DEA
includes CCR-DEA, BBC-DEA, SBM-DEA, super DEA, and
super SBM-DEA. In recent years, more leading-edgemethods
with higher measurement accuracy, like the minimum dis-
tance to strong efficient frontier with undesirable outputs
(MinDS-U) model (Aparicio et al. 2007; Han and Zhang
2020b) and four-step method for the carbon footprint (CF) +
DEA approach (Angulo-Meza et al. 2019), have begun to be
promoted and employed to assess the eco-efficiency level in
the academic field. Additionally, various methods have been
applied to verify the influencing factors of agricultural eco-
efficiency. Among these methods, the panel data regression
method and Tobit regression method are regarded as conven-
tional instruments for analysis to identify the influencing fac-
tors, which provide significant reference by revealing the tem-
poral variation trends of agricultural eco-efficiency.

Previous research enriches the understanding of agricultur-
al eco-efficiency, both theoretically and practically. However,
empirical studies on agricultural eco-efficiency that focus on
the main production area of agricultural products remain
scarce, and spatially focused studies on agricultural produc-
tion zones from the perspective of major function-oriented
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zones are lacking. Accordingly, this study offers a potential
contribution to the existing literature in two aspects. Existing
studies have concentrated on the spatial dimension of agricul-
tural eco-efficiency at the national level, provincial level, and
city level but not the county level. Liu et al. (2020b) found that
agricultural eco-efficiencies in Northeast, East, and South
China were higher than that of the national average level,
North and Central China fit the national average level, while
Southwest and Northwest China were lower than the national
average level. Maia et al. (2016) assessed the agricultural eco-
efficiency in theMonte Novo irrigation perimeter, which lacks
analysis of spatial heterogeneity of agricultural eco-efficiency.
Using the data available, this study aims to examine the spa-
tiotemporal characteristics of agricultural eco-efficiency at the
county level. In addition, in contrast with the traditional con-
sideration of agricultural eco-efficiency that ignores resource
and environmental factors, the improved assessment of agri-
cultural eco-efficiency in this study accounts for the negative
impact of resource constraints to accurately reflect the perfor-
mance of agricultural economic growth. The findings regard-
ing these key scientific issues can provide a theoretical refer-
ence with practical significance for accomplishing the
country’s carbon emission reduction targets ahead of sched-
ule, optimizing the allocation of agricultural resources and
promoting the green agricultural transition. As such, this study
not only reveals the characteristics of agricultural eco-
efficiency over time and space but also estimates the potential
influencing factors to propose suggestions for policy makers
and agricultural managers.

Analytical framework

In the interactions among economic, social, and environmen-
tal systems, different agricultural production conditions and
human development factors are intertwined, complicating

the change process of the spatiotemporal pattern of agriculture
eco-efficiency. On the one hand, the ratio and scale of agri-
cultural input and output directly affect agricultural eco-effi-
ciency. Agricultural practitioners, the actual implementers of
modern agricultural production, determine the amount and
structure of input factors, such as land use structure, planting
structure, farmland management scale, farming methods, and
level of production. Therefore, with the conversion between
input and output, changes in the input-output structure can
directly cause changes in agricultural eco-efficiency by affect-
ing the allocation and utilization of resources for agricultural
production. On the other hand, agricultural eco-efficiency is
also indirectly affected by changes in external socio-economic
conditions. For example, the economic development level, the
transfer of rural laborers to cities, agricultural policies, and
agricultural market conditions also significantly affect agricul-
tural eco-efficiency at the macro level. This study intends to
explore the complex relationship between agricultural produc-
tion and agricultural eco-efficiency by considering both its
direct and indirect influences. To support this in-depth under-
standing, an analytical framework illustrating the interactions
between agricultural production and agricultural eco-
efficiency is proposed in Fig. 1.

Data, methodology and variable selection

Study area and data sources

This study adopts the agricultural production zone of Jilin
Province (JAPZ) as the empirical study area. According to
the Major Function Oriented Zone Plan of China and Jilin
Province, 28 counties in Jilin form this major grain production
zone, covering 102,598.59 km2 and occupying 53.52% of the
provincial territory. With a population of 18.713 million,
which represents 70.3% of the total population in the
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illustrating the interactions
between agricultural production
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province, the JAPZ generated 808.319 billion yuan (57.48%)
of the province’s GDP in 2018. Notably, given the lack of
statistical data, the Shuangyang District and Jiutai District of
Changchun City and Taobei District of Baicheng City are not
considered in our empirical study. This study evaluates agri-
cultural eco-efficiency at the county level and estimates its
influencing factors by employing a panel dataset composed
of 26 counties during the 2005–2017 period. Fig. 2 presents a
map of the empirical study area. Original socioeconomic data are
compiled from the Statistical Yearbooks of Jilin Province,
Changchun City, Jilin City, Siping City, Songyuan City,
Baicheng City, LiaoyuanCity, and Tonghua City for 2006–2018.

