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Abstract

Environmental and social awareness are the key elements of the sustainable tire industry. End-of-life tire (ELT) waste flow is an
important environmental problem worldwide since it produces severe air, water, and soil pollution issues. Significant advance-
ments have been made in ELT management in the last few years. As a result, ELTs should not only be regarded as waste but also
as a source of environmentally friendly materials. Besides, sound ELT management has vital importance for circular economy
and sustainable development. Over the last decade, ELT management has attracted many researchers and practitioners.
Unfortunately, a comprehensive review of the ELT management area is still missing. This study presents the first critical review
ofthe whole ELT management area. It aims to present an extensive content analysis overview of state-of-the-art research, provide
its critical analysis, highlight major gaps, and propose the most significant research directions. A total of 151 peer-reviewed
studies published in the journals between 2010-2020 are collected, analyzed, categorized, and critically reviewed. This review
study redounds comprehensive insights, a valuable source of references, and major opportunities for researchers and practitioners
interested in not only ELT material flow but also the whole waste management area.

Keywords Critical review - End-of-life tires - Waste management - Content analysis - Regulations review - Treatment review -
Engineering applications - Network design

Introduction

Environmental and social awareness are becoming the key
element of the sustainable tire industry. Vehicle tires are a
source of pollution throughout their life cycle. End-of-life tires
(ELTs") are considered to be one of the most abundant as well
as the most attractive waste from an economic point of view.
Nearly one billion ELTs are generated worldwide annually
and this waste flow is growing dynamically (Wang et al.
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Responsible Editor: Philippe Garrigues

P4 Selman Karagoz
selman.karagoz@ntu.ac.uk; karagozselman@ gmail.com

Svetlana Dabic-Miletic
cecad@sf.bg.ac.rs
Vladimir Simic
vsima@sf.bg.ac.rs

Faculty of Transport and Traffic Engineering, University of
Belgrade, Vojvode Stepe 305, Belgrade 11010, Serbia

Nottingham Trent University, Nottingham Business School, 50
Shakespeare St, Nottingham NG1 4FQ, UK

2019; Eurostat 2021). ELT waste flow constitutes more than
2% of the total amount of solid waste (Karaagag et al. 2017).
Only in the European market, more than 300 million passen-
ger and truck tires are replaced annually (ETRMA 2019).
ELT waste flow is an important environmental problem
worldwide since it produces severe air, water, and soil pollution
issues. This waste flow is not biodegradable and belongs to the
category of non-hazardous waste. Unfortunately, improper man-
agement of ELTs is still a common phenomenon in many econ-
omies in transition and developing economies. In fact, nearly
one-half of ELT waste flow is disposed of in landfills without
any treatment (Junqging et al. 2020). Landfilling of whole and
shredded tires might be the most economically sound manage-
ment option, but it should not be allowed since it presents a major
threat to the environment and public health. Since 1999, ELT
landfilling has been legally prohibited by the European landfill
directive 1999/31/EC (EU. 1999). After that, in 2000, many
policies were presented (e.g., 2000/76/EC, 2000/53/EC) which
set out more detailed guidelines for ELT management (EU.
2000a, b). In the meantime, there were synchronizations with
global regulations. The Waste Framework Directive (WFD)
2008/98/EC provided concepts and definitions related to ELT
management (EU, 2008). According to WFD, management op-
tions are prevention, minimization, reuse, recycling, energy
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recovery, and disposal (Son et al. 2011). WFD was a significant
step forward in all relevant aspects of waste management, includ-
ing ELT as a group of end-of-life vehicle (ELV) parts. Based on
these regulations, many countries around the world are in the
process of developing their regulations to prolong the service life
of tires and reduce their negative impact on the environment.

Sound ELT management has vital importance for circular
economy and sustainable development. It requires an ecological-
ly efficient and economically effective waste management
scheme. ELT management depends on numerous entities (e.g.,
tire end-users, private and public companies, treatment facilities)
and state-of-the-art technologies to convert waste into valuable
products. Today, ELT management is a progressive and well-
positioned research area. Besides, according to the reports pub-
lished by the largest associations of tire producers and recyclers
(e.g., ETRMA 2019; CRIA - China Rubber Industry Association
2020; JATMA 2020, 2021), significant advancements have been
made in sustainable ELT management in the last few years. As a
result, ELTs should not only be regarded as waste but also as a
source of environmentally friendly materials.

ELT management has attracted many researchers and prac-
titioners. However, to the best of our knowledge, there is no
comprehensive review of the whole ELT management area.
This study introduces the first critical review of the economic,
environmental, and social issues of ELT management. It aims
to present an extensive content analysis overview of state-of-
the-art research published in the period 2010-2020, provide
their critical analysis, highlight major gaps, and propose the
most significant research directions. This critical review offers
comprehensive insights, a valuable source of references, and
major opportunities for researchers and practitioners interest-
ed in not only ELT material flow but also the whole waste
management area.

The remaining part of the paper is organized as follows:
Section 2 describes a review methodology. The results of the
literature review are provided in Section 3. The discussion is
given in Section 4. The last section presents the conclusions,
major gaps, and significant research directions.

Review methodology

The content analysis is utilized to review the relevant litera-
ture. Only peer-reviewed journal papers are reviewed. The
search engines, such as Web of Science, Scopus, Taylor and

Fig. 