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Abstract
Association between fine particulate matter (PM2.5) and respiratory health has attracted great concern in China. Substantial
epidemiological evidences confirm the correlational relationship between PM2.5 and respiratory disease in many Chinese cities.
However, the causative impact of PM2.5 on respiratory disease remains uncertain and comparative analysis is limited. This study
aims to explore and compare the correlational relationship as well as the causal connection between PM2.5 and upper respiratory
tract infection (URTI) in two typical cities (Beijing, Shenzhen) with rather different ambient air environment conditions. The
distributed lag nonlinear model (DLNM) was used to detect the correlational relationship between PM2.5 and URTI by revealing
the lag effect pattern of PM2.5 on URTI. The convergent cross mapping (CCM) method was applied to explore the causal
connection between PM2.5 and URTI. The results from DLNM indicate that an increase of 10 μg/m3 in PM2.5 concentration
is associated with an increase of 1.86% (95% confidence interval: 0.74%-2.99%) in URTI at a lag of 13 days in Beijing,
compared with 2.68% (95% confidence interval: 0.99–4.39%) at a lag of 1 day in Shenzhen. The causality detection with
CCM quantitatively demonstrates the significant causative influence of PM2.5 on URTI in both two cities. Findings from the
two methods consistently show that people living in low-concentration areas (Shenzhen) are less tolerant to PM2.5 exposure than
those in high-concentration areas (Beijing). In general, our study highlights the adverse health effects of PM2.5 pollution on the
general public in cities with various PM2.5 levels and emphasizes the needs for the government to provide appropriate solutions to
control PM2.5 pollution, even in cities with low PM2.5 concentration.

Keywords Fine particulate matter . Health effect . Causative impact . Acute upper respiratory disease . Convergent cross
mapping . Distributed lag nonlinear model

Introduction

The health effects associated with fine particulate matter
(PM2.5) have attracted great public attention in recent decades.
Substantial epidemiological evidences have confirmed the

correlation between respiratory disease and a certain time ex-
posure in contaminated air environment (especially PM2.5) for
general population (Huang 2014; Cohen et al. 2017; Shaddick
et al. 2018;Wang et al. 2018; Burnett et al. 2014). A variety of
time series and case-crossover studies are carried out to

Responsible Editor: Lotfi Aleya

* Ling Yao
yaoling@lreis.ac.cn

1 Guangdong Open Laboratory of Geospatial Information Technology
and Application, Key Laboratory of Guangdong for Utilization of
Remote Sensing and Geographical Information System, Engineering
Technology Center of Remote Sensing Big Data Application of
Guangdong Province, Guangzhou Institute of Geography,
Guangdong Academy of Sciences, 510070 Guangzhou, People’s
Republic of China

2 State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing 100101, People’s
Republic of China

3 Southern Marine Science and Engineering Guangdong Laboratory,
Guangzhou 511458, People’s Republic of China

4 College of Resources and Environment, University of Chinese
Academy of Sciences, Beijing 100101, People’s Republic of China

5 Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing
Normal University, Nanjing 210023, People’s Republic of China

https://doi.org/10.1007/s11356-021-16450-5

/ Published online: 16 September 2021

Environmental Science and Pollution Research (2022) 29:11185–11195

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-16450-5&domain=pdf
http://orcid.org/0000-0002-6120-5806
mailto:yaoling@lreis.ac.cn


investigate the short-term health effects of exposures to PM2.5

on the respiratory system by analyzing the variation trend of
mortality or healthcare visits in a certain area. Significant as-
sociations between PM2.5 pollution episodes and the morbid-
ity as well as the mortality of respiratory diseases are com-
monly found in cities around the world (Lin et al. 2016;
Atkinson et al. 2015; Shang et al. 2013).