Variable selection

Dependent variable: agricultural eco-efficiency

The underlying principle of agricultural eco-efficiency is to
create agricultural economic value with less agricultural input
while continuously reducing the effects on the ecology and
natural environment. Thus, the calculation of agricultural eco-
efficiency integrates three dimensions: agricultural production
inputs, desirable agricultural outputs, and undesirable agricul-
tural outputs. Specifically, a conventionally used strategy is
established to measure the production factor inputs using the
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indicators of the labor force, machinery, energy, irrigation,
chemical fertilizers, pesticide, and plastic membrane. The de-
sirable outputs comprise two types of agricultural output in the
agricultural production zone, namely, agricultural output and
grain production capacity. In combination with the actual sit-
uation of regional agricultural development, rapid urbaniza-
tion development has caused the decline of soil quality, which
leads the national government and Jilin Province paid increas-
ing attention to the protection of black soil resources and qual-
ity. Therefore, we emphasize the agricultural input intensity
and agricultural output intensity when selecting input and out-
put indicators. Table 1 displays the agricultural eco-efficiency
evaluation index system. The land input is reflected in the
human and material inputs per unit of cultivated land. That
is, the agricultural eco-efficiency evaluation index system
contains the intensity of agricultural production input per unit
of cultivated land, the intensity of desirable output per unit of
cultivated land, and the intensity of carbon emission pollution
per unit of cultivated land to reflect the actual situation of the
region. Specifically, this paper selects the total agricultural
labor per unit of cultivated land as the labor force indicator,
the total agricultural machinery power per unit of cultivated
land as the agriculture machinery indicator, the amount of
agricultural diesel consumption per unit of cultivated land as
the energy consumption indicator, effective irrigation area per
unit of cultivated land as the irrigation indicator, the amount of
agricultural chemical fertilizers per unit of cultivated land as
the chemical fertilizer indicator, the amount of agricultural
pesticide usage per unit of cultivated land as the pesticide
indicator, and the amount of agricultural plastic membrane
per unit of cultivated land as the plastic membrane indicator.

Additionally, this paper selects the total gross output value of
agriculture per unit of cultivated land as the agricultural output
indicator and the total grain output per unit of cultivated land
as the grain production capacity indicator. For the undesirable
outputs, this study employs the amount of agricultural carbon
emissions per unit of cultivated land as the proxy measure.
Referring to previous scholarly work (Tian et al. 2014; West
and Marland 2002), this study selects agricultural chemical
fertilizers, pesticides, plastic sheeting, diesel oil, irrigation,
and tillage as the carbon sources of agricultural production
activities. Their emission coefficients are 0.8956 (kg/kg),
4.9341 (kg/kg), 5.18 (kg/kg), 0.5927(kg/kg), 266.48(kg/
hm2), and 312.6 (kg/km2), respectively.Wemultiply the emis-
sion coefficients by the usage amount or acreage to calculate
the total agricultural carbon emissions (Dubey and Lal 2009;
Huang et al. 2019). Table 2 presents a statistical description of
the indexes used for assessing agricultural eco-efficiency.

Independent variable selection

Multiple-crop index (MI) The multiple-crop index refers to the
frequency of planting crops per unit of cultivated land. This
study uses the proportion of the crop sown area to the culti-
vated land area as the proxy variable of the multiple-crop
index.

Scale of family farmland management (FFMS) Agricultural
eco-efficiency also affects the environment through the expan-
sion of the family farmland management scale. As the scale of
production and operation units reaches an appropriate level,
the allocation of production factors achieves the best operating

Table 1 Agricultural eco-
efficiency evaluation index
system.

Category Specific indication Indicator description

Production
inputs

Labor force intensity Total agricultural labor per unit of cultivated land

Agriculture machinery
intensity

Total agricultural machinery power per unit of cultivated
land

Energy consumption intensity Amount of agricultural diesel consumption per unit of
cultivated land

Irrigation intensity Effective irrigation area per unit of cultivated land

Chemical fertilizers intensity Amount of agricultural chemical fertilizers per unit of
cultivated land

Pesticide intensity Amount of agricultural pesticide usage per unit of cultivated
land

Plastic membrane intensity Amount of agricultural plastic membrane per unit of
cultivated land

Desirable
outputs

Agricultural output intensity The total gross output value of agriculture per unit of
cultivated land

Grain production capacity
intensity

The total grain output per unit of cultivated land

Undesirable
output

Agricultural carbon emissions
intensity

The total amount of agricultural carbon emissions per unit
of cultivated land
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efficiency, which leads to changes in production, life, ecology,
and services. This study thus applies the ratio of the sown area
to the number of rural households to characterize the scale of
family farmland management.

Agricultural technology extension level (ATEL) Agricultural
technology extension can indirectly guide agricultural produc-
tion in a more environmentally friendly direction. Due to the
unavailability of related data in the statistical yearbooks, the
number of agricultural professional and technical personnel is
applied as the proxy variable of the agricultural technology
extension level.

Agricultural economic development level (AEDL) The agricul-
tural economic development level may have a close relation-
ship with agricultural environmental quality according to the
theory of the environmental Kuznets curve (Grossman and
Krueger 1995; Ali et al. 2019). This study, therefore, applies
the per capita agricultural output value to represent the agri-
cultural economic development level.

