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Abstract
Layered double hydroxide (LDH) nanomaterials have recently become immense research area as it is used widely in industries. So, it’s
chance of their release into natural environment and risk assessment to nontarget aquatic invertebrate increasing. So, the present study
aimed to synthesize and confirm the crystalline formation of Co-Cd-Fe LDHs and Co-Cd-Fe/PbI2 (LDH) and then to investigate the toxic
impact of the two LDH on the adult freshwater snails (Biomphalaia alexandrina). Results showed that Co-Cd-Fe/PbI2 LDH has more
toxic effect to adult Biomphalaria than Co-Cd-Fe LDHs (LC50 was 56.4 and 147.7 mg/L, 72 h of exposure, respectively). The effect of
LC25 (117.1 mg/L) of Co-Cd-Fe LDHs exposure on the embryo showed suppression of embryonic development and induced embryo
malformation. Also, it showed alterations in the tegmental architectures of the mantle-foot region of B. alexandrina snails as declared in
scanning electronmicrograph.Also, exposure to this sublethal concentration caused abnormalities in hemocyte shapes and upregulated IL-
2 level in soft tissue. In addition, it decreased levels of nonenzymatic reduced glutathione (GSH), catalase (CAT), superoxide dismutase
(SOD), caspase-3 activity, and total protein content in significant manner. Glutathione S-transferase (GST) activity was not affected by
LDH exposure. It caused histopathological damages in both glands of snails and also caused a genotoxic effect in their cells. The results
from the present study indicated that LDH has risk assessment on aquatic B. alexandrina snails and that it can be used as a biological
indicator of water pollution with LDH.
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Introduction

Nanomaterials have been applied in many biomedical re-
searches due to their unique optical, electronic, and magnetic
characteristics (Tarafdar et al. 2013; Bazrafshan et al. 2017;
Corsi et al. 2018). Layered double hydroxide (LDH) is one of

two-dimensional layered inorganic nanomaterials. It is one of
various cheap nanoparticles bearing positive charge (Malakar
et al. 2021). Layered materials have been extensively used in
the application of catalysis, polymer nanocomposites, and
sensors (Zhao et al. 2007; Manzi-Nshuti et al. 2009; Han
et al. 2011), in medicine and pharmacy (Ladewig et al.
2009; Choi and Choy 2011). Additionally, it is used as
fertilizers, herbicides, growth regulators, and in removing
environmental chemical pollution (Li et al. 2016; Peligro
et al. 2016; Benício et al. 2020; Daniel and Thomas 2020).
Their unique uses in many applications depend on the host
molecule. These have been attributed to their exchange capac-
ity of anionic and capability to accommodate in the interlayer
region different types of functional anions/molecules (metals,
halocomplexes, polymers, proteins, drugs, etc.). The wide
spread utilization of LDHs may lead to increase the chance
of their release into the aquatic ecosystem, which has not been
investigated. Toxicological evaluation of LDH has been
gained environmental and human health care, since it may
cause a negative impact to nontarget aquatic fauna.
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Many articles elucidate the toxicological impact of
nanomaterials to aquatic organism such as zooplankton, fish, al-
gae, freshwater rotifers, and snails (Zhu et al. 2009; Kim et al.
2012; Long et al. 2012; Myer et al. 2017; Amorim et al. 2019;
Martins et al. 2020). However, toxicological impact of inorganic
nanomaterial (LDH) to snails does not study until now.

B. alexandrina snails are widely accepted invertebrate
models to study the toxicity and toxico-kinetic of inorganic
nanomaterial for aquatic ecosystem (Oliveira-Filho et al. 2017;
Kaloyianni et al. 2020). It is the intermediate host of
Schistosoma mansoni that is wildly disseminated throughout trop-
ical and subtropical highly polluted canals and in the Nile River
(DeJong et al. 2001). Biomphalaria characterized by their avail-
ability, easy way for collection, acclimate to laboratory conditions,
sensitivity to water, and chemical pollutant. All the previous char-
acters nominate it to use as laboratory monitoring in ecotoxicolog-
ical studies and for analyzing multiples biomarkers. (Duft et al.
2007; OECD 2016; Oliveira-Filho et al. 2017; Ruppert et al.
2017). Many studies in immunology, reproductive, and develop-
mental biology used Biomphalaria as paradigm ( Khangarot and
Das 2010; Boisseaux et al. 2017; Pirger et al. 2018).
Nanomaterials (NMs) such as carbon nanotubes, silver nanoparti-
cles, have potential effects toB. alexandrina as conducted inmany
studies (Moustafa et al. 2018). The toxicities of LDH-NPs depend
on their chemical compositions and concentrations used. These
LDH-NPs might generate reactive oxygen species (ROS) and so
inducing oxidative stress, the expression of antioxidant enzymes
(like catalase, glutathione reduced, and super oxide dismutase) and
inflammation (Choi et al. 2015). Caixeta et al. (2020) stated that
the toxicity of NMs has been attributed to reactive oxygen species
(ROS) generated that subsequently by lipid peroxidation, DNA,
and protein damage. Also, Choi et al. (2009) stated that nanopar-
ticle induced oxidative stress and might negatively alter the phys-
iological responses, such as carcinogenesis, inflammation, fibrosis,
and genotoxicity. These nanomaterials could find their ways to the
natural environment of snails by water runoff and drainage canals
and caused negative effects on the organisms lived in these envi-
ronments, and so, the present study aimed to evaluate the toxicity
of LDHsNMs on B. alexandrina and how it affected their biolog-
ical processes, and to donate well knowledge about biological
behavior and risk assessment of Co-Cd-Fe LDHs in aquatic
environments.

