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Abstract
The impact of human activities on terrestrial ecosystems is becoming more intense than ever in history. Human disturbance
analyses play important roles in appropriately managing the human–environment relationship. In this study, a human disturbance
index (HDI) that uses land use and land cover data from 1980, 2000, 2010, and 2018 is proposed to assess the human disturbance
of ecosystems in the Guangdong-Hong Kong-Macao Greater Bay Area. The HDI is first calculated by classifying the human
disturbance intensity into seven levels and 13 categories from weak to strong in ecosystems. Then the driving factors of the HDI
spatial pattern change are explored using a geographically weighted regression (GWR)model. The results showed that the spatial
pattern of the HDI was high in the middle and low in the surrounding areas. The intensity of human disturbance increased, and the
medium and high disturbance areas expanded during 1980–2018, especially in Guangzhou, Foshan, Shenzhen, and Dongguan.
Human disturbance displayed an obvious spatial heterogeneity. The GWRmodel had a better explanation effect of the analysis of
the HDI change drivers. The driving effect of the socioeconomic conditions was significantly stronger than that of the natural
environmental. This study assists in understanding the distribution and change characteristics of the ecological environment in
areas with strong human activities and provides a reference for related studies.

Keywords Ecosystem .Human disturbance . Temporal and spatial characteristics . Geographicallyweighted regression (GWR) .
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Introduction

Land covers are the geographic landscapes formed by natural
environmental conditions, but they are influenced and modified
by human activities (Gu et al. 2007; Li et al. 2018). During the

interaction between humans and the environment, the surface
landscape is affected intentionally or unintentionally in both nat-
ural and urban areas (Ren et al. 2014; Feng et al. 2018). Rapid
urban expansion has driven land cover changes across various
terrains (Wu et al. 2015; Dai et al. 2018a; Mansour et al. 2020).
The reduction of the adverse effects of land cover change on the
urban climate (Arsiso et al. 2018), ecosystems (Peng et al. 2017),
human settlement environments (Asabere et al. 2020), and other
aspects has become an important challenge for regional sustain-
able development. Therefore, quantitative assessments of the hu-
man activity intensity in different regions are critical for correctly
handling the relationship between humans and the environment.
This assessment plays a vital role in optimizing the development
of land resources, understanding the current situation of the eco-
logical environment, and implementing ecological restoration,
especially in areas with intense land use and cover changes.

Human disturbance, which can also be referred to as
hemeroby, was an idea proposed by Jalas in 1955 to quantify
the impact of human activities on vegetation (Jalas 1955;
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Walz and Stein 2014). Sukopp (1976) defined the degree of
hemeroby to assess the impact of human activities on ecosys-
tems. His basic idea was to use the habitat index to classify
ecosystems into undisturbed, partially disturbed, and anthro-
pogenically dominated. Other researchers have referred to this
idea to clarify the impact of human activities on the surface
environment (Hannah et al. 1994), and to quantify anthropo-
genic disturbance to animal food sources during land devel-
opment (Gill et al. 1996). In addition, it has been used to
specifically analyze the impact on creatures and their habitats
due to artificial facilities such as roads, human hunting, just
passing through animal territories, and land use changes
(Kerley et al. 2002; Stankowich 2008; de Matos et al. 2021).
It has also been used to explore the pronounced changes in
biological land use in urban human settlement environments
(Markovchick-Nicholls et al. 2008). Human disturbances are
closely related to landscape patterns and vulnerability (Evans
et al. 2017; Shi et al. 2020), and these disturbances are
reflected as land use changes that can impact environmental
conditions (Wang et al. 2013). With progress in surface infor-
mation extraction technologies, land cover is becoming in-
creasingly refined, and this helps to distinguish the
differences between natural and anthropogenic landscape
and identify landscapes types at different spatial scales.
Therefore, quantifying the intensity of human activities
through land cover types has become a popular research field.

Several studies have investigated land use development in-
tensities and have quantified human activities. Roth et al.
(2016) found that human disturbances increased in Mexico
from 2002 to 2013, but the growth rate slowed down signifi-
cantly during 2002–2008 and 2008–2013. Ning et al. (2015)
discovered that human disturbances to ecosystems in China
showed an upward trend from 1990 to 2010, with a higher level
in the northeast and northern China. Similar trends have been
found in other studies. The coastal zone, containing wetland
ecosystems, has been found to be degraded in the landscape
and the intensity of anthropogenic disturbance has gradually
increased in the coastal areas of Jiangsu in recent decades
(Zhou et al. 2018; Cui et al. 2021). Port construction and beach
reclamation were important reasons behind this phenomenon
(Zhou et al. 2018). In Shenzhen in South China, where there is
also a coastal area, it was found that human disturbance
changed significantly (Yi et al. 2020). The primary factors for
this change might have been related to the coastal geomorphol-
ogy (Yi et al. 2020). The population density, gross domestic
product (GDP), and topography are important factors in hilly
areas that affect human disturbance and ecosystem service
values (Chen et al. 2020). The expansion of construction land
and cultivated land reclamation has caused human disturbance
changes and landscape fragmentation in Daqing (Tian et al.
2020). A certain internal relationship between human distur-
bance and ecological vulnerability was found in Qiqihar, anoth-
er city in Northeast China (Yang and Song 2021).

These studies provide references for relevant studies per-
formed in different regions. In addition, there are differences
in the distribution and driving factors of human disturbance in
a variety of environments. It has been demonstrated that it is of
great significance to clarify the role of the natural environment
and socioeconomic factors on the intensity of human distur-
bance. However, this is an aspect that still requires further
study, especially in areas with intense land use and cover
changes.