Agricultural industrial structure (AIS) Compared with the
non-planting industries, planting industries may have a
greater impact on the agricultural ecological environment
through high labor input and labor intensity. Thus, this
study applies the proportion of the planting industry in the
primary industry as the proxy variable of the agricultural
industrial structure.

Urbanization level (UL) The transfer of the non-agricultural
population can lead to changes in agricultural eco-efficiency.
Thus, the urbanization level, which here refers to the urban
population percentage of the total population, is employed as
the proxy variable of the urbanization level.

Level of rural resident income (RRIL) High resident income
generates an income effect and a substitution effect on

agricultural eco-efficiency and then prompts rural residents
to increase the input of production factors, inevitably
resulting in agricultural emissions. However, an improve-
ment in rural resident income level may enable farmers to
afford high-quality production factors, thereby decreasing
agricultural pollution. The per capita net income of rural
residents is regarded as the proxy variable of rural resident
income level.

Methodology specification

Measuring agricultural eco-efficiency: super SBM-DEA

The data envelopment analysis (DEA) model proposed in
1978 is an extensively used linear programming technique
that can effectively evaluate the relative efficiency of
decision-making units (DMUs). The conventionally used
DEA model contains the CCR-DEA model and the BCC-
DEA model. The former supposes that the returns to scale
are constant (Charnes et al. 1978), while the latter supposes
that the returns to scale are variable (Banker et al. 1984).
Both of these conventional DEA models are radial and
oriented and thus overestimate efficiency. As such, Tone
(2001) proposed a non-radial and non-oriented slack-based
model (SBM) able to account for slackness, which can di-
rectly overcome the input and output slacks in the measure-
ment. However, it is possible for multiple DMUs to have
valid effective status denoted by 100% at the same time,
which makes it difficult to rank and compare the efficiency
of DMUs (Färe et al. 1989). To address this issue, Tone
(2002) extended the model, proposing the super SBM-
DEA model to innovatively solve these disadvantages of
the traditional SBM-DEA model. The super SBM method
can provide a clear ranking based on the effective agricul-
tural eco-efficiency scores (Li et al. 2013). Thus, this study
applies the counties as the DMUs of the agricultural devel-
opment frontier, using the data for 26 counties in 2003–

Table 2 Descriptive statistics of
the agricultural eco-efficiency as-
sessment indexes.

Indexes Unit Min Max Mean Std. dev

Labor force Person/hm2 0.34 2.45 0.957 0.38

Agriculture machinery KW/hm2 1.13 8.52 4.333 1.33

Energy consumption kg/hm2 30 536 116.84 57.98

Irrigation % 4.23 91.7 34.36 19.76

Chemical fertilizers kg/hm2 174 2274 766 207

Pesticide kg/hm2 1.32 107.53 10.28 9.56

Plastic membrane kg/hm2 1.49 165.1 11.19 12.88

Agricultural output 104yuan/hm2 0.86 10.26 3.94 1.69

Grain production capacity kg/hm2 2.88 10.94 6.67 1.56

Agricultural carbon emissions kg/hm2 399 2352 958.99 235.69
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2016. The formula of the super SBM-DEA model is shown
as follows:

minρ ¼
1

m
∑
m

i¼1

s−i
xik

1

s1 þ s2
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8>>>>>>>>><
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ð1Þ

where objective function ρ is the agricultural eco-efficiency and
its variation range can bemore than 1; if ρ>1, and the sx m, sy n,
and sb i=0, the DMU is effective; if 0≤ρ<1, the DMU is inef-
fective, and the input and output should be improved. λj de-
notes the coefficient; m is the number of input indicators; s1 is
the number of desirable output indicators; s2 is the undesirable
output indicators; s- i, gg r, and sb r are the slack variables; and
x ik, yg rk, and yb qk denote the ith input, the rth desirable
output, and the qth undesirable output value of county k. It is
noted that the super SBM-DEA model assumes that there are
constant returns to scale.

Verifying the influencing factors: panel data regressionmodel

Panel data, also called time series and cross-sectional data or
pooled data, are two-dimensional data obtained over time and
across space (Zhou et al. 2018). The panel data regression meth-
od can simultaneously reflect the changing pattern and charac-
teristics of variables across the two dimensions of time and
space, control individual heterogeneity and endogeneity prob-
lems, and improve the effectiveness of parameter estimation.
Therefore, this method is widely used for modeling economic
problems. The model is defined by the following formula:

Y it ¼ β0 þ β1X it þ β2X it þ β3X it þ þ βnX it

þ βnþ1X it þ εit ð2Þ

where Yit is the dependent variable; Xit is the independent vari-
able; β0 denotes the constant; β1, β2, … βn, βn+1 represent the
regression parameters; ε is the random error; i represents the
county; and t denotes the time.

To eliminate the heteroscedasticity of variables, we take the
natural logarithm of the original data for further conducting
the panel data regression model:

lnAEEit ¼ β0 þ β1lnMIit þ β2lnFFMSitþ …

þ β6lnULit þ β7lnRRILit þ εit
ð3Þ

where the variables MI, FFMS, …, UL, RRIL have the same
implications as in the “Independent variable selection” section
and in Formula (2). Table 3 presents the descriptive statistics
of the dependent and independent variables used in this em-
pirical study.