In recent decades, PM2.5 pollution has always been a chal-
lenging environmental concern in a great number of cities in
China (Liu et al. 2016; Song et al. 2017), especially the first-
tier cities. Acute upper respiratory disease is one of the most
common health issues, whose infection rates could be exacer-
bated by air pollution (Cheng et al. 2021). The nose and upper
respiratory tract act as sentinels in the respiratory system.
Inhalation particles of different sizes tend to impact and inter-
act with the upper airway mucosa, thereby resulting in viral
infection.Many studies have investigated short-term effects of
air pollution on the respiratory infections, and significant as-
sociations between PM2.5 levels and respiratory disease have
been observed in heavily polluted regions, including Beijing
(Li et al. 2018), Shanghai (Chen et al. 2008), Wuhan (Qian
et al. 2007), and Lanzhou (Tao et al. 2013). However, evi-
dences in other countries have shown that exposure to PM2.5,
even at levels which are not much greater than normal back-
ground concentration (e.g., 3–5 μg/m3 in Western Europe),
may lead to increased risk of mortality due to respiratory dis-
eases (Kioumourtzoglou et al. 2016; WHO Regional Office
for Europe 2013). A similar conclusion has been confirmed in
China. Li et al. (2020) found out that short-term PM exposures
were associated with increased respiratory diseases among
children, even for PM2.5 levels below current Chinese
National Ambient Air Quality Standards II in certain cities
in China. Yu and Chien (2016) also pointed out that PM2.5

increase at relatively lower levels can increase the same-day
respiratory health risks of children under 14 years old in
China.

As the rising demands of harmless air environment from
the Chinese public, a great number of researches concerning
the relationship between air pollution and respiratory health
have been conducted nationwide and demonstrated this corre-
lation in cities with various levels of PM2.5 pollution.
However, there are still some insufficiency in current re-
searches. On one hand, the most of the researches are conduct-
ed in a single city and lack the comparative analysis on effect
pattern of PM2.5 among cities with different pollution levels.
On the other hand, time series analysis based on the regression
model which mainly focuses on the correlational relationship
is widely used in current researches; the causal connection
between the two is still uncertain. In this research, we intended
to investigate the health effect of PM2.5 on the upper respira-
tory tract in two typical cities with rather different ambient air
environment conditions and compare the effect pattern of
PM2.5 in distinct levels. Except for exploring the correlational

relationship between PM2.5 concentration and upper respira-
tory diseases using a time series analysis based on the regres-
sion model, the causal connection between the two was also
detected by applying a model-free method, which helps to
distinguish causality from standard correlations.

Methods and materials

Study areas

This study aims to explore the relationship between PM2.5

pollution and acute upper respiratory disease in two typical
cities with rather different ambient air environment condi-
tions. For highly polluted city, Beijing where has suffered
severe haze weather in recent years is chosen, while for a
slightly polluted city, Shenzhen is picked since its air quality
is always among the best in China.

Beijing, as the capital city, is the political and economic
center of China. Located in the Jing-Jin-Ji metropolitan area
which is dominated by heavy industry, Beijing has been deep-
ly affected by the surrounding anthropogenic pollution emis-
sions as a result of the rapid development in this area
(Dominici and Mittleman 2012). In addition, the geographical
location of Beijing generally tends to prevent the air pollutants
from spreading out, which also aggravates the air pollution in
Beijing. In view of this, Beijing urban area, including
Dongcheng, Xicheng, Chaoyang, Haidian, Fengtai, and
Shijingshan), is chosen as the typical area the suffered from
heavy air pollution in this study.

Shenzhen, a young city in China, was once praised as an
Environmental ProtectionModel City in 1997 for its favorable
air environment. In recent years, as a member of the Pearl
River Delta (PRD) region which is one of the most developed
regions with the highest aggregation of industry in China,
Shenzhen has experienced deterioration in its air environment
quality. Influenced by local pollution as well as pollution from
surrounding areas, air quality in Shenzhen has deteriorated
gradually and affected the living quality of local people to
some extent (Xia et al. 2017a, Xia and Yao 2019). However,
the air environment condition in Shenzhen is still considered
pleasant compared with Beijing (Xia et al. 2017b). In this
study, Shenzhen city is chosen as the typical area with mild
air pollution for comparison.