Material and method

Preparation of two types of LDHs

Co-Cd-Fe LDH

NaOH (5M) was dissolved in 200 mL of distilled water.
Another 200 mL aqueous solution of 1Fe (NO3)3.19H2O
(0.1M), Co (NO3)2.16H2O (0.1M), and Cd(NO3)2.4H2O

(0.1M) was prepared. This later solution was stirred for
24h. A pH 10 of the reaction is adjusted by using so-
dium hydroxide solution. At pH 10, the solution was
divided into two solutions; one of them is stirred for
24h and the second one is put in the autoclave for 3h.
A washing process using DI water is carried out for the
resulting precipitate to reduce the pH to 7. Finally, the
product is dried at 80°C for 1 day.

T- LDHs/PbI2 NC

In a general synthesis technique, in situ growth of the
metal cations, typically, NaOH (5M) in 200mL of dis-
t i l l ed H2O is p r epa r ed . Ano the r so lu t i on o f
Fe(NO3)3.9H2O (0.1M), Co(NO3)21.6H2O (0.1M),
Cd(NO3)2.4H2O (0.1M), and 2.5g PbI2 was prepared.
This later solution was stirred for 24h. A pH 10 of
the reaction is adjusted by using the sodium hydroxide
solution. After reaching pH 10, the solution was
remained under continuous stirring for 24h. A washing
process using DI water is carried out for the resulting
precipitate to reduce the pH to 7. After washing, a dry-
ing process is carried out at 80°C for 1 day.

Characterization of LDH

The XRD patterns of Co-Cd-Fe LDH and Co-Cd-Fe LDH/
PbI2 NC were obtained by Philips1 XPert1-MRD1 X-ray dif-
fraction (λCuKa = 0.15418 nm). Sample morphology is inves-
tigated using a 1field-emission1 1scanning electron11 micro-
scope (FESEM, TEM, Zeiss SUPRA/55VP with GEMINI/
column). Fourier transform infrared spectroscopy (FTIR)
was performed by A Shimadzu1-FTIR-3401-Jasco1 spec-
trometer to obtain the important functional groups of the sam-
ples. Finally, the optical absorbance behaviors of the products
are investigated by Lambda 900-UV/Vis/IR Perkin Elmer
spectrophotometer up to 1200 nm.

Snail source and maintenance

Adult B. alexandrina, snails (810 mm in diameter; 0.26g
weight) have been obtained from Theodor Bilharz Research
Institute (TBRI), (Giza, Egypt). Snails were transferred to
Medical Malacology Lab and kept in plastic tank with
dechlorinated aerated tap water (10 snails/L) with a
photoperiodicity of 12h light/12 h dark cycle, a temperature
of 25 ±3 °C, pH: 7± 0.2 and fed on ovendry lettuce leaves
(1gm/10 snails) and Tetramin. The tank water was changed
every 3 days. For collecting egg masses, pieces of polyethyl-
ene sheets (5 × 10 cm) were used (OECD 2016).
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Toxicity study

Acute toxicity test in adult B. alexandrina

The toxicity of the two layered materials Co-Fe-Cd and Co-
Fe-Cd/PbI2 LDH against adult mature snails (10–12 mm; 150
snails) was determined. Stock solution of two layered mate-
rials was prepared using dechlorinated tap water (1000 mg/L).
A series of concentrations of Co-Fe-Cd LDH (100, 75, 50, 25,
and 20) and of Co-Fe-Cd/PbI2 LDH (200, 150, 100, 75, and
50) were prepared to calculate LC50 and LC90 at laboratory
temperature (22–25°C). Three replicates were conducted for
each concentration and the control group (30 snails per exper-
imental group): 72 h after, the snails were transferred from the
exposure concentrations and maintained in dechlorinated tap
water for another 24 h of recovery. Mortality percent of snails
was recorded and lethal concentration and slope values were
analyzed by Probit analysis (WHO 1965).