Empirical results

According to the abovementioned model specification, this
study evaluates the agricultural eco-efficiency using the super
SBM-DEA approach that incorporates agricultural carbon
emissions and then investigates its influencing factors using
the panel data regression method.

The temporal variation characteristics of agricultural
eco-efficiency

Based on Formula (1) and the variables selected in the
“Dependent variable: agricultural eco-efficiency” section,
which include the indicators for seven inputs and three out-
puts, agricultural eco-efficiency scores are derived by operat-
ing MATLAB (R2016a) software. Fig. 3 illustrates the tem-
poral variation characteristics of the average agricultural eco-
efficiency of 26 counties in the agricultural production zone of
Jilin from 2005 to 2017. During the observation period, the
temporal variation characteristics of the average agricultural
eco-efficiency values exhibit a flat “M-shaped” fluctuating
trend. The agricultural eco-efficiency of the agricultural pro-
duction zone shows a trend of continuous growth with fluctu-

Table 3 Descriptive statistics of
dependent and independent
variables.

Variables Simple Unit Min Max Mean Std. dev

Agricultural eco-efficiency AEE - 0.18 1.59 0.74 0.35

Multiple-crop index MI - 0.72 1.37 1.03 0.1

Scale of family farmland management FFMS hm2/household 0.52 3.39 1.53 0.59

Agricultural technology extension level ATEL Person 140 5473 1215 1127

Agricultural economic development level AEDL Yuan 2277 72192 9766 7716

Agricultural industrial structure AIS % 22.14 86.15 50.58 11.34

Urbanization level UL % 10.01 83.65 32.42 13.65

Level of rural resident income RRIL Yuan 2244 13587 7427 3205
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ation and is characterized by obvious periodic features.
Specifically, the average agricultural eco-efficiency first in-
creases steadily with a low growth rate from 2005 to 2010.
This is mainly associated with the series of measures imple-
mented to address the three rural issues associated with agricul-
ture, rural areas, and rural peasants and the tax reduction and
exemption policies enacted to support the continuous transfor-
mation of traditional agriculture to modern agriculture.
However, agricultural eco-efficiency then begins to decline
with rapid speed from 2011 to 2012, showing a trend of de-
crease by a wide margin. In this period, the government paid
more attention to the “urban disease” accompanying rapid ur-
banization development, and the counties’ environmental gov-
ernance in the agricultural sector became looser in the absence
of specifically targeted guiding policies for the agricultural sec-
tor compared with the urbanization sector. In 2012, the score of
agricultural eco-efficiency hits the lowest point of only 0.609.
Then, agricultural eco-efficiency bounced back again in 2013–
2014, probably because with the implementation of the ecolog-
ical agricultural production model, the government paid more
attention to agricultural resource constraints and strengthened
the agricultural policy incentives. In 2015–2016, agricultural
eco-efficiency slowly declined again, and it finally increased
in 2017. This may be because of the low usage rate of agricul-
tural chemical material, more attention to the agricultural eco-
system, and the high average agricultural eco-efficiency in these
years. Overall, the average agricultural eco-efficiency of each
year in the agricultural production zone of Jilin was approxi-
mately 0.689, varying from 0.609 to 0.766, which is an average
level and indicates that there is much room for improvement in
agricultural development even though the agricultural eco-
efficiency indicates good capacity.

The spatial distribution characteristics of agricultural
eco-efficiency

Fig. 4 plots the boxplot of the agricultural eco-efficiency of 26
counties in 2006–2017. Noticeably, the average agricultural

eco-efficiency of Lishu reached 1.32, the highest level, while
the values for Yitong, Huadian, Gongzhuling, Nong’an, and
Qianguo averaged approximately 1.25, 1.18, 1.05, 1.09, and
1.1, respectively. In addition, the variance of the agricultural
eco-efficiency values in Changling, Qian’an, Tonghua, and
Dehui is large, which demonstrates that the agricultural eco-
efficiency of these counties has large gaps in the efficiency
values and the agricultural eco-efficiency is in an unstable
state of fluctuation. In contrast, Meihekou, Taobei, Yongji,
and Taonan, all of which have weak resource carrying capac-
ity, had very low agricultural eco-efficiency values. For the
western counties with the lowest agricultural eco-efficiencies,
namely, Taobei and Taonan, this is primarily due to their
geographical location with barren saline soil and water short-
age, such that they require higher production inputs than other
counties. For the central and eastern counties with the lowest
agricultural eco-efficiencies, namely, Meihekou and Yongji,
the low agricultural eco-efficiency values owe primarily to the
inappropriate terrain and incomplete water conservancy facil-
ities. The variance of agricultural eco-efficiency values in
Yongji, Jiaohe, Dongfeng, Huinan, Liuhe, Meihekou,
Zhenlai, Taonan, Daan, and Taobei is small, but their agricul-
tural eco-efficiency level is low, illustrating the relatively poor
stability of the agricultural eco-efficiency level in these
counties and the severity of the long-term inefficiency. In
contrast, the variance of Nong’an, Huadian, Lishu, Yitong,
Gongzhuling, Shuangliao, and Qianguo is small, and their
agricultural eco-efficiency level is high, illustrating the rela-
tively good stability of the agricultural eco-efficiency level.