Data collection

Daily counts of respiratory illness cases from Jan 1 to Dec 31,
2013, were collected from ten comprehensive hospitals locat-
ed in urban areas in Beijing (obtained from Xu et al. (2016) )
and 66 major hospitals in Shenzhen City. According to the
International Classification of Diseases 10th Revision Code
(ICD-10), cases of upper respiratory tract infection (URTI)
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(ICD-10: J00, J02-J06) were picked out from all the respira-
tory illness cases. In this study, we only focus on the associ-
ation between short-term exposure to PM2.5 and URTI, since
URTI is generally considered to be associated with the exter-
nal environment.

Hourly concentrations of PM2.5 are released by the
Ministry of Ecology and Environment of the People’s
Republic of China (http://air.cnemc.cn:18007), following the
Chinese National Ambient Air Quality Standards (GB3095-
2012) (MEP 2012). Daily-averaged concentration PM2.5 (μg/
m3) data during the study period were collected to represent
the degree of the exposure to PM2.5, including data from 17
ambient air quality monitoring stations located in urban areas
in Beijing city and 19 stations in Shenzhen City. The spatial
distributions of the hospitals andmonitoring sites are shown in
Figure 1. The rate of the missing values from the 17 monitor-
ing stations in Beijing is relatively high. To solve this prob-
lem, we use the linear interpolation method to fill the missing
date range when it is less than or equal to 3 days. No missing
date is observed in the time series of daily concentration of
PM2.5 in Shenzhen during the study period.

Meanwhile, to control for the effects of weather conditions
during the same period, daily meteorological data were col-
lected from the official website of the Chinese Meteorological

Bureau, including daily mean temperature (°C) and relative
humidity daily (%).

Distributed lag nonlinear model

Distributed lag nonlinear model (DLNM) has been widely
used to estimate the exposure-response relationship between
environmental pollution and diseases in a lot of epidemiolog-
ical studies (Lall et al. 2010; Shrestha 2007). The exposure-
response relationship generally represents the correlational re-
lationship between the level of exposure and the occurrence of
certain diseases of the human body.

Based on the generalized additive model, DLNM is devel-
oped to evaluate the lag effect by involving a detailed time-
course representation of the exposure-response relationship
(Gasparrini et al. 2010). The main advantage of the DLNM
is that it is able to provide an estimate of the cumulative lag
effect as the sum of the single-day lag effect upon the whole
period. Considering the confounding factors, penalized
smoothing splines of calendar time and metrological condi-
tions (temperature, relative humidity) were added to improve
the performance of the model. Degrees of freedom (df) for the
smoothers are determined using the generalized the cross val-
idation until the sum of absolute difference reached the

Figure 1 Distributions of involved hospitals and monitoring sites in Beijing urban areas and Shenzhen City
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minimum. In this study, df for calendar time is set to 7, and df
for temperature and relative humidity is set to 3 in both two
study areas to account for the potential nonlinear effects. We
also include two dummy variables for the day of the week and
holiday, respectively. The model is of the form:

Log E Y tð Þ½ � ¼ α þ ∑
L

i¼1
βiX t−L;i þ S time; dfð Þ þ βwDOWt

þ βhHolidayt þ S Zt; dfð Þ ð1Þ

where t is the day of observation; Xt − L represents the con-
centration of PM2.5 on L days ahead day t; E(Yt) is the expect-
ed number of cases on day t; α is the intercept term; β repre-
sents the log-relative risk (RR) of cases associated with a unit
increase of PM2.5.; S(time, df) and S(Zt, df) are the penalized
smoothing splines of calendar time and metrological condi-
tions (temperature, relative humidity); and DOW and Holiday
stand for the day of week and holiday with βw and βh as the
corresponding coefficients.

To perform the model, DLNM and Mixed GAM
Computation Vehicle (MGCV) packages in R (Wood 2017)
were used. All results are presented as relative risk (RR) or
percent change in daily case amount and its 95% confidence
interval (CI) in association with a 10-μg/m3 increase of PM2.5

concentration.