The Guangdong-Hong Kong-Macao Greater Bay Area
(GHMGBA) is one of the most economically concentrated
and developed areas in South China. This region is character-
ized by megacities with dense populations, as well as busy
transportation and a high GDP. Accordingly, issues such as
spatial and temporal characteristics and drivers of land use
change, especially urban expansion (Jiao et al. 2019; Feng
et al. 2021; Dai et al. 2018b; Zhang et al. 2020), urban heat
island patterns and anthropogenic heat emissions (Yu et al.
2019; Ma et al. 2021; Peng et al. 2021), changes in ecosystem
service values (Zhou et al. 2019; Xu and Zhang 2021), and
regional ecological security patterns (Bi et al. 2020; Li et al.
2020a; Wang et al. 2020a), have gradually come to the fore-
front of attention. In such a typical urban region, the impact of
human activities on the surface environment cannot be ig-
nored. Therefore, in this study, a human disturbance index is
proposed to quantitatively assess the intensity of human activ-
ities of the surface ecological environment in the GHMGBA.
There are three specific aims this study, which are as follows:
first, to investigate and quantify the disturbance intensity of
terrestrial ecosystems in the GHMGBA from 1980 to 2018;
second, to describe the spatial and temporal characteristics of
the human disturbance intensity and its change trends; third, to
analyze the influence of both the natural environmental and
socioeconomic factors on the human disturbance intensity.

Materials and methods

Study area

The GHMGBA is composed of the former Pearl River Delta
Urban Agglomeration, Hong Kong, and Macao and is located
in the Pearl River Delta in the central of Guangdong Province
of South China (21°27′N–24°24′N, 111°21′E–115°28′E)
(Figure 1). The area is characterized by flat terrain, abundant
water resources, sufficient light and heat, and excellent climat-
ic conditions. The average annual temperature ranges between
21.4 and 22.4°C, and the average annual rainfall is 1800 mm.
It is influenced by a typical subtropical monsoon climate, with
concentrated rainfall from April to September. Owing to its
unique land and sea location, it often suffers from typhoons,
rainstorms, and other climate disasters. The vegetation type is
primarily subtropical evergreen broad-leaf forests with some
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tropical plants. In addition, mangroves are found along the
coastal areas. The GHMGBA contains 11 cities with differ-
ences in their comprehensive carrying capacities (Weng et al.
2020). The total area is approximately 5.6 × 104 km2, account-
ing for 31.16% of Guangdong Province. At the end of 2018,
the total population exceeded 70 million, accounting for more
than 60% of the total population in the entire province. In
2019, the GDP was 11.59 trillion yuan (CNY), in which
Shenzhen, Hong Kong, Guangzhou, and Foshan exceeded
one trillion yuan. The goal of leaders in this area is to become
one of the four great bay areas in the world, like New York
Bay Area, San Francisco Bay Area in the USA, and Tokyo
Bay Area in Japan. From 1980 to 2018, the forest ecosystem
was dominant in this region, but the settlement ecosystem has
expanded markedly (Figure 1d–g). With continuous social
improvements and economic development, the GHMGBA
will produce an increasing disturbance to the natural ecologi-
cal environment.

Research framework and data

The research framework shows the plan to achieve the
goal of investigating the spatial pattern and driving
mechanism of human disturbance of ecosystem in the
GHMGBA (Figure 2). First, based on land use data,
the ecosystem was classified into human disturbance

using the disturbance grade standard, and the different
ecosystems in the region were integrated into the human
disturbance index (Table 1). Second, the representative
indicators were selected from the natural environment
and social economy, and the influencing factors of the
human disturbance spatial heterogeneity were screened
and analyzed using a correlation analysis and a principal
component analysis. Third, the driving mechanism of
the natural environment and socioeconomic factors on
the spatial heterogeneity of human disturbance change
were analyzed based on ordinary least squares and geo-
graphically weighted regression model.

Multiple data from six sources were required according to
the study objectives and framework (Table 2). The land use
and cover change (LUCC) types were reclassified into six
types including cultivated land, forest land, grassland, water
area, construction land, and unused land. The six following
ecosystems, farmland ecosystems, forest ecosystems, grass-
land ecosystems, water ecosystems, settlement ecosystems,
and desert ecosystems, were reclassified using the LUCC data
according to the Classification and Coding of Terrestrial
Ecosystems in China guidelines (http://www.resdc.cn/)
(Figure 1d–g). Five datasets from the natural environment
and social economy were used to analyze the driving forces
of the HDI. Among them, the linear densities of the roads and
rivers (1 km×1 km) were calculated using ArcGIS.

Fig. 1 Location (a–c) and ecosystem distribution (d–g) of the GHMGBA. The GHMGBA refers to the Guangdong, Hong Kong, and Macao Bay Area
(the same below). The ecosystem distribution was obtained from the LUCC data
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Human disturbance intensity

Human disturbance index (HDI)

Human disturbance has changed land use patterns and ecological
processes, and different land use types reflect different human
development and utilization intensities (Wang and Liao 2006;
Liang and Liu 2011; Hou et al. 2019). A human disturbance
index (HDI) model based on the area proportions of the different
land use types was proposed to evaluate the disturbance intensity
of the ecosystem affected by human activities in the GHMGBA
from 1980 to 1980. The primary concept was obtained from the
comprehensive index model of the land use degree (Zhuang and

Liu 1997; Hou et al. 2019) that establishes a quantitative rela-
tionship between human activities and the ecological environ-
ment with land use remote sensing monitoring data (Zhai et al.
2018). The equation is as follows:

HDI ¼ ∑
n

i¼1
Si=S j
� �� Di ð1Þ

where n is the number of ecosystem types with different distur-
bance levels, and themaximumvalue of n in this studywas 13; Si
is the area of the ith ecosystem type in the sampling grid (km2); Sj
is the total area of the sampling grid (km2); and Di is the distur-
bance intensity coefficient reflected by the ith ecosystem type
(Table 1).

Table 1 Classification of the human disturbance in the ecosystems based on the LUCC

Classification Land cover types Ecosystem type Disturbance intensity

H1, no Permanent glacier snow Water ecosystem 1

H2, weak Woodland
High-coverage grassland
Sandy land, Gobi, saline land, bare land, stone texture, desert

Forest ecosystem
Grassland ecosystem
Desert ecosystem

2

H3, mild Shrubland, sparse woodland
Medium-coverage grassland
Lakes, seas, beaches, swamps

Forest ecosystem
Grassland ecosystem
Water ecosystem

3

H4, medium Low-coverage grassland
Canals, reservoirs, and ponds

Grassland ecosystem
Water ecosystem

4

H5, severe Paddy field, dry land
Garden plot

Farmland ecosystem
Forest ecosystem

5

H6, very severe Factories and mines, industrial areas, saltworks, etc. Settlement ecosystem 6

H7, complete Urban land, rural residential areas Settlement ecosystem 7

Data

Land use, ecosystem

Disturbance intensity, 

= ∑ ⁄ ×

Human disturbance evaluation

Classification of 

ecosystem disturbance

Distribution of human 

disturbance

Heterogeneity 

analysis of human

disturbance

Driving factor selection

Natural environment (topography, 

climate, water, vegetation, land); 

social economy (population, 

economy, transportation, city, 

ecosystem value)

Driving analysis model

Screening factors (correlation 

analysis, principal component 

analysis); 

screening models (ordinary least 

squares, geographically weighted 

Driving mechanism of human disturbance heterogeneity in ecosystem

Heterogeneity 

driving mechanism

Driving mechanism 

of natural 

Driving mechanism 

of social economy

Fig. 2 Framework of the spatial pattern and driving mechanism of human disturbance in the ecosystem
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With reference to the following studies (Feng et al. 2017;
Guo et al. 2018; Hou et al. 2019), the intensity of ecosystem
disturbance was divided into seven levels. Different distur-
bance levels exist in the same ecosystem category. For exam-
ple, within the “Forest ecosystem” classification, there are the
difference disturbance levels of “Woodland,” “Shrubland,”
and “Garden plot,” which were classified into different cate-
gories. Therefore, 13 categories under seven disturbance
levels were defined, of which there were at least two catego-
ries of ecosystems at each level of disturbance levels H2–H5
(Table 1). The ecological system and data had a resolution of
1 km × 1 km, which was resampled into a 5 km × 5 km
resolution for the grid analysis to assess the degrees of human
disturbance during 1980, 2000, 2010, and 2018. The results
were then assigned to the grid center to form a point set, and
this was interpolated using the inverse distance weighting
(IDW) method to obtain the spatial distribution.

Measuring geographical distributions

The center element, displacement distance, and direction dis-
tribution are good indicators to describe the change character-
istics of the human disturbance intensity, and they were ob-
tained using ArcGIS For the central elements and displace-
ment distance, the basic idea was to find points with the
smallest distances from all the elements that showed the most
centrally located element in an area, and then the distance was
calculated. The directional distribution was expressed using
the standard deviation ellipse, which reflects the spatial char-
acteristics of geographic elements such as the central tenden-
cy, the dispersion, and directional trends.

Spatial pattern driving factor analysis

Driving factor selection

The driving mechanism of the HDI spatial pattern was ana-
lyzed using the changes in the HDI from 1980 to 2018 as the

dependent variable Y, and the 16 factors from the natural en-
vironment and social economy were used as the drivers of the
independent variable X (Table 3). The natural environmental
factors involved topographic relief, climate, water resources,
vegetation, and land use. The socioeconomic factors involved
population, economy, urban development, and the transporta-
tion distribution.

Geographically weighted regression model

The geographically weighted regression (GWR) model is a
powerful tool used to explore the heterogeneity of spatial re-
lationships (Propastin 2012). As a local spatial regression
model, the GWRmodel considers the spatial location attribute
of data, and this effectively solves the non-stationarity of var-
iable space (Fotheringham et al. 1998). The GWR model has
been applied in many disciplines and has shown a higher
accuracy than conventional regression models, such as the
ordinary least squares (OLS) model (Wang et al. 2020b; Xu
et al. 2021; Liu et al. 2021a). It is also widely used for the
spatial analysis of geographical elements, such as analyzing
the relationship between ecosystem service values and land
use (Wang et al. 2018), identifying temporal and spatial dy-
namics of pollutants (Guo et al. 2021; Pei et al. 2021), esti-
mating surface temperature changes (Qin et al. 2021), and
other factors. The calculation method is as follows (Wang
et al. 2020b; Xu et al. 2021; Liu et al. 2021a):

yi ¼ β0 μi; við Þ þ ∑
k

j¼1
β jxij þ εi ð2Þ

where yi and xij are the results of the dependent variable (the
HDI in an ecosystem), y, and the explanatory variable (driving
factor), x, at position (ui, vi); the coefficients, βj(ui, vi) (j=1, 2,
… k), are k functions on the spatial location; and εi (i=1, 2, ...,
k) is an error with a mean variance of σ2. The model param-
eters, βj(ui, vi) (j=1, 2, ..., k), are location dependent and are
typically estimated locally using a weighted least squares
approach.

Table 2 Data sources

Data Sources

LUCC (1980, 2000, 2010, 2018, 1km) National Earth System Science Data Center
(http://www.geodata.cn/)

DEM (250m×250m) Geospatial Data Cloud (https://www.gscloud.cn)

Meteorological data (1980–2015, 1km) China Meteorological Data Service Centre (http://data.cma.cn)

Water system and roads Open Street Map (https://www.openstreetmap.org)

NDVI (2015, 1km), farmland potential productivity (2010),
population density, the GDP density (2015), the ecosystem service values (2015)

Resource and Environmental Science Data Center
(http://www.resdc.cn/)

Night light (2017, 1 km × 1 km) Geography Resource and Ecology Knowledge Service
System (http://geo.ckcest.cn)
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The performance of the GWR model is sensitive to the
spatial kernel function and bandwidth statistics methods. To
verify the reliability and accuracy of the model, a set of eval-
uation parameters were calculated based on ArcGIS 10.2.
These included the coefficient of determination (R2), the
corrected Akaike information criterion (AICc), standardized
residuals, the variance inflation factor (VIF), and the F-test. A
larger R2 signifies a better fit. The smaller the F-test, the better
the AICc. In addition, the VIF should be less than 7.5.

The GWR model requires less linear characteristics in the
independent variables to avoid data redundancy. A correlation
analysis (CA) is a method used to describe the correlation
degree between objective matters using appropriate statistical
indicators (Gogtay and Thatte 2017). In addition, it has been
used to study land use change (Hou andWen 2020). However,
only the use of a CAmay lead to a lack of information or even
directly discarding a factor because the spatial heterogeneity
covers different geographic information symbols that might
show linear characteristics when measured. Hence, a principal
component analysis (PCA) was used in this study to extract
the new variables principal component, 1–n (PC1–PCn).
PC1–PCn, without data redundancy, which decrease in the
order of the percentage of variance, are able to express the
ability of human activity to disrupt ecosystems and are max-
imally independent between each other (Abdi and Williams
2010). A PCA has the advantages of data dimension reduction
and is widely used in the analysis of land use driving factors
(Leśniewska-Napierała et al. 2019), air quality (Guo et al.
2021), environmental pollution (Li et al. 2020b), the extrac-
tion of the remote sensing ecological index (Qureshi et al.
2020), and other fields.

Results

Classification of the HDI in the ecosystem

The GHMGBA had 6 levels and 12 categories according to
the spatial distribution classification of the HDI in the

ecosystem from 1980 to 2018 (Figure 3). Weakly disturbed
ecosystems like forests, grasslands, and deserts are primarily
distributed in Zhaoqing, Yangjiang, and Huizhou, and these
areas had weak HDI levels, with the area proportion reaching
45.87–47.5%. Mildly disturbed ecosystems, such as forests,
grasslands, and water ecosystems, were scattered and
fragmented, with an area proportion of 6.67–8.46% in the
transition zone from the weak HDI disturbed levels to the
medium and severe levels. The medium disturbed HDI level
from grasslands and water ecosystems, primarily rivers, were
distributed in low-lying beach areas, especially in the Pearl
River Delta region, with an area proportion of 6–7.5%. The
severely disturbed HDI, such as farmlands and forest ecosys-
tems, were distributed in flat areas and transition zones. These
areas are easily disturbed from human activities and can be
easily divided by other types of ecosystems, but maintain
small concentrated areas. The severely disturbed HDI levels
accounted for 25.9–32.5%. The very severely distributed HDI
levels, such as settlement ecosystems, accounted for only 0.6–
3.58%, which was the lowest area proportion of all the eco-
systems. The completely disturbed HDI levels of the settle-
ment ecosystems were distributed in the middle of the
GHMGBA, in the delta, and along the coastal areas, with a
proportion of 4.93–11.29%.

Temporal and spatial characteristics of the HDI

Temporal and spatial distribution of the HDI

The temporal and spatial distribution of human disturbance in
the ecosystems from 1980 to 2018 showed that human distur-
bance in the GHMGBAwas high in the middle and low at the
periphery (Figure 4). The human disturbance was low (2–3.5)
in Zhaoqing, Yangjiang, and Huizhou, but high (5.5–7) in
Guangzhou, Foshan, Zhongshan, and Dongguan. The human
disturbance areas were quite different between Shenzhen and
Hong Kong.

The area proportions with HDIs of 2–2.5, 2.5–3.5, and 3.5–
4.5 were continuously decreasing during 1980–2018, and they

Table 3 Driving factors of the human disturbance spatial pattern

Factor Resolution Time Factor Resolution Time

D11: Elevation (m) 250 m - D21: Population density (person/km2) 1 km 2015

D12: Slope (°) 250 m - D22:GDP density (104 yuan/km2) 1 km 2015

D13: Annual temperature (°C) 1 km 1980–2015 D23: Proportion of urban land (%) 1 km 2018

D14: Annual precipitation (mm) 1 km 1980–2015 D24: Night light index 1 km 2017

D15: Drainage density (km/km2) 1 km - D25: Traffic density (km/km2) 1 km 2018

D16: Distance from water body (m) 1 km - D26: Ecosystem service value (CNY/hm2) 1 km 2015

D17: NDVI 1 km 2018 D27: Distance from city (m) 1km -

D18: Farmland potential productivity (kg/ha) 1 km 2010 D28: Distance from road (m) 1 km 2018
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were 15.47%, 3.91%, and 13.51% during 1980–2000, 200–
2010, and 2010–2018, respectively. The HDI of 4.5–5.5
changed slightly in area. The area with HDIs of 5.5–6.5 and
6.5–7 increased rapidly from 1980 to 2018, from 462 to 4811
km2 and 5 to 427 km2, respectively. The regions with HDIs
greater than 5.5 expanded significantly in Foshan,
Guangzhou, Dongguan, and Shenzhen (Figure 4).

Central elements and displacement of the HDI

The distribution and displacement of the HDI center elements
quantitatively express the distribution and changes of each
level during the different times, reflecting the distribution
and changes in human activity intensities in the GHMGBA
(Figure 5). The HDI of 2–2.49 (Figure 5b), primarily distrib-
uted in Zhaoqing, northwest of the GHMGBA, moved
5656.85 m northeast, 15033.3 m southeast, and 20223.75 m
during 1980–2000, 2000–2010, and 2010–2018, respectively.
Figure 5b shows the larger displacement angles and distances.
The HDI of 2.5–3.49 (Figure 5c), also primarily distributed in

Zhaoqing, moved 1000 m south, 15811.39 m northwest, and
4000m south during each period, respectively, but with small-
er displacement angles. The larger displacement distances oc-
curred in 2000–2010. The HDI of 3.5–4.49 (Figure 5d), pri-
marily distributed in Foshan, the central part of the
GHMGBA, has moved southwest since 1980, with a larger
displacement angle. It had displacement distances of 0 m,
5099.02 m, and 5099.02 m during the three periods.

The HDI of 4.5–5.49 (Figure 5e), primarily distributed in
Guangzhou, moved 7071.07 m southeast, 5385.16 m south-
west, and 3162.28 m southeast during the three studied pe-
riods of 1980–2000, 2000–2010, and 2010–2018, respective-
ly. In addition, the displacement distances were relatively
shorter. The HDI of 5.5–6.49 (Figure 5f) that was first distrib-
uted in Guangzhou moved to Dongguan in 2010 and finally
back to Guangzhou, and moved 10,049.88 m southeast,
32,015.62 m southeast, and 16,492.42 m southwest during
the three periods, with larger displacement angles and dis-
tances. The HDI of 6.5–7 (Figure 5g) was first distributed in
Zhuhai, then in Guangzhou and Foshan, and it moved

Fig. 3 Classification of the human disturbances in the ecosystems of the GHMGBA from 1980 to 2018. There are different color symbols for the same
disturbance levels. These are due to the different ecosystem types
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107,154.09 m northwest, 3,162.28 m southwest, and
5,830.95 m southwest, with large displacement distances
during 1980–2000.

Concentration and direction characteristics of the HDI

The ellipse distribution of the standard deviation of the HDI
was calculated to characterize the concentration and direction
of the HDI. The standard deviation ellipse changed from high
(4.5–7) HDI areas more than low (2–4.49) in 1980, 2000,
2010, and 2018, and there were great differences in the HDI
standard deviation ellipse in the transition period during
1980–2000, 2000–2010, 2010–2018, and 1980–2018
(Figure 6, Table 4). The standard deviation ellipse of the four
years displayed small differences in the areas with the low
HDIs (Figure 6a, Table 4). The low and medium HDIs were
located primarily in the peripheral areas of the GHMGBA,
with an obvious east-west distribution direction. The centrip-
etal force and directionality of the disturbance degree were
obvious. The low and medium HDIs slowly moved to
Zhaoqing and other areas in the northwest.

The standard deviation ellipse of the high HDI ex-
hibited a certain difference (Figure 6b, Table 4), but the
variation was small. The medium-high HDI had a
southwest-northeast direction in the GHMGBA ecosys-
tem. The centripetal force and directionality were not as
obvious as those in the middle and low areas. The
medium-high disturbances were concentrated in central
Guangzhou, Foshan, Dongguan, Shenzhen, and
Zhongshan. There was a development trend toward the
southeast in Dongguan and Shenzhen.

The standard deviation ellipse and its information
were quite different during the three transitional periods
of 1980–2000, 2000–2010, and 2010–2018 (Figure 6c,
Table 4). The overall standard deviation ellipse during
1980–2018 was between that of 2000–2010 and 2010–
2018, and closer to that of 2010–2018. These findings
indicated that the distribution of the HDI showed a
northwest-southeast trend first and then near east-west.
The HDI enhancement expanded and developed to the
west and north, which was consistent with the informa-
tion in Figure 4.

Fig. 4 Distribution of the human disturbances in the ecosystems of the GHMGBA from 1980 to 2018
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Driving factor selections of the HDI spatial pattern

The results of the correlation analysis

The CA results showed that the factors had correlations with
the HDI both in the natural environments and in the social
environments (Figure 7). The topographic factors were posi-
tively related to the NDVI and farmland potential productivi-
ty. The temperature was negatively related to the topographic
factors and the DNVI. The population, GDP, urban, and traf-
fic factors were positively related to each other, but they were
negatively related to the distances from cities and roads. These
findings indicated that the selected factors had redundant

numerical messages. Therefore, the PCA was used to extract
the required information.

The results of the principal component analysis

Three principal component factors from the natural environ-
ment (PC-Nat) and two from the social economy (PC-Soc)
were extracted using a principal component analysis (PCA)
with eigenvalues greater than one as the threshold value. The
variance percentages of the PC-Nat 1, 2, and 3 were 48.05%,
15.11%, and 12.67%, respectively. Their cumulative informa-
tion amounted to 75.82%. The variance percentages of the
PC-Soc 1 and 2 were 54.45% and 14.704%, respectively.

Fig. 5 Displacement of the centers of the HDI in the different levels in the ecosystem of the GHMGBA from 1980 to 2018
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Their cumulative information amounted to 69.16%. The prin-
cipal component coefficient matrix (Table 5) shows the dif-
ferent impact factor coefficients extracted from the five prin-
cipal components, from which new variables can be created.

Among the natural environmental factors, PC-Nat 1 indi-
cated the topography, temperature, and farmland potential
productivity. PC-Nat 2 indicated the water resources and veg-
etation conditions, and PC-Nat 3 indicated the precipitation
and farmland potential productivity. Among the socioeco-
nomic factors, PC-Soc1 indicated the population, economy,
and cities. PC-Soc2 indicated the ecosystem service value and
distances to cities and roads.

Evaluation model of the HDI spatial pattern

Ordinary least squares model results

The OLSmethod was applied to test the principal components
of the influence factors, and they all passed the test (P<0.001).
The fit goodness, R2, was 0.52. The AICc value was

−8093.19. The variance inflation factor (VIF) values ranged
from 1.02 to 3.56 (Table 6), lower than 7.5. The test indicated
that they had the least redundancy and were used to analyze
the spatial pattern of human disturbance in the GHMGBA
ecosystems.

GWR model results

The GWR model was used to analyze the explanatory power
of the five principal components. The P-values of the GWR
and the OLS were less than 0.05, indicating that they were
both significant. The goodness of fit, R2, of the GWRwas 0.7,
which was optimized by 36.42% compared to the OLSmodel.
The adjusted R2 was 0.69, which was optimized by 32.69%.
The AICc was −9094.22, which decreased by 1001, indicating
that the GWR model fit better in this study.

The local goodness of fit,R2, of the GWRmodel was 0.02–
0.78 and was higher in Foshan, Guangzhou, Dongguan, and
Shenzhen than that at the periphery. Only 1.43% of the grids
had standardized residuals greater than 2.5. This indicated that

Table 4 Parameters of the HDI
standard deviation ellipse in the
ecosystems of the GHMGBA
from 1980 to 2018

Year Major axis
(km)

Minor axis
(km)

Axis difference
(km)

Rotation
(°)

Perimeter
(km)

Area
(km2)

1980 146.89 95.39 51.5 88.93 769.75 44015.62

HDI 2000 147.8 95.86 51.94 88.08 774.20 44508.44

2–4.49 2010 149.66 97.41 52.25 87.53 784.89 45797.34

2018 150.48 97.73 52.75 87.26 788.59 46198.58

1980 75.83 55.05 20.78 67.72 413.78 13115.14

HDI 2000 76.36 56.45 19.91 73.01 419.56 13540.11

4.5–7 2010 77.07 55.97 21.1 78.57 420.58 13550.55

2018 77.87 55.75 22.12 78.76 422.63 13636.08

1980–2000 100.19 63.96 36.23 99.59 521.98 20129.46

2000–2010 120.61 72.14 48.47 100.13 615.13 27331.89

2010–2018 127.84 88.89 38.95 87.70 686.36 35696.99

1980–2018 125.57 85.8 39.77 93.25 669.90 33843.02

Fig. 6 Standard deviation ellipse of the HDI in the ecosystems of the GHMGBA from 1980 to 2018

11502 Environ Sci Pollut Res (2022) 29:11493–11509



98.57% of the study area had a better fit. Therefore, the GWR
model was used to analyze the driving factors of the spatial
pattern of the human disturbance in the GHMGBA
ecosystems.

Driving factors of the HDI spatial pattern based on the
GWR model

The regression coefficients of the HDI and the influencing
factors from the GWR model showed obvious differences,
indicating the complex characteristics of the driving factors

(Figure 8). The coefficients ranged from −0.8 to 0.32 for
PC-Nat 1, −0.43 to 0.36 for PC-Nat 2, −0.56 to 0.7 for PC-
Nat 3, −0.41 to 0.9 for PC-Soc1, and −0.14 to 0.87 for PC-
Soc2. This indicated that PC-Soc1 was the primary driver of
HDI change in the study area, and PC-Soc2 was secondary.
These are socioeconomic factors and were higher than the
three principal components of the natural environmental
factors.

The role of PC-Nat1

The PC-Nat1 indicates the factors of topography, temperature,
and farmland production potential. The study showed that PC-
Nat1 was the primary driver among the natural environmental
factors. The regression coefficients were high on the west
coast of the Pearl River Delta and decreased to the periphery
of the west and east (Figure 8a). The elevation and slope in the
GHMGBA were low on the west coast of the Pearl River
Delta, such as Foshan, Guangzhou, Zhongshan, and Zhuhai,
which is the alluvial plain where the Pearl River rushes into
the sea. Owing to the low and flat topography and minimal
undulation, this area has been deeply disturbed by human
activities. The peripheral areas, such as Zhaoqing, Jiangmen,
and Huizhou, have a higher elevation than the west coast and
were therefore areas with lower human disturbance. It is worth
noting that Shenzhen and Hong Kong, which have high hu-
man disturbance, are characterized with higher elevations than

Fig. 7 Correlation analysis of the natural environmental factors (D11–
D18) and social economic factors (D21–D28). D11: elevation; D12:
slope; D13: annual temperature; D14: annual precipitation; D15:
drainage density; D16: distance from waters; D17: NDVI; D18:

farmland potential productivity; D21: population density; D22: GDP
density; D23: proportion of urban land; D24: night light index; D25:
traffic density; D26: ecosystem service value; D27: distance from city;
D28: distance from road

Table 5 Driving factors selected from the principal component score
coefficient matrix

PC-Nat 1 PC-Nat 2 PC-Nat 3 PC-
Soc1

PC-
Soc2

D11 0.306 −0.041 0.070 D21 0.345 −0.225
D12 0.288 −0.017 0.029 D22 0.350 −0.289
D13 −0.308 0.057 −0.112 D23 0.223 0.024

D14 0.061 −0.057 0.869 D24 0.098 0.249

D15 0.174 −0.566 −0.037 D25 0.199 0.067

D16 −0.117 0.420 −0.106 D26 −0.167 0.306

D17 0.044 0.335 0.101 D27 0.080 −0.434
D18 0.305 −0.282 −0.409 D28 0.104 −0.458

11503Environ Sci Pollut Res (2022) 29:11493–11509



those in the delta, and thus these areas demonstrated a signif-
icant negative correlation.

Temperature did not demonstrate an obvious spatial
difference. The study area is located in a low latitude
area with abundant heat from the sun, which results in
no latitudinal gradient. The topography influences the
temperature, with higher elevations having lower tem-
peratures, while the lower elevations have higher tem-
peratures and more anthropogenic heat emissions. Thus,
the temperature and topography had a strong connection
with each other, forming the distribution pattern shown
in Figure 8a.

The farmland potential productivity was closely related to the
quality and distribution of croplands. Soil development is primar-
ily affected by the spatial patterns of climate and biological fac-
tors, which both demonstrated no obvious spatial differences in
the GHMGBA. The topography influences surface moisture and
sediment. Croplands with good quality soil conditions were lo-
cated in the middle and lower reaches of the rivers, which belong
to areas with material accumulation. These areas become the
primary lands for human food production and life because of
the superior natural conditions (especially sufficient water re-
sources). Therefore, they have been deeply disturbed by human
activities, with a concentrated distribution of croplands.

Table 6 Test of the selected factors using the ordinary least squares (OLS) method

Variable Coef StdError t_Stat Prob Robust_SE Robust_t Robust_Pr StdCoef VIF

Intercept 0.37 0 137.79 0.000* 0 104.89 0.000* 0 -

PC-Nat1 0.09 0.01 7.81 0.000* 0.01 6.79 0.000* 0.16 2.14

PC-Nat 2 0.07 0.01 5.44 0.000* 0.02 3.9 0.000* 0.13 3.16

PC-Nat 3 −0.03 0 −5.25 0.000* 0 −6.98 0.000* −0.07 1.02

PC-Soc1 0.44 0.01 30.5 0.000* 0.03 13.85 0.000* 0.61 2.13

PC-Soc2 0.17 0.01 13.08 0.000* 0.02 9.31 0.000* 0.34 3.56

*p value (p < 0.05)

Fig. 8 Regression coefficients between the HDI and the driving factors.
(a) PC-Nat1 indicates topography, temperature, and farmland potential
productivity. (b) PC-Nat2 indicates water resources and vegetation con-
ditions. (c) PC-Nat3 indicates precipitation and farmland potential

productivity. (d) PC-Soc1 indicates the population, economy, and cities.
(e) PC-Soc2 indicates the ecosystem service value and distances to cities
and roads
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The role of PC-Nat2

The regression coefficients of PC-Nat2, representing water re-
sources and vegetation, were higher along the east coast of the
Pearl River Delta and the coastal area in the southwestern area of
Yangjiang and then decreased to the northwest (Figure 8b).
Water resources were abundant in the lower reaches of the
Pearl River and the coastal zones of the Delta, where river nets
are dense and easily accessible. In addition, human disturbance is
high due to intense human activities. In contrast, the northwest
areas of the GHMGBA displayed low disturbance due to low
human activities, and thewater resourceswere in good condition.
The PC-Nat2 had a negative relation with the HDI in this area.

The mountainous areas away from the city had low human
disturbance. These areas had sufficient water and heat condi-
tions, with high vegetation cover for the PC-Nat2. They had a
negative relationship with the HDI. The riverside and seaside
areas had broken landscapes and were highly influenced by
man-made landscapes such as cities. The PC-Nat2 there had
almost no obvious relationship with the HDI. These places
included the transition zone between the core and peripheral
areas and the west coast of the Pearl River Delta. Dongguan
and Shenzhen had high development intensities, undulating
terrains, and high vegetation cover. The PC-Nat2 in the two
cities thus showed a positive correlation with the HDI.

The role of PC-Nat3

The regression coefficients of PC-Nat3, precipitation, had no
obvious driving effect on the HDI in most regions, except in
the southeast coast, such as Hong Kong and eastern Huizhou,
where PC-Nat3 showed a significant positive correlation with
the HDI. PC-Nat3 in the rest of Shenzhen and the southwest
areas of the Yangjiang was negatively related to the HDI
(Figure 8c). These areas have regular precipitation patterns
that are higher in the northeast and southwest, decreasing to
the Pearl River Delta and the lowest in the northwest. The HDI
was weaker in the southwest and east and higher in the Pearl
River Delta region, which showed no relationship with PC-
Nat3. The southwest of Yangjiang had high precipitation and
a low HDI, where PC-Nat3 had a negative correlation with the
HDI. The same case was found in Shenzhen, which had mod-
erate precipitation and a high HDI. The farmland potential
productivity was described in PC-Nat1. The farmland poten-
tial productivity and HDI should be positively driven in areas
with good water and soil resources near rivers, but there were
obvious differences with the spatial pattern of precipitation.
This leads to a less pronounced driving role for PC-Nat3.

The role of PC-Soc1

The PC-Soc1, calculated from the population, GDP, and cities,
was the primary driver from the socioeconomic standpoint. Their

regression coefficients were all positively correlated with the
HDI in most of the regions, while negatively correlated locally
only in the northwest and northeast (Figure 8d). The population,
GDP, and cities had similar aggregated characteristics.
Socioeconomic activities can rapidly change land cover and eco-
system structures, causing a divergence and change in the HDI.
Places with large populations are economically active and prone
to develop into cities. This results in high ecosystem HDIs be-
cause the settlement ecosystems expand and artificial facility
utilizations increase. PC-Soc1 had a positive correlation with
the HDI. The PC-Soc1 in Guangzhou and Foshan, which are
the socioeconomic centers of the GHMGBA, was not obviously
related to theHDI because of insufficient data spatialization. This
lack of data spatialization somewhat attenuated the spatial aggre-
gation characteristics of the population and the GDP. The eco-
nomic intensity and the HDI in the junction zone of Dongguan
and Huizhou were moderate, thus forming a significant positive
correlation between PC-Soc1 and the HDI.

The role of PC-Soc2

The regression coefficients of PC-Soc2 from the ecosystem ser-
vices value (ESV), distance to cities and roads, were annularly
distribution. It was positive in the southern area of Guangzhou,
eastern Foshan, northern Zhongshan, and western Dongguan,
which were the centers of the correlation. It decreased to a weak
negative correlation toward the periphery (Figure 8e). The ESV
is closely related to the value it provides to humans. The HDI
was stronger in the Pearl River Delta, which has superior re-
sources and a higher ESV. In contrast, the HDI was lower in
the surrounding areas of the GHMGBA, where the ESV is lower
and the natural environment can provide relatively lower
services.

The distances to cities and roads can likewise significantly
reflect the spatial pattern of socioeconomic activities. The
closer the cities and roads are to each other, the more signif-
icant the spatial aggregation. The Pearl River Delta region,
where the indicated human activities were concentrated and
the ecosystem change was obvious, suffered from a high HDI.
In contrast, the peripheral areas of the GHMGBA had low
HDIs. This is where the cities are far from each other and
the roads are few. Hence, human activities were dispersed,
and the ecosystem was less disturbed.

Discussion

Differences and similarities of human disturbance in
the different studies

The human disturbance index is an empirical model that quan-
tifies the intensity of human activities by assigning values to
different surface landscape types. The idea has been adopted
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by different studies. There are generally two types of distur-
bance level classifications. The first have decimal values from
0 to 1 that align the range of disturbance classes with the
normalized range and facilitate integration with other data
(Roth et al. 2016; Yi et al. 2020; Chen et al. 2020; Han et al.
2020; Wang et al. 2021). Another uses integers. Ning et al.
(2015) used values from 0 to 3 and classified them into four
categories. Cui et al. (2021) used values from 0 to 5 and
classified them into six categories. Feng et al. (2017) and
Tian et al. (2020) used values from 1 to 7 and classified
them into seven categories. Zhou et al. (2018) and Yang and
Song (2021) used values from 1 to 10 and divided them into
10 categories, and Tousignant et al. (2010) used values from 0
to 16 and divided them into 17 categories. Hou et al. (2019)
inverted the human disturbance index, called the naturalness
degree, which was also classified into seven classes.

In these studies, both the entirety of China (Ning et al.
2015), the resource-exploiting regions in North China (Tian
et al. 2020), the eastern coastal zone (Zhou et al. 2018), the
rapidly urbanizing coastal area and hilly regions in North
China (Yi et al. 2020; Chen et al. 2020), the hilly regions in
Southeast China (Han et al. 2020), and the urban agglomera-
tion in southern China, all exhibited high levels of disturbance
in urban and agricultural landscape areas. This demonstrated
that despite the inconsistency in classification levels, their
basic objectives were similar, and the results obtained were
comparable and referable.

Influencing factors of land use change and human
disturbance

Land use change in the GHMGBA and related areas has been
extensively studied. It was found that the ecological carrying
capacity of the region is continuing to decrease (Wang et al.
2020c), and the conversion of a large amount of natural land-
scape to urban land between 1980 and 2018 was an important
change in the surface of GHMGBA, resulting in a loss of 4.05
billion yuan (Wang et al. 2020a). GDP, income, road length,
and population are the most important drivers of urban sprawl
in the GHMGBA (Zhang et al. 2020). The LUCC process is
largely influenced by socioeconomic factors, leading to frag-
mentation of the landscape pattern (Jiao et al. 2019). In addi-
tion, ecological land also undergoes complex changes of deg-
radation and growth, and the population density and land ur-
banization rate are considered as determinants, with socioeco-
nomic factors influencing ecological land more than natural
factors (Feng et al. 2021). Similarly, elevation, slope, distance
from built-up land, and the growth rate of built-up land are
considered important factors for ecological land conversion in
Zhuhai, which is located in the southern GHMGBA (Hu and
Zhang 2020).

The ecosystem and human disturbance intensity grading in
this study were closely related to land use; hence, they may

have potential common influences. Wang et al. (2021) ana-
lyzed the spatially heterogeneity drivers of human disturbance
in the GHMGBA land use using the geographical detectors
(GeoDetector). They showed that the central major cities were
significantly driven by socioeconomic activities, while the
peripheral underdeveloped cities were constrained by natural
environmental factors. In this study, the GWR model was
used to further clarify the driving roles of the different aspects
of the indicators of the natural environment and social econo-
my in the different regions. Although the PCA results extract-
ed more information about the natural environment, the re-
gression coefficients of both principal components of socio-
economic factors exceeded the principal components of the
natural environment. We believe that this was due to spatial
heterogeneity differences in the environmental factors.
Therefore, we need to pay attention to the research scale. In
addition, it is suggested that the driving role of the different
regions requires be further clarification, especially under dif-
ferent topographic conditions, such as the middle and upper
reaches of the Ganjiang River Basin in hilly areas, which are
also under a subtropical climate where the influence of the
natural environment is more pronounced (Liu et al. 2021b).

Research deficiency and prospect

In this study, human disturbance was analyzed based on eco-
system data on long time-scale, and the influencing factors of
human disturbance change were quantitatively analyzed using
the GWR model. Although the driving factors were consid-
ered from the different perspectives of the natural environment
and socioeconomics, the policy effects, which are difficult to
quantify but have a large impact, were not considered. In
addition, the impact of different land use types on human
disturbances was not quantified. Therefore, subsequent stud-
ies are required to more deeply analyze these aspects.

In addition, as an important indicator for the measurement
of the intensity of human activities, the human disturbance
index can be used to assess ecological risk (Zhang and Chen
2014) and ecological vulnerability (Yang and Song 2021). In
addition, it can be used to analyze the relationship between
ecosystem services and human disturbance (Han et al. 2020),
among other research directions.

Conclusion

The human disturbance intensity and its influencing fac-
tors of the ecosystem in the Guangdong-Hong Kong-
Macao Greater Bay Area were analyzed in this study
based on the surface landscape being defined by the
human disturbance index (HDI). There were four find-
ings. First, the HDI was divided into 6 levels and 12
categories in the GHMGBA. The spatial pattern analysis
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results showed that the HDI was high in the middle and
low at the periphery. Second, the human disturbance
intensity increased from 1980 to 2018, during which
medium and high disturbed areas greatly expanded.
The concentration and direction characteristics of the HDI in
the different levels showed that the standard deviation ellipse in
the low HDI areas changed very little from 1980 to 2018, and
moderate change took place in the high HDI areas. The standard
deviation ellipse of which the HDI change more than 0.1 during
the transition periods changed obviously. Third, the GWRmodel
fit better than the OLS for analyzing the driving factors of the
HDI, which had significant spatial heterogeneity. Fourth, the
results of the GWR model indicated that both the positive and
negative driving effects of the influencing factors on the HDI
were present, but there were differences in the specific effects
on different regions of the GHMGBA. Factors from the natural
and socioeconomic jointly contributed to the human disturbance
intensity. However, the driving effect of socioeconomic condi-
tions was significantly stronger than that of the natural environ-
mental, especially the population, economy, cities, ecosystem
service value, and distance to cities and roads. In summary, this
study quantified the human disturbance intensity of the terrestrial
ecosystems of the urban agglomeration in SouthChina based on
the HDI. This will assist in understanding the distribution and
change characteristics of the ecological environment in areas
with strong human activities. This study also provides a reference
for related studies.
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