To better observe the spatiotemporal characteristics of ag-
ricultural eco-efficiency, this study, based on ArcGIS 10.5
software, categorizes the agricultural eco-efficiency scores
calculated by the super SBM method into five levels: low
level (0~0.30), medium-low level (0.31~0.6), medium level
(0.61~0.90), medium-high level (0.91~1.2), and high level
(>1.2). The spatiotemporal distribution map of 2005, 2009,
2013, and 2017 is shown in Fig. 5. As illustrated in Fig. 5,
we can view significant spatial differences in agricultural eco-
efficiency across counties.
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Fig. 4 Boxplot of the agricultural eco-efficiency of 26 counties in the
JAPZ, 2005–2014.
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In 2005, the high agricultural eco-efficiency values were
mainly distributed in counties characterized by a high agricul-
tural economic level, such as Lishu, Gongzhuling, and
Changling, with Lishu and Gongzhuling holding the highest
ranks. Central counties with a medium-high efficiency level
include Qian’an, Qianguo, Nong’an, Dehui, Huadian, Yitong,
and Dongliao, while the counties with medium agricultural
eco-efficiency are Fuyu, Yushu, and Shuangliao. Other
counties characterized by medium-low agricultural eco-effi-
ciency, such as Taobei, Zhenlai, Taonan, Daan, Tonghua,
and Yongji, are situated in the western and southeast region;
such counties have great potential for improvement. In com-
parison, central and western counties rely on higher agricul-
tural production input to support agricultural economic
growth, which constrains the improvement in agricultural
eco-efficiency to some content.

In 2009, Yitong and Lishu County are the counties with a
high level of agricultural eco-efficiency, while Qian’an,
Qianguo, Nong’an, Dehui, Yushu, Gongzhuling, Tonghua,
and Huadian have medium-high efficiency. The distribution

of counties at the medium-high level is more concentrated in
2009 than in 2005. The counties with a medium-high level of
agricultural eco-efficiency gradually expand from the central
to the eastern agricultural production zone in Jilin, and their
number increases. In addition, Shuangliao, Dongliao, and
Panshi have a medium level of agricultural eco-efficiency,
while Dongfeng and Liuhe have low agricultural eco-efficien-
cy. The quantity and magnitude of counties with medium-low
agricultural eco-efficiency showed little change.

In 2013, agricultural eco-efficiency decreased slightly,
and its spatial agglomeration feature weakened, owing to
regional differences in agricultural incentive policies.
More than 15 counties had a medium-low level of agri-
cultural efficiency. A possible reason for the decrease in
agricultural eco-efficiency is that the execution of agricul-
tural policy weakened. High-level efficiency can be found
scattered across the province in Lishu, Yitong, and
Huadian, while the counties with medium-high level effi-
ciency are Qianguo, Nong’an, Gongzhuling, Shuangliao,
and Panshi. However, the distribution of counties at the
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Fig. 5 The spatial distribution of agricultural eco-efficiency in the JAPZ in a 2005, b 2009, c 2013, and d 2017
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medium-high level was more dispersed in 2013 than in
2009. In this year, there was only one county with
medium-level efficiency, namely, Yushu County. The
counties with medium-low agricultural eco-efficiency
were Dongfeng and Tonghua.

In 2017, the county-level agricultural eco-efficiency
presents a sharp increase with remarkable spatial varia-
tion. Yitong is the only county with a high level of eco-
efficiency. The agricultural eco-efficiency in half of the
counties is at the medium-high level, showing remarkable
club convergence. In particular, the number of counties
with agricultural eco-efficiency at the medium-high level
gradually increases, and the area of these counties ex-
pands from the areas east of Changchun to the central
and western areas, while the counties with medium-low
agricultural eco-efficiency gradually narrow in quantity
and magnitude. The counties with medium-level eco-effi-
ciency are scattered across the counties including Fuyu,
Shulan, and Panshi. The number of counties with a medi-
um level of agricultural eco-efficiency in 2017 increases
compared with the number in 2013. The values for most
counties in the central-southern JAPZ increase from the
medium-low level and low level to the medium-high level
in 2017. However, there are no longer any counties with
low agricultural eco-efficiency.

The four spatiotemporal distribution maps show that
the spatial distribution has obvious core-periphery charac-
teristics; that is, the agricultural eco-efficiency of the cen-
tral counties is generally higher than that of the southeast
and northeast counties. In 2005, 2009, 2013, and 2017,
there are 6 counties each year—including Nong’an,
Huadian, Lishu, Yitong, Gongzhuling, and Qianguo—
that achieve high agricultural eco-efficiency. The five
counties with agricultural eco-efficiency values higher
than 1 exhibit a growth pattern of low inputs, high

outputs, and high agricultural eco-efficiency. The counties
with a medium-low level of eco-efficiency are concentrat-
ed in the southeastern agricultural production zone in
Jilin, while those with a low level continue to expand in
quantity and are mainly concentrated in the central-eastern
agricultural production zone.