Convergent cross mapping method

The convergent cross mapping (CCM) method is the first
proposed by Sugihara and May (1990) to deal with the illuso-
ry correlation in the complex system. It helps in distinguishing
the causality from standard correlations between pairs of time
series (at least 25 observations) (Maher and Hernandez 2015).

Based on Takens’ theorem, the CCM algorithm is model-free
and robust to unmeasured confounding which may induce false
associations (Deyle and Sugihara 2011). It allows reconstructing
high dimensional system dynamics with a time series of a single
variable under mild assumptions. In CCM, the complex and
nonlinear systems are analyzed through state-space reconstruc-
tion, which has advantages in solving problems in various fields,
e.g., wildlife management and cerebral autoregulation
(Vanderweele and Arah 2011). Unlike the most frequently used
Granger causality analysis (Granger 1980) which behaves poorly
in a weak-to-moderate coupling, CCM is more suitable for de-
tecting illusory correlation and revealing potential causality in
complex ecosystems (Sugihara et al. 2012).

Giving two time series of variables X {x1,x2,…,xL} and
Y{y1,y2,…yL} (L is the length of time period), dimension E
in which the reconstructed attractor is embedded and time
lag τ, CCM algorithm is implemented in the following steps:

Step 1. Rebuild the shadow manifold Mx and My from the
lagged-coordinate vectors X and Y, which is:

x tð Þ ¼ xt; xt−τ ; xt−2τ ;…; xt− E−1ð Þτ
� � ð2Þ

y tð Þ ¼ yt; yt−τ ; yt−2τ ;…; yt− E−1ð Þτ
D E

ð3Þ

where t = 1+(E-1) τ to t = L. A small region around ytwill map to
a small region around xt to estimate xt sinceMy is diffeomorphic
to Mx. Note that at least E+1 points are needed to form a
bounding simplex around yt (Sugihara and May 1990).

Step 2. Create a cross mapped estimation of yt, denoted by
byt Mxj . Firstly, find the simultaneous lagged-
coordinate vector on Mx, x(t) and its E + 1 nearest
neighbors. For each x(t), the nearest neighbor search
gets a set of distances sorted from the closest to the
outermost by an associated set of time {t1,t2,…,tE+1}.
The distance d[x(t), x(s)] is measured by the Euclidean
distance between the two vectors.

Step 3. Calculate with a weighted mean the nearest neigh-
bors in My. The weight wi is defined as:

wi ¼ ui
∑Eþ1

j¼1 uj
ð4Þ

where

ui ¼ exp −
d x tð Þ; x tið Þ½ �
d x tð Þ; x t1ð Þ½ �

� �

Step 4. Explore neighbors in y with {t1, t2, …, tE+1}. The
estimate of yt is a locally weighted mean of the E+1,
and yti is calculated as:

byt Mxj ¼ ∑
Eþ1

i¼1
wiyti ð5Þ

Step 5. . Calculate the CCM correlation. The Pearson corre-
lation coefficient between original and estimated
time series is expressed as:

ρ
YbY

¼ ρ yt;byt Mxj
� �

ð6Þ

Meanwhile, a t-statistic for correlation coefficient at a level of
significance is calculated as:

t ¼
ρ
YbY=Sρwhere Sρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ

YbY
2

N−2

s

ð7Þ

where N is the length of the time series process. The Pearson
correlation coefficient ρYX between the L true values from Y,
and the L cross mapped estimates are an indicator of how
much the dynamics of Y impacts the dynamics of X (Dan
et al. 2017).
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For CCM method, E and τ are two important parameters
which need to be optimized. Based on previous findings,
CCM is suggested to be insensitive to the manual setting of
parameters and can extract reliable causality between di-
verse variables (Chen et al. 2017). Assuming that Emax is
the optimal dimension, Whitney’s theorem indicates that
the dimensionality is generically between (Emax −1)/2 and
Emax (Deyle and Sugihara 2011). In this study, dimension
(E) from the two times series equals 2 using the false
nearest neighbor method, and the value of τ is set to 2
based on the average mutual information criterion for both
study areas.