Bioassay

After calculation of the sublethal concentration, snails were
exposed to LC25 of LDH for 24h followed by a recovery
period of another 24 h in dechlorinated water. Then, the fol-
lowing experiments were done:

Embryotoxicity test

According to Rapado et al. (2011), pieces of polyethylene
sheets (5 × 10 cm) containing egg clutches (100 eggs) were
collected for the embryotoxicity assay. The egg masses were
transferred to Petri dishes contains LC25 of LDH for 24h,
subsequently washed with filtered and dechlorinated water
(pH 7.0). Seven days after exposure, the embryos were exam-
ined for unviability (malformed embryos or dead) by stereo-
microscope. Another egg clutches was transferred to
dechlorinated aerated tap water as a control. Assays were per-
formed in triplicate.

Scanning electron microscope of the mantle-foot region

The mantle-foot regions of snails were separated under a ste-
reomicroscope. Then, the specimens were fixed, dehydrated,
critically dried, and coated as recommended by Ibrahim and
Abdel-Tawab (2020). Finally, they were analyzed by JSM-
6510 LA.

Immunocytotoxicity

Cytotoxicity assay in hemocytes of B. alexandrina According
to Nduku and Harrison (1980), hemolymph of ten snails was
collected from the snail heart by insertion a capillary tube into
the snail shell that is directly over the heart: 10 μl of

hemolymph was spared on a glass slide to prepare hemocytes
monolayers and leave to air-dry for 15 min at laboratory tem-
perature. Hemocytes were fixed with 100% methanol for
5 min and then stained with 10% Giemsa stain (Aldrich) for
20 min, then examined under the light microscope. This assay
was done in triplicate for each group to study the outer mor-
phological changes in the hemocytes.

Measurement of IL-2 level and Caspase-3 activity IL-2 in tis-
sue homogenate (1gm/10 mL phosphate buffer) of five snails
was measured by enzyme-linked immunosorbant assay
(ELISA). Cytokine levels were determined by commercially
available ELISA kits for IL-2 (OptEIA™ Kits; BD
Biosciences). The depth of the color can then be measured
spectrophotometrically at appropriate wave length. The inten-
sity of colored end product provided a measure of the cytokine
concentration (Hemdan et al. 2007). Caspase-3 activity was
determined according to Bonomini et al. (2004). The released
p-nitroaniline (pNA) moiety concentration was measured col-
orimetrically at 405 nm.

Tissue preparation for oxidant/antioxidant biomarker
and biochemical studies

The soft tissues of five snails were removed from the exposure
group and the control one, weighted (1gm/10 mL phosphate
buffer), and then homogenized in ice cold, twice-distilled wa-
ter using a glass Dounce homogenizer. The supernatants were
separated using high speed centrifuged (3000 rpm for 10 min)
and stored at − 80 °C until used; then experiments were done
according to the pamphlet of each kit.

Oxidant/antioxidant defense biomarker These biomarkers
have been measured in the supernatant of the tissue homoge-
nate of five snails for LDH exposure group and control one.
The enzymatic responses SOD, CAT, and GST were mea-
sured according to Aebi 1984 (Mannervik and Guthenberg
1981), and nonenzymatic responses GSH was determined ac-
cording to the method of Ellman (1959). For biochemical
studies, the snails’ total protein was done according to the
method of Gornall et al. (1949). All parameters determined
using biodiagnostic kits (Biodiagnostic Dokki, Giza, Egypt).

Genotoxicity evaluation was done by detecting of DNA
single-strand breaks (comet assay)

DNA single-strand damage of snails exposed to LC25 of LDH
for 48 h was detected by single-cell gel assay as previously
described by Singh et al. (1988) and Grazeffe et al. (2008).
The hemolymphs of twenty snails were collected by inserting
a capillary tube into the heart of each snail. The DNA frag-
ment migration patterns of 100 cells were evaluated with a
fluorescence microscope at 510 nm. The comet tail lengths
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were measured from the middle of the nucleus to the end of
the tail with 40× increase for the count and measure the
size of the comet. Visualization of DNA damage was
observed by Ethidium Bromide Staining using a 40×
objective. Slides were scored blindly.

Histological evolution of the digestive and hermaphrodite
glands

Ten adult B. alexandrina snails (8–10 mm) were exposed to
LC25 of LDH for 24h followed by another 24 h of recovery for
2 weeks. The digestive and hermaphrodite glands of the sur-
viving B. alexandrina snails were removed and fixed in
Bouin’s solution. The glands dehydrated, embedded in paraf-
fin wax. Then, they both sectioned and stained with hematox-
ylin and eosin (Mohamed and Saad 1990). Five slides/each
gland/snail were examined by light microscopy for any alter-
ations in the histological architecture compared to the control
snails and photographed by using a microscopic camera.

Statistical analysis

Data analysis were performed by t-test to determine the sig-
nificant difference between exposure and control group and
expressed as mean ± SME of mean (Graph Pad Prism 6.04
software). The lethal concentration (LC10, LC25, LC50, and
LC90) values, slope, and respective 95% confidence limit
(CL) of LC50 was calculated by Probit analysis (Finney 1971).