Factors influencing agricultural eco-efficiency

Pearson correlation test

A Pearson correlation test between the seven independent var-
iables is conducted before the panel data regression is carried
out. Table 4 illustrates the correlation matrices among vari-
ables. The test analysis results show that the correlation
strength and direction among variables are mostly all signifi-
cant and that the scores of the correlation matrices are small,
which sufficiently confirms that all of the independent vari-
ables have weak correlations with each other. Besides, the
tested significant level values are less than the critical value
of 0.1, which indicates that the variables have passed the two-
tailed test. Therefore, the data for these eight independent
variables are considered reliable for examining the influencing
factors in the 26 counties studied in the panel data regression.

Estimation results of panel data regression

Static panel data models include several main types, namely,
the mixed model (MM), fixed effect model (FEM), and ran-
dom effect model (REM). To determine which model is most
appropriate, the F test and Hausman test are required before
the construction of the panel data regression model. The F test
is applied to determine whether to adopt the MM or the FEM.
The Hausman test is applied to determine whether to select the
FEM or the REM. The panel data regression model is

Table 4 Correlation matrices for variables

AEE MI FFMS ATEL AEDL AIS UL RRIL

AEE 1

MI -0.169*** 1

FFMS 0.030 -0.001 1

ATEL 0.132** -0.003 -0.108** 1

AEDL 0.218*** -0.047 0.340*** 0.136** 1

AIS -0.380*** 0.056 0.360*** -0.148*** -0.016 1

UL -0.271*** 0.101* 0.233*** 0.071 0.556*** 0.206*** 1

RRIL 0.132** 0.085 0.044 0.340*** 0.380*** -0.138** 0.113** 1

Notes: 
***

significant at the 1% level; 
**

significant at the 5% level; 
*
significant at the 10% level.

Notes: *** significant at the 1% level; ** significant at the 5% level; * significant at the 10% level
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conducted using the EViews 10.0 software tool. The F test
statistic value is 109.594, and its p-value approaches 0.00,
which indicates that the null hypothesis of the MM can be
rejected, leading us to accept the FEM. Additionally, the test
statistic of the Hausman test is 48.837, and its p-value ap-
proaches 0.00, which indicates that the null hypothesis of
the REM is rejected and likewise suggests the FEM as appro-
priate. Therefore, the FEM should be established as the appro-
priate model according to the results of the F test and the
Hausman test. The R2 of the FEM and REM are 0.820 and
0.713, respectively, which illustrates that the fit degree of the
panel data regression model with fixed effects is better than
that of the model with random effects. The FEM regression
results of the eight independent variables on agricultural eco-
efficiency are shown in Table 5 and are further applied to
analyze the influencing factors of agricultural eco-efficiency.
The results of the panel data regression set out in Table 5
indicate that some variables, with the exception of the family
farmland management scale (FFMS), agricultural industrial
structure (AIS), and rural resident income level (RRI), pass
the 10% significance level. Specifically, the agricultural tech-
nology extension level and agricultural economic develop-
ment level have positive correlations with agricultural eco-
efficiency in the 26 counties during the observation period at
the 1% and 10% levels, respectively. Conversely, both the
multiple-crop index (MI) and urbanization level (UL) have
negative correlations with agricultural eco-efficiency at the
10% and 10% levels.

Analysis of significant influencing factors

The estimated coefficient of multiple-crop index (MI) is neg-
ative and significant at the 1% level, implying that multiple-

crop index suppresses the improvement in agricultural eco-
efficiency as a whole. On the one hand, this finding is associ-
ated with the 1-year farming system, which further decreases
the negative environmental impact in the agricultural produc-
tion process. On the other hand, specifically, JAPZ is located
in the cold latitude zone, and the climate heat is insufficient,
which by the way leads to low-frequency farming activities.
Less frequent farming activities will lead to less agricultural
carbon emissions with the consequence that the multiple-crop
index promotes the improvement in agricultural eco-efficien-
cy. That is, a lower multiple-crop index means less farming
activities, which is beneficial for agricultural eco-efficiency.
Therefore, when the multiple-crop index is low, the agricul-
tural eco-efficiency is large.

Additionally, the correlation coefficient between the agri-
cultural technology extension level (ATEL) and agricultural
eco-efficiency is positive and significant at the 1% level, in-
dicating that improvement in the agricultural technology ex-
tension level tends to intensify the increase in agricultural eco-
efficiency. This is because agricultural professionals and tech-
nical personnel can guide farmers to implement environmen-
tally friendly agricultural production methods, which is con-
ducive to driving productivity and optimizing the production
process via the technology effect. In addition, as displayed in
Table 5, the estimated correlation coefficient is 0.058 and
passes the significance test, which demonstrates that this indi-
cator can sufficiently influence agricultural eco-efficiency, but
the effect is not obvious. This result directly confirms that
environmental technology and environmental management
skills can bring about an improvement in overall agricultural
eco-efficiency. That is, counties with more agricultural tech-
nology support for agriculture have the ability to curb negative
impacts on the agricultural ecological environment.

Table 5 The results of the panel data regression.

Variables MM FEM REM

Coefficient t-
statistic

Coefficient t-
statistic

Coefficient t-
statistic

MI −0.442*** −3.062 −0.133* −1.747 −0.408** −2.094
FFMS 0.0335 0.600 −0.063 −0.588 0.146 1.259

ATEL 0.089*** 5.596 0.058*** 3.191 0.071** 2.457

AEDL 0.586*** 12.127 0.084* 1.704 0.165** 2.316

AIS −0.489*** −9.092 0.037 0.941 −0.186* −1.771
UL −0.570*** −12.347 −0.080* −1.672 −0.392*** −4.779
RRIL −0.275*** −6.128 0.017 0.533 −0.051 −0.862
c −1.303*** −4.687 0.099 0.171

R2 0.671 0.820 0.713

Adjusted R2 0.665 0.812 0.795

Notes: *** significant at the 1% level; ** significant at the 5% level; * significant at the 10% level
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The correlation coefficient of agricultural economic devel-
opment level (AEDL) and agricultural eco-efficiency positive-
ly pass the significance test at the 1% level, indicating that an
increase in agricultural economic development level can ac-
celerate the increase in agricultural eco-efficiency.
Numerically, the correlation coefficient of AEDL, reaching
0.084, is larger than the correlation coefficients of the agricul-
tural technology extension level variable, which illustrates that
the agricultural economic development level occupies the
leading position in the development of agricultural eco-
efficiency and the “economic attributes” are important for
agricultural eco-efficiency. A possible reason for the positive
effect of agricultural economic development level on agricul-
tural eco-efficiency is that there is large number of national
agricultural counties in the JAPZ. The obvious agricultural
development scale effect can not only stimulate the expansion
of agricultural production but also improve farming methods
and optimize agricultural materials for the high-quality devel-
opment of agricultural production. In addition, the counties
with a high agricultural economic development level are likely
to achieve a balance between agricultural production and the
ecological environment with the growth of agricultural inten-
sification and specialization, which is conducive to increasing
agricultural eco-efficiency.

The correlation coefficient of urbanization level (UL) indi-
cates that this indicator has a significant negative influence on
agricultural eco-efficiency at the 1% level, which indicates
that the increase in urbanization level can hinder agricultural
eco-efficiency. Moreover, the negative correlation coefficient
of urbanization level is lower than that of multiple-crop index
in terms of the impact degree. This finding illustrates that
among the selected variables, the urbanization level featuring

socioeconomic attributes is the hindrance to agricultural eco-
efficiency. Since the eleventh five-year plan period, surplus
labor has flowed between urban and rural areas, accompany-
ing rapid urban construction. As a consequence of the surplus
labor transfer to urban areas, urban development has also
squeezed out the input of labor, capital, and other factors re-
quired for agricultural production, leading to changes in the
employment structure. The laborers who remain in the coun-
tryside must use more agricultural machinery to compensate
for the loss in labor via the substitution effect, which can cause
the deterioration of the agricultural ecological environment. It
is not difficult to understand that when the urbanization level
increases, the agricultural eco-efficiency may ultimately
decrease.

Robustness test of panel data regression model

To verify the reliability of the empirical results, this paper re-
estimates the model by applying the method of changing the
observation period and divides the observation period into two
parts, 2005–2011 and 2012–2017, to test the empirical results
of the factors affecting agricultural eco-efficiency in the JAPZ.
The detailed empirical regression results are shown in Table 6.
Although the coefficients and significance of some indepen-
dent variables have changed, the basic conclusions are still
similar to the abovementioned full-sample regression results.
Additionally, to further examine the robustness of the regres-
sion results, this paper applies the method of replacing inde-
pendent variables to re-estimate the model. When conducting
the robustness test, the urban population percentage in the
total population is replaced by the proportion of the tertiary
industry in GDP and other independent variables remain

Table 6 Robustness test of the regression model.

Variables Sample change method Substitution method

FEM (2005–2011) FEM (2012–2017) FEM

Coefficient t-
statistic

Coefficient t-
statistic

Coefficient t-
statistic

MI −0.285 0.393 −0.090 −0.593 −0.366** −1.771
FFMS 0.469 0.183 −0.804*** −3.668 0.059 0.289

ATEL 0.081* 1.912 0.086*** 3.202 0.057** 1.757

AEDL 0.386* 1.692 0.070 1.265 −0.143** −2.528
AIS 0.125 0.770 0.283*** 3.802 0.085 0.734

UL −0.614** −2.114 −0.142** −2.375 0.139** 1.913

RRIL −0.471** −2.190 0.547*** 5.703 0.0597 0.500

c 1.077 0.874 −0.904 −3.786 −1.003 −1.483
R2 0.796 0.962 0.741

Adjusted R2 0.752 0.952 0.714

Notes: *** significant at the 1% level; ** significant at the 5% level; * significant at the 10% level
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unchanged, and then the panel regression estimation is per-
formed again. The regression results are also displayed in
Table 6. The regression coefficient of the proportion of the
tertiary industry in GDP has a significant and positive influ-
ence on agricultural eco-efficiency at the 5% level, which is
contrary to the regression coefficient of the urban population
percentage in the total population. This finding suggests that
the development of the tertiary industry can extend the agri-
cultural industry chain and increase the added value of agri-
cultural products, thereby promoting agricultural eco-efficien-
cy. The estimated coefficients of other independent variables,
such as the multiple-crop index, agricultural economic devel-
opment level, and agricultural technology extension level, are
consistent with the aforementioned regression results in the
influencing direction. In summary, we can consider the regres-
sion results to be robust. Finally, considering that there may be
missing variables or two-way causal relationships between
variables in the model construction resulting in endogenous
issues and leading to instability of the model’s regression re-
sults, this paper applies the lagging dependent variable and
lagging agricultural economic development level variable in-
strumental variables through the two-stage least squares
(TSLS) method. The significance and impact properties of
each explanatory variable are basically consistent with the
abovementioned regression results.

Conclusions and policy suggestions

Conclusions

During the observed period of 2005–2017, the average value
of agricultural eco-efficiency in the JAPZ exhibited a rising
trend with fluctuations. The agricultural eco-efficiency of each
county could improve in terms of resource conservation and
environmental protection, although it is still at a medium level
overall. This study also reveals that there are significant spatial
differences in agricultural eco-efficiency in the JAPZ. The
agricultural eco-efficiency in the region presents a spatial pat-
tern that progresses from the core to the periphery.
Specifically, central counties usually have higher agricultural
eco-efficiency than southeastern and northwestern counties.
Nong’an, Huadian, Lishu, Yitong, Gongzhuling, and
Qianguo achieved high agricultural eco-efficiency in 2005,
2009, 2013, and 2017. Since the change in agricultural eco-
efficiency results from the complex interaction of various fac-
tors, this study further considers various influencing factors
that lead to the change in agricultural eco-efficiency. The pan-
el data regression estimation results indicate that the agricul-
tural technology extension level, multiple-crop index, agricul-
tural economic development level, agricultural technology ex-
tension level, and urbanization level have close correlations
with agricultural eco-efficiency. The agricultural economic

development level occupies the leading position in the devel-
opment of agricultural eco-efficiency, while the multiple-crop
index presents the greatest hindrance to agricultural eco-
efficiency.

Policy suggestions

According to the aforementioned contributing factors, sugges-
tions are proposed for policy makers. First, the results show
that multiple-crop index constrains agricultural eco-efficien-
cy. The multiple-crop index is an obvious factor that features
natural environmental characteristics. Governments in the
JAPZ should pay more attention to the intensity and scale of
agricultural farming activities and adopt new environmentally
friendly behavior to maintain the stability of the agricultural
ecological environment. Second, the correlation coefficient of
agricultural technology extension level is not high, but it is
large enough to have an impact on agricultural eco-efficiency.
This indicates that its key role in the improvement in agricul-
tural eco-efficiency should not be neglected, although the ag-
ricultural technology extension level exerts a slight effect on
agricultural eco-efficiency. Technical training and profession-
al skills should be provided for farmers in the JAPZ to help
them better master relevant green and sustainable agricultural
technologies. Third, among the selected variables, the agricul-
tural economic development level is the strongest positive
factor driving agricultural eco-efficiency, implying that the
scale expansion and total growth of the agricultural economy
are still the key ways to promote agricultural eco-efficiency.
Hence, the continuous improvement of the agricultural eco-
nomic development level is one of the vital ways to increase
agricultural eco-efficiency. Taking ecological priorities and
green development as guidance, the extensive agricultural
production and management model should be transformed,
the development methods should be optimized, circular and
ecological agriculture should be developed, and the sustain-
able use of agricultural resources should be promoted to sup-
port high-quality agricultural development in the JAPZ.
Finally, the urbanization level exerts a negative impact on
agricultural eco-efficiency, indicating that ecology-oriented
agricultural subsidies should be improved and a high-
efficiency compensation mechanism should be established to
stimulate enthusiasm for agricultural production in the JAPZ.

There is an urgent practical need for research on agricul-
tural eco-efficiency under resource and environmental con-
straints. This study aims to narrow the gap in the literature
on agricultural eco-efficiency, but several limitations remain
that deserve in-depth attention in future research. In fact, ag-
ricultural eco-efficiency is also affected by natural factors,
such as climate, soil properties, and the natural environment,
which influence the input and output of agricultural produc-
tion to some extent. Due to the limited availability of data
regarding natural factors, this study investigated only
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socioeconomic factors. When more natural data are publicly
available, the spatial dimension and the indicators applied in
our study could be improved upon to enable more compre-
hensive modeling. Moreover, the influencing factors of agri-
cultural eco-efficiency could be further investigated from the
perspective of national agricultural production zones to help
accomplish China’s future carbon emission reduction targets
ahead of schedule and achieve the green agricultural
transition.
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