Results and discussion

Descriptive statistics

A total of 51134 and 18354 URTI cases were recorded, re-
spectively, from the hospitals in Beijing and Shenzhen in
2013. Table 1 summarizes the statistical characteristics of
URTI, PM2.5 concentration, and meteorological factors in
Beijing and Shenzhen in 2013. The daily mean count of
URTI was 140 in Beijing (ranged from 65 to 347) and 50 in
Shenzhen (ranged from 1 to 87). The time series graph in
Figure 2 shows the daily variations of URTIs and PM2.5 con-
centrations in 2013.

During the study period, the overall daily mean PM2.5

concentration was 102 μg/m3 (ranged from 6.7 μg/m3 to
508.5 μg/m3) in Beijing and 37 μg/m3 (ranged from 7.9
μg/m3 to 129.8 μg/m3) in Shenzhen. Referring to the
Chinese Ambient Air Quality Standards (Grade II, 75 μg/
m3 for 24-hour average PM2.5 concentration), 45.7% (155
days) of the daily PM2.5 concentrations in Beijing and 88%
(321 days) in Shenzhen were below the standard. While
referring to the WHO Air Quality Standards (25 μg/m3

for 24-h average PM2.5 concentration), only 30 days in
Beijing and 120 days in Shenzhen met the standard.
Judging by the number of days which meet the two kinds
of standard, PM2.5 pollution in Beijing was much more
severe than that in Shenzhen in 2013. In addition, meteo-
rological conditions in the two cities are also different.
Located in relatively lower latitudes, Shenzhen has a
warmer and wetter climate than Beijing.

The lag effect of PM2.5 on URTI

To explore the lagged health effect of PM2.5 on the upper respi-
ratory tract of the human body, a time series analysis based on
DLNM was carried out. We investigated the lag effect of PM2.5

up to a lag of 7 days in Shenzhen and 14 days in Beijing. There
were clear exposure-response relationships between PM2.5 con-
centration and URTI cases. As shown in Figure 3, the exposure-

response patterns for Beijing and Shenzhen are both approxi-
mately linear, with slight fluctuations when the PM2.5 concentra-
tions are below a certain value (300μg/m3 for Beijing and 70μg/
m3 for Shenzhen) and a sharper rise at higher PM2.5 concentra-
tions. Different patterns of response at the same PM2.5 levels are
observed in the two study areas, which implies that citizens in
Shenzhen are more sensitive to PM2.5 exposure while citizens in
Beijing are more tolerant to PM2.5 exposure.

In this study, the DLNMwas applied to evaluate the effects of
PM2.5 on the upper respiratory track as a linear exposure-
response relationship between them. The relative risk for URTI
was denoted as a change in the number of daily URTI cases
associated with a 10-μg/m3 increase of PM2.5 concentration.
The resulting exposure-response patterns for both single-day
lag effect and cumulative lag effect are shown in Figure 4, with
black bars and gray areas representing the 95% CI. The cumula-
tive lag effect was obtained by applying a polynomial curve
fitting on single-day lag effect at a degree of 3.

Table 2 and Table 3 show the relative risk for URTI asso-
ciated with a 10-μg/m3 increase in PM2.5, together with the
95% CI in Beijing urban area and Shenzhen City. For Beijing
urban area, significant single-day lag effects were observed at
a lag ranging from 6 days to 12 days, with the maximum
appeared at a lag of 10 days; significant cumulative lag effects
appeared at a lag of 6 days and remained significant until a lag
of 14 days. For Shenzhen City, a significant single-day lag
effect was only observed at a lag of 1 day, and significant
cumulative lag effects were observed at a lag ranging from
1 day to 5 days. Considering the cumulative lag effect, each
10-μg/m3 increase in PM2.5 concentration was maximally as-
sociated with 1.86% (95%CI: 0.74–2.99%) and 2.68%

Table 1 Summary of the URTI, PM2.5 concentration, temperature, and
relative humidity in Beijing and Shenzhen during the study period. SD
means standard deviation, and P(25), P(50), and P(75) represent the lower
quartile, the mean value, and the upper quartile, respectively

Variable Mean
±SD

Min P(25) P(50) P(75) Max

URTI

Beijing 140±52 65 108 126 155 347

Shenzhen 50±14 1 42 50 59 87

PM2.5(μg/m
3)

Beijing 102±73.6 6.7 53.1 82.4 129.5 508.5

Shenzhen 37±23.7 7.9 20.8 34.7 61.2 129.8

Temperature (°C)

Beijing 11.3±11.6 -12.6 1.2 11.0 22.2 29.0

Shenzhen 23.2±5.2 4.4 18.8 25.6 27.3 35

Relative humidity (%)

Beijing 58.7±17.3 18.9 46.7 59.0 73.3 93.3

Shenzhen 73±12.8 22 59 77 93 100

11189Environ Sci Pollut Res (2022) 29:11185–11195



(95%CI: 0.99–4.39%) increase in URITs in Beijing (at a lag of
13 days) and Shenzhen (at a lag of 1 day), respectively.

Although significant lag effects were detected in both two
study areas, the lag patterns were quite different. The lag effect
of PM2.5 on URTI in Beijing was more delayed and lasts
longer than that in Shenzhen. Judging by the RR values, the
same amounts of increases in PM2.5 concentration in
Shenzhen had a greater effect on URTI than in Beijing.

This section focused on the comparison of the exposure-
response relationship between PM2.5 and URTI in a highly
polluted area and a slightly polluted area. It was found out

that, after a short-term exposure in PM2.5, response on URTI
in the slightly polluted area (Shenzhen) was more significant
than in the highly polluted area (Beijing), in terms of response
time and degree of effect.

The causative influence of PM2.5 on URTI

The lag effect analysis using DLNM in section 3.2 is a regres-
sion analysis which can only detect whether the two variables
have a correlational relationship. However, correlation does
not mean causality [33]. To explore the causative influence of

(a) Time series graph in Beijing

(b) Time series graph in Shenzhen
Figure 2. Time series graph of URTI (number of daily cases) and daily PM2.5 concentrations in (a) Beijing and (b) Shenzhen in 2013

(a) Beijing (b) Shenzhen

Figure 3 Smoothed exposure-response graph of daily mean PM2.5 con-
centrations at a lag of 0–1 day against the risk of URTI. The X-axis shows
the moving averages of PM2.5 concentrations. The Y-axis is the

predicted relative risk (RR). The red line represents central estimates,
and the grey-shaded area represents the 95% CI
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PM2.5 on URTI, a time series analysis based on the CCM
method was applied.

The convergent cross maps of Beijing urban area and
Shenzhen City are shown in Figure 5, where the red lines repre-
sent the causative influence of the number of URTI cases on
PM2.5 concentrations while the blue lines represent the opposite.

The ρ value itself cannot indicate the positive or negative impact,
and only the positive ρ value with a stable convergent trend
implies the causative impact may exist between the two vari-
ables. Significant convergent patterns of blue lines are observed
for two study areas, indicating that PM2.5 concentration causa-
tively impacts the number of URTI in Beijing and Shenzhen.
While regard to the red lines, no significant patterns were detect-
ed, which implies that the number of URTI has no impact on
PM2.5 concentration. This logical result also verifies the feasibil-
ity and effectiveness of CCM method. Quantitative results (ρ
value) in Table 4 represent the strength of the causative impact,
and it shows that the strength of the impact in Shenzhen is larger
than that in Beijing.

(a) Single-day lag effect in Beijing (b) Cumulative lag effect in Beijing

(c) Single-day lag effect in Shenzhen (d) Cumulative lag effect Shenzhen
Figure 4. Lag-response relationship between PM2.5 and relative risk (RR) of URTI for (a) single-day lag effect in Beijing, (b) cumulative lag effect in
Beijing, (c) single-day lag effect in Shenzhen, and (d) cumulative lag effect in Shenzhen

Table 2 Relative risk for URTI on different lag days in associations
with 10-μg/m3 increase in PM2.5 concentrations in Beijing urban area in
2013. (Value with * is significant at the 0.05 level)

Lag (days) RR (95% CI)
(Single-day lag effect)

Cumulative RR (95% CI)
(Cumulative lag effect)

0 1.0019 (0.9995, 1.0043) 1.0019 (0.9995, 1.0043)

1 1.0012 (0.9996, 1.0028) 1.0031 (0.9992, 1.0070)

2 1.0008 (0.9996, 1.0020) 1.0039 (0.9991, 1.0088)

3 1.0007 (0.9995, 1.0019) 1.0046 (0.9991, 1.0101)

4 1.0007 (0.9995, 1.0019) 1.0053 (0.9992, 1.0115)

5 1.0009 (0.9998, 1.0020) 1.0062 (0.9995, 1.0130)

6 1.0012 (1.0001, 1.0022)* 1.0074 (1.0001, 1.0148)*

7 1.0015 (1.0005, 1.0025)* 1.0089 (1.0011, 1.0168)*

8 1.0018 (1.0007, 1.0028)* 1.0107 (1.0023, 1.0192)*

9 1.0019 (1.0008, 1.0031)* 1.0127 (1.0037, 1.0217)*

10 1.0020 (1.0008, 1.0032)* 1.0147 (1.0052, 1.0243)*

11 1.0018 (1.0006, 1.0030)* 1.0165 (1.0064, 1.0268)*

12 1.0014 (1.0003, 1.0025)* 1.0179 (1.0072, 1.0288)*

13 1.0006 (0.9993, 1.0020) 1.0186 (1.0074, 1.0299)*

14 0.9995 (0.9974, 1.0016) 1.0181 (1.0063, 1.0299)*

Table 3 Relative risk for URTI on different lag days in associations
with 10-μg/m3 increase in PM2.5 concentrations in Shenzhen City in
2013. (Value with * is significant at the 0.05 level)

Lag (days) RR (95% CI)
(Single-day lag effect)

Cumulative RR (95% CI)
(Cumulative lag effect)

0 1.0212 (1.0063, 1.0364)* 1.0212 (1.0063, 1.0364)*

1 1.0054 (0.9985, 1.0124) 1.0268 (1.0099, 1.0439)*

2 0.9984 (0.9899, 1.0070) 1.0251 (1.0078, 1.0427)*

3 0.9971 (0.9905, 1.0037) 1.0221 (1.0038, 1.0407)*

4 0.9987 (0.9923, 1.0052) 1.0208 (1.0020, 1.0398)*

5 1.0005 (0.9921, 1.0090) 1.0213 (1.0010, 1.0420)*

6 0.9997 (0.9930, 1.0065) 1.0210 (0.9990, 1.0436)

7 0.9935 (0.9796, 1.0077) 1.0144 (0.9926, 1.0367)
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Comparative discussions on the finding

Significant associations between PM2.5 concentration and URTI
cases in terms of correlation relationship as well as causal con-
nection were both observed in Beijing urban area and Shenzhen
City. That is, short-term exposure to PM2.5 does have a signifi-
cant adverse effect on the upper respiratory track of the general
population regardless of the pollution level of PM2.5. However,
when concerning the effect patterns, such as the lag period and
strength of effect, it shows quite different outcomes. The results
fromDLNMandCCMboth show that the strength of the impact
of PM2.5 in Shenzhen City is larger than that in Beijing urban
areas. This finding is consistent with other studies carried out in
China and other countries. Table 5 summarizes the findings in
relevant studies concerning the associations between PM2.5 and
respiratory disease in recent years.

Table 5 contains the study area, PM2.5 level, increased percent
of the respiratory disease (including the number of all diseases,
number of upper respiratory infection, mortality of all disease)
from the recent studies, and they are arranged in the order of
PM2.5 level from low to high. We can see that increased risks
in the study areas with lower PM2.5 levels are generally higher
than those with higher PM2.5 levels. For mortality of all respira-
tory disease, for each 10-μg/m3 increase in PM2.5 concentration,
it showed 2.0–4.01% (95%CI: 0.15–7.52%) increases in Tokyo,
Shenzhen, and Zhuhai (mean PM2.5: 16.0–34.23 μg/m3), 0.90–
0.97% (95% CI: 0.01–1.94%) increases in Hefei and Shenyang
(mean PM2.5: 66.18–75 μg/m3), while only 0.63% (95% CI:
0.07–1.19%) increase in Shijiazhuang (mean PM2.5: 118.8 μg/

m3). Besides, for numbers of all respiratory disease, each 10-μg/
m3 increase in PM2.5 concentration showed 1.06–1.19% (95%
CI: 0.20–2.19%) increases in Shenzhen and Guangzhou (mean
PM2.5: 23.7–35.8 μg/m3), 0.53–0.73% (95% CI: 0.22–0.87%)
increases in Shanghai and Lanzhou (mean PM2.5: 55.5–61.11
μg/m3), while only 0.23–0.57% (95%CI: 0.02–0.66%) increases
in Chengdu and Jinan (mean PM2.5: 96.9–100 μg/m3). As for
upper respiratory infection, for each 10-μg/m3 increase in PM2.5

concentration, it showed 4.8% (95% CI: 2.8–6.9%) in Korea
(mean PM2.5: 21.1 μg/m3), 2.68% (95% CI: 0.99–4.39%) in
Shenzhen (mean PM2.5: 50 μg/m3), while 1.86% (95% CI:
0.74–2.99%) in Beijing (mean PM2.5: 140 μg/m

3). A systematic
review study conducted by Sun et al. (2020) similarly found out
that a low increased risk of respiratory disease (0.62%, 95% CI:
0.57–0.66%) was identified at a high level of annual mean PM2.5

concentrations (41.36–110.80 μg/m3 ) with 1.82% (95% CI:
1.72–1.92%) at a low level of annual mean PM2.5 concentrations
(29.86–40.20 μg/m3 ), which can also support the finding in this
study.

Conclusions

In this study, a comparative analysis on the health effect of
PM2.5 is conducted in two typical cities with different pollu-
tion levels, by applying time series analysis based on the
DLNM and CCM method. Both correlational relationship
and causal connection between PM2.5 concentration and
URTI cases are detected in two study areas. In addition, the
results from DLNM and CCM method consistently show that
the strength of the impact of PM2.5 in Shenzhen is larger than
that in Beijing, which implies that people living in low-
concentration areas (Shenzhen) are less tolerant to PM2.5 ex-
posure than those in high-concentration areas (Beijing). In
conclusion, our study highlights the adverse health effects of
PM2.5 pollution on the general public in cities with various
PM2.5 levels in China and emphasizes the need for the gov-
ernment to provide appropriate solutions to control PM2.5 pol-
lution, even in cities with low PM2.5 levels.

Table 4. Quantitative causative influence (ρ value) between PM2.5 and
URTI in Beijing urban areas and Shenzhen City; value with * is
significant at the 0.05 level

Pairs Causative impact (ρ value)

PM2.5 – URTI in Beijing 0.089*

URTI – PM2.5 in Beijing 0.001

PM2.5 – URTI in Shenzhen 0.347*

URTI – PM2.5 in Shenzhen 0.102

(a) Beijing (b) Shenzhen

Figure 5 Convergent cross maps
demonstrating the causality
between PM2.5 concentration
and URTI in (a) Beijing and (b)
Shenzhen in 2013. PM2.5-URTI
indicates the influence of PM2.5
on URTI, and URTI-PM2.5 is the
opposite
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