Result

Characterization of Co-Cd-Fe LDH, and T-LDH/PbI2 NC

Function groups identification

The FTIR charts of (Co-Cd-Fe) LDH and its composite are
displayed in Fig. 1A (A, B) and Table 1. After combination of
PbI2, there are red shifts in absorption bands and some peaks
changed in intensity and other broads Fig. 1A (B).

Structural properties

The structure and crystalinity of (Co-Cd-Fe) LDH was con-
firmed by XRD diffract gram. Its chart displays highly
matching of hydrotalcite LDH with hexagonal phase (Fig.
1B). XRD peaks referred to diffractions (003), (006), (101),
(009), (107), (018), (110), and (113). It is noticed that these
peaks have high intensity which was reflected the high crys-
tallinity of the studied LDH.

Their crystal sizes were calculated using Scherrer’s relation
(R). The mean size was ~23.5 nm. In addition to their average

microstrain value was ~ 0.7% and its dislocations density was
0.0018 that evaluates the density of defects and the quality of
the crystal. This result gives a reflection to high quality of the
synthesized LDH crystal.

Morphological properties

The morphological properties were examined through
FESEM and TEM, at Fig. 1C (A, B). The morphology of
Co-Cd-Fe LDH was characterized with the agglomeration of
the particles which have plate-like morphology. This behavior
was similar for all hydrotalcites prepared by coprecipitation
method. TEM clarified the plate like of LDH layers and
proved the morphology of the LDH.

Zeta potential and particle size distribution

The value of zeta potential of the fabricated LDH after dilution
is depicted from Fig. 1D to be −8.46 mV. Also, the value the
conductivity was 2.47ms/cm. In addition, LDH had a large
particle size distribution (1911 nm), as calculated by DLS mea-
surements. This value is larger than that reported using SEM or
TEM images and this could be attributed to the aggregate LDH
in aqueous solution through DLS technique in contrast to SEM
or XRD techniques which do not allow for aggregation.

Toxic impact of LDH on adult B. alexandrina

In the present study, Co-Cd-Fe LDHs and Co-Cd-Fe
LDHs/PbI2(LDH) were tested for its toxic effect against
B. alexandrina. Snails were exposed to different concentra-
tions of Co-Cd-Fe LDHs and Co-Cd-Fe LDHs/PbI2 (LDH)
for 72 h of exposure followed by another 24 h for recovery.
Probit analysis showed that the LC50 of Co-Cd-Fe LDHs was
147.7 with confidence limits 110.99–188 mg/L. While Co-
Cd-Fe /PbI2 LDH showed more toxic effect, LC50 was 56.4
with confidence limits 21.52–85.07 mg/L (Table 2).

Embryotoxicity

Exposure of embryos of Biomphalaria alexandrina snails to
Co-Cd-Fe LDHs caused delay of embryonic development
(30%), embryo malformation (20%), and accumulation of
LDH NPs in the egg clutches leading to death of some em-
bryos (50%) (Fig. 2B).

Effect of LDH on B. alexandrina ultrasturacture

The scanning electron micrographs of the soft part of
B. alexandrina snails showing the normal foot plantaris with
notable surface fold and covered with fine and smooth cilia
(Fig. 3A), and tegmental surface of mantle with microvilli and
fine spines (Fig. 3D). Following the exposure to LC25, the foot
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Fig. 1 Characterization of LDH. (1A) FTIR spectra of Co-Cd-Fe LDH (A) and Co-Cd-Fe LDH composite with PbI2 (B), (1B) XRD patterns of Co-Cd-
Fe LDH, (1C) FESEM of fabricated Co-Cd-Fe LDH (A) TEM of Co-Cd-Fe LDH (B). (1D) Zeta potential for the size particle of Co CdFe LDH
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cilia became tangled, adherent, and ultimately peeled off (Fig.
3A and 3B). Also, the tegmental surface of mantle became
rough, most microvilli completely destroyed, nipples and ero-
sion (Fig. 3E and 3F).

Impact of LDH on hemocytes of B. alexandrina

In control group, microscopical examinations of
B. alexandrina hemocytes showed three types of cell that
differentiated morphologically. The first type is hyalinocytes;
the second is granulocytes (spreading hemocytes), and the
third is round small (undifferentiated) (Fig. 4A, 4B, 4C).
After exposure to the LDH at sublethal concentration
(LC25), hyalinocytes nucleus showed shrinkage and others
had two separate nuclei; also, aggregations of hyalinocytes
were more evident after exposure to LC25. While granulocytes
having irregular cell membrane aggregate and form either
pseudopodia or filopodia (Fig. 4D, 4E).

Influence of LDH on IL-2 level and caspase-3 activity

In the present study, there are a marked increase in expression
of IL-2 in LDH exposure group (p< 0.001) in compared to
non-exposure one (152.14±0.1 and 72.04±0.21 Pg/mL, re-
spectively) (Fig. 5B). Also, caspase-3 activity was slightly
increased (p < 0.05) in exposed snails compared to control
one (60.95±0.11 and 54.8±1.8 nmol pNa min−1 mg−1 protein,
respectively) (Fig. 5A).

Impact of LDH on oxidant/antioxidant defense bio-
marker and biochemical studies

In the present study, exposing of snails to LC25 of LDH in-
duced significant decreased (p<0.001) in SOD and CAT

(p<0.01) activity compared to the non-exposer group (con-
trol), (Fig. 6A and 6B) with no change in GST activity
(p˃0.05), (Fig. 6C). Concomitantly, a significant decrease of
GSH levels and total protein content (p<0.001) in tissue ho-
mogenate was observed in LDH exposure group compared
with their time-matched controls (Fig. 6D and 6E).

Influence of LDH on DNA

The present results showed that the olive tail moment (OTM)
of snails subjected to sublethal concentrations of LDH was
highly increased (p < 0.01) than control snails (5.63±0.1 and
3.25±0.12 μm, respectively) (Fig. 7A, 7B, and 7C).

Impact of LDH on digestive and hermaphrodite gland
of B. alexandrina

Examination of the histological sections through digestive
gland showed many tubular glands with single layer of secre-
tory cells (SC) and digestive cells (DC) (Fig. 8A). Treatment
these snails, with LC25 of LDH, showed rupturing, vacuola-
tion, and a significant increase in the number of SC. Also, the
lumen (L) increased; most of the DC and SCwere degenerated
and ruptured while the tubular glands lose their confirmed
shape (Fig. 8B). Meanwhile, the histological sections of
B. alexandrina snails of the control group through the her-
maphrodite gland revealed female oogenic cells with normal
oocytes and mature ova and male reproductive cells with nor-
mal spermatocytes, and sperms (Fig. 8C). The treatment of
snails with a dose of LC25 caused degenerations and destruc-
tion of some oocytes, mature ova, spermatocytes, and sperms
(Fig. 8D).

Table 2 Shows molluscicidal activity of Co-Fe-Cd and Co-Cd-Fe/PbI2 for adult B. alexandrina, snails after 72h of exposure followed by 24 h for
recovery

LC10

(mg/L)
LC25

(mg/L
LC50

(mg/L)
Confidence limits
of LC50 (mg/L)

LC90

(mg/L)
Slope

Co-Cd-Fe 89.5 117.1 147.7 110.99–188.07 205.9 1.1

Co-Cd-Fe/PbI2 17.4 35.91 56.4 21.52–85.07 95.3 1.2

Table 1 FTIR peaks of Co-Cd-Fe LDH and its composite with PbI2

Function group Co-Cd-Fe LDH Composite

H stretching 3424 3390 broaing of peak which is attributed to O–H stretching
and symmetric mode of Pb-I cluster

The O–H bending 1630 1629 cm−1

Bending of H2O molecule 1350 1390 cm−1

NO3−-stretching mode26 1430 cm−1

M–O vibrations of LDH Below 1000 cm−1 580
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Discussion

Layered double hydroxide (LDH) gains significant attention
in life science applications due to their extremely governable
synthesis and high biocompatibility. But few studies highlight
toxicity and toxico-kinetic of LDH. In the present study, we

engineered Co-Cd-Fe LDH and T-LDH/PbI2 NC, and its tox-
icological impact was evaluated. The results of Co-Cd-Fe
LDH characterization by XRD were matched with a usual
LDH with crystallinity mean size ~23.5 nm (Lu et al. 2015;
Mohamed et al. 2018). Also, their FTIR spectra were similar
to that previously recorded (Shaban et al. 2018; Mohamed

Fig. 3 Scanning electron micrographs (SEM) of B. alexandrina snails
(soft part), (3A) Normal ultrastructure of foot with smooth and regular
cilia, (3B) foot plantaris after exposure to Co-Fe-Cd LDH, the cilia be-
came tangled and adherent, (3C) higher magnification of 3B, (3D) normal

mantle showing smooth tegmental surface and microvilli, (3E) mantle
after exposed to Co-Fe-Cd LDH showing tortuosity, nipples, erosion,
and accumulation of LDH NMs in tegmental surface, (3F) higher mag-
nification of 3E

1µm 0.5µm

Fig. 2 Morphological
abnormalities in Biomphalaria
embryos after exposure to Co-Fe-
Cd LDH. (2A) Normal control
embryos of 7-days aged where the
snails completely formed (E eye;
HF head foot; S shell). (2B) After
exposure of the egg mass to LC25

Co-Fe-Cd LDH (DE dead
embryo, 50%; MF malformed
embryo, 20%; DD development
delay, 30%)
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et al. 2018; Parida and Mohapatra 2012), while FSEM and
TEM clarified the plate like of LDH layers (Tedim et al. 2011;
Chen et al. 2017). The zeta potential reflected the stability of
nanoparticles in suspension and is also the major factor in the
initial adsorption of nanoparticles onto the cell membrane or
the uptake inside these cells. The zeta potential and size could
affect nanoparticle toxicity (Mohamed et al. 2021).

The present study confirmed that Co-Cd-Fe LDH and T-
LDH/PbI2 NMs showed toxic effect against B. alexandrina
and that T-LDH/PbI2 NM more toxic to adult Biomphalaria

than Co-Cd-Fe LDHs. This result is in good accordance with
Cardinale et al. (2012) who stated that TiO2 nanoparticles
showed more inhibition in the growth rate in Scenedesmus
quadricauda than Al2O3nano-powder and concluded that the
toxicity of LDH on algae was time- and concentration-depen-
dent. Also, it was proven that LDH has toxic impact against
human cell line (Choi et al. 2007) and green algae
Scenedesmus quadricauda(Ding et al. 2018).

Enzymatic (GST, SOD, and CAT) and nonenzymatic
(GSH) antioxidant markers play a vital role in protection of

1µm

0.5µm

1µm

1µm 1µm

0.5µm

Fig. 4 Light micrographs show
hemocytes of adult Biomphalaria
alexandrina snails. 4A
Hyalinocyte (22.32%); 4B
granulocyte (37.5%); 4C small
(40.17%) (×40); 4D, 4E, and 4F
show the abnormalities following
exposure to LC25 of Co-Fe-Cd
LDH for 48h, 4D hyalinocytes
increased in number (43.58%),
some forming aggregations, some
have two separate nuclei (2N) and
vacuoles (V). 4E some
granulocytes (35.9%) forming ei-
ther pseudopodia (PP) or
filopodia (FP) and aggregation
(AG), 4F some hyalinocytes
forming pseudopodia (PP), while
small cells formed 20.51%. C cy-
toplasm, PS pseudopodia, G
granulocyte, GR granules, H
hyalinocyte, N nucleus, S round
small

72.04

152.14

C
as

pa
se

 a
ct

iv
ity

1−
m

g
1−

(n
m

ol
 p

N
a)

 m
in

A BFig. 5 Effect of Co-Fe-Cd LDH
on the expression of Caspase 3
and IL-2. All values presented as
mean ± SE. *, *** Significant
difference as compared to control
(p <0.05, p < 0.001)
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the organisms from oxidative stress and suppression of its
cellular damage as it reduce and converted H2O2 and super-
oxide anion radical. While GSH act as a reducing agent in
conjugation with xenobiotics (Pena-Llopis et al. 2001).
Disturbance of oxidant/antioxidant system has been the main
toxic impact induced by NMs in snails. LDH increased the
ROS production and subsequently altered the enzymatic and
nonenzymatic antioxidant enzyme, such as SOD, CAT, GSH
(Ali 2014; Ali et al. 2012; Bao et al. 2018). In addition, this
reduction can be elucidated to the direct combination of metal
with active site of enzyme and its biotransformation. The
present data showed significant decrease in SOD, CAT,
GSH and this in agreement with Gnatyshyna et al. (2020)
who reported that the nonenzymatic marker activity decreased
in Lymnaea stagnalis after exposure to Cu (10 μg L−1), Zn
(130 μg L−1), Cd (15 μg L−1), and thiocarbamate fungicide
(91 μg L−1) for 14 days.

Also, a decrease of catalase activity was seen previously
in snail exposed to herbicides (Bhagat et al. 2016). In addi-
tion, exposure of B. alexanderina snails to ZnONPs showed
significant inhibition of GSH and CAT ((Fahmy et al.
2014). In contrast with the present result, Atli and Grosell
(2016) reported that exposing L. stagnalis to only the
highest concentrations of Cu caused an increase in antiox-
idant enzyme.

Exposed snails showed no significant variation in GST
activity compared to control. This finding agreed with
those obtained by Sánchez-Marín et al. (2020) as they
indicated that this enzyme is not activated in response
to organophosphate flame retardants, tris (1,3-dichloro-
2-propyl) phosphate in mussels.

Also, the present study declared a marked decrease in the
total protein content (p< 0.001) compared with controls.
Fahmy et al. (2014) recorded a significant decrease in
B. alexanderina snail protein content after exposure to
ZnONPs and related the differences in the activity of the an-
tioxidant markers with the tissue type and the metal concen-
trations. SOD and CAT activities in Daphnia magna exposed
to Cd and Cu varied according to metal concentration. Also,
L. natalensis snails collected from polluted dams in
Zimbabwe showed variation in SOD and CAT activities
(Siwela et al. 2010). In addition, Achatina fulica showed re-
duction in CAT and SOD activities after exposure to Cd and
Zn. This variation could be attributed to the excess production
of ROS (Chandran et al. 2005). Similarly, such enzyme reduc-
tions were also observed in the present study in response to
LDH exposure.

A slightly increase of caspase-3 activity was detected as
unspecific response to LDH stress. Its elevation was observed
previously in apoptotic cells (Elmore 2007; Florentin and

Fig. 6 Effect of Co-Fe-Cd LDH on the levels of enzymatic and nonenzymatic parameters and total protein in soft tissue of Biomphalaria alexandrina
snail. All values presented as mean ± SE. *,**,*** Significant difference as compared to control (p < 0.05, p < 0.01, p < 0.001)
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Fig. 7 Light micrograph shows
the extent of DNA migration by
comet assay. (7A) Control
B. alexandrina; (7B) snails
exposed to sublethal
concentration of Co-Fe-Cd LDH
for 48 h with highDNAmigration
(p < 0.01) than control snails;
(7C) showed the increase in OTM
in exposed snails than control one
(5.63±0.1 and 3.25±0.12 μm,
respectively).

Fig. 8 Light micrographs of the
hermaphrodite and the digestive
glands of B. alexandrina snails
(H&E) (×40): (8A) normal diges-
tive gland ofB. alexandrina snails
(8B) snails exposed to LC25 of
Co-Fe-Cd LDH (8C) normal her-
maphrodite gland of
B. alexandrina snails (8D) snails
exposed to LC25 of LDH. MO
mature ovum, OC oocytes, SP
sperms, SPR spermatocytes, OC
oocyte, DOC degenerated oo-
cytes, DSPR degenerated sper-
matocytes, DC digestive cells, SC
secretory cells, L lumen, TG tu-
bular gland, CT connective tissue,
RDC ruptured digestive cells,
DDC degenerated digestive cells,
RTG ruptured tubular gland, RSC
ruptured secretory cells
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Arama 2012), and this elevation may be due to cytological
changes in the digestive gland of LDH-stressed snails
(Zaldibar et al. 2007a, 2007b; Hödl et al. 2010; Benito et al.
2017). Previously, increasing in caspase-3 activity has been
detected in L. stagnalis in response to pollutant stress
(Gnatyshyna et al. 2020). Also, caspases-3 levels increased
in Helix aspersa snails after exposure to iron oxides nanopar-
ticles (Sidiropoulou et al. 2018).

In the declared data, LDH at sublethal concentration (LC25),
caused abnormalities in hyalinocytes and granulocytes shapes
as nucleus shrinkage, divided to two separate nuclei, aggregate
or formed pseudopodia. The immuno-cell responses and mo-
lecular aspects in B. alexandrina snails considered as important
biomarkers of exposure to environmental pollutants (Mohamed
2011). Biomphalaria snails immunology can be attributed to
hemocyte which are the critical line of cellular defense (Larson
et al. 2014), where they contributed in many defense mecha-
nisms against several pathogens as it is responsible for the
phagocytosis, cytotoxic reactions (Fried 2016), and release sol-
uble compounds including agglutinins and antimicrobial pep-
tides (Ottaviani 2006; Mitta et al. 2000).

Chronic exposure of the T. pisana to Ag NPs caused alter-
ations in hemocytes, such as micronuclei, binucleated cell,
and kidney-like nuclei (Radwan et al. 2019). Also,
B. glabrata exposed to CdTe quantum dot showed altered
hemocytes binucleates, micronuclei, and apoptosis (de
Vasconcelos et al. 2019). Cell–cell aggregation was consid-
ered as an immunological response for host defense. Cellular
aggregation of the invertebrates’ hemocytes prevented the ac-
cidental blood loss by the formation of a biological plug at the
site of the wound and resisted the entry of pathogenic micro-
organism (Guria et al. 2016).

Hughes et al. (1990) and Ottaviani et al. (1993) were de-
tected cytokine-like molecules in marine and freshwater mol-
lusks. IL-2 was one of the cytokines assayed. It is responsible
for phagocytosis and provokes the strongest response in the
synthesis of biogenic amines, nitric oxide (NO), or oxygen
radicals (Ottaviani et al. 1995a, 1995b). In the present study,
there are marked increase in expression of IL-2 in LDH expo-
sure group (p< 0.001) in compared to non-exposure one. (IL)-
2–like peptide was also detected in sea mussel which may be
involved in the regulation of responses to different types of
stress (Cao 1998; Barcia et al. 1999).

On the level of DNA damage, as an important biomarker of
NM toxicity in snails, comet assay is a sensitive tool to detect
DNA damages like DNA single-strand breaks (SSBs)(Ibrahim
et al. 2018). The present results showed that the olive tail
moment (OTM) of snails exposed to sublethal concentrations
was increased than control snails. This in agreement with
Ibrahim and Ghoname (2018) who demonstrated that the
OTM of snails exposed to LC10 (27.5 mg L−1) or LC25

(32.4 mg L−1) of the aqueous leaves extract of Anagalis
arvensis was significantly higher than the control group.

Such genotoxic effects might be due to either oxidation of
DNA bases or covalent binding to DNA resulting in strand
breaks. Some studies link DNA SSBs in aquatic animals to
effects on the immune system, reproduction, growth, and pop-
ulation dynamics (Lee and Steinert 2003). Exposure to inor-
ganic nanomaterial as Ag NPs, CuO NPs, IONPs, MgO NPs,
TiO2 NPs, and ZnO NPs induced genotoxic effects in snails
(Caixeta et al. 2020). Ye et al. (2012) stated that the amount of
DNA strand breaks were higher after exposure to DNA dam-
aging chemicals compared with controls.

The embryotoxicity observed after exposure has been at-
tributed to ROS production, oxidative stress, and damage.
Also, penetration of LDH NPs to gelatinous capsule and cross
the egg membrane reduces essential growth metabolism as-
pects, changes in its permeability, consuming energy for the
development, and finally interrupting the mechanics of hatch-
ing (de Chavez and de Lara 2003; de Vasconcelos et al. 2019).

Our result is in agreement with Besnaci et al. (2016), who
state morphological changes and precipitation of Fe2O3 NPs
in the egg mass. Also, morphological abnormality and hatch-
ability hinder was seen in B. pfeifferi embryos following ex-
posure to curcumin-nisin polylactic acid NPs for 96 h. In
addition, hydrophilic nanosilica induced embryotoxic effects
in B. alexandrina snail at concentration 590 ppm for 6 h and
980 ppm for 48 h (Attia et al. 2017). Similarly, the growth and
hatching rate reduction was seen in B. glabrata embryos ex-
posed to CdTe NPs for 24 h (de Vasconcelos et al. 2019). In
contrast, dimer captosuccinic acid (DMSA)-functionalized
Fe2O3 NPs did not induce embryo mortality, morphological
alterations, and hatching inhibition due to their physical prop-
erties and limited internalization in the egg clutches (Oliveira-
Filho et al. 2017). LDH posed a significant suppression in the
growth of S. quadricauda algae after 72 h of incubation and a
complete growth inhibition (100%) at higher LDH concentra-
tion. LDH had a higher inhibitory effect to growth than the
other NPs (Ding et al. 2018).

In the present study, the foot and mantle of B. alexandrina
snails showed bioaccumulation of LDH in its surface and
some morphological disturbances after the exposure to LDH
for 24 h followed by 24-h recovery as was detected by scan-
ning electron microscope. LDH can interact, accumulated in
foot and digestive gland of snails, and distributed to the man-
tle. Both Ag NPs and CuO NPs accumulation in mantle, foot
and digestive gland of B. aeruginosa(Bao et al. 2018; Oliver
et al. 2014; Croteau et al. 2014; Ma et al. 2017). Also, NMs
possessed a highly adhesive property to a cell membrane;
therefore, it could affect the membrane structures and its mac-
romolecules (Rasel et al. 2019). In addition this damage in
ultrastructure could lead to snail death (Ibrahim and Abdel-
Tawab2020).

The deformation declared in the hermaphrodite gland of
B. alexandrina histological sections after exposure to LC25

of LDH was accompanied with a great damage in the gonadal
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cells where degenerations of somemature ova, spermatocytes,
oocytes, and sperms. Also, the connective tissue was
dissolved and replaced by vacuoles. Saad et al. (2019) report-
ed similar histological alterations in the hermaphrodite glands
of B. alexandrina snails treated with copper oxide nanocom-
posite (CuO NC), where the ova and sperms degenerated and
there were loss in the connective tissues between acini (Saad
et al. 2019). The exposure of the snail to LDH may be lead to
metabolic changes, destruction of gametogenic cells and dam-
age of hermaphrodite glands which possibly resulting from a
decrease in tissue proteins, apoptosis, or degeneration of cells
of these vital organs (Omobhude et al. 2017).

The digestive gland was the main organ analyzed in studies
concerning oxidative stress induced by NM due to its higher
accumulation capacity and role in the metal detoxification.
Exposing of the digestive gland of B. alexandrina snails to
LC25 of the LDH showed significant increase in the number
and degeneration of the SC. The DC ruptured and vacuolated
in addition, the tubular glands lose their confirmed shape. In
like manner, Saad et al. reported histological alterations in the
digestive gland of Coelatura aegyptiaca following treatment
with ZnONPs for 6 consecutive days, where there were grad-
ual hypertrophy and hyperplasia in the glandular cells (Fahmy
and Sayed 2017).

Conclusion

The data of the current study consider the first toxicological
evaluation of LDH nanomaterial on freshwater snail
B. alexandrina. In light of the above, LDH induces distur-
bance in both enzymatic and nonenzymatic antioxidant mark-
er in the tissues of Biomphalaria following exposure to sub-
lethal concentration, suppression the embryonic development.
It caused alteration in mantle foot ultrastructure, immune re-
sponse, histopathology of gland, and finally genotoxic effect.
This result reflects the possible ecological implications of
LDH release in aquatic ecosystems and its risk assessment to
aquatic invertebrate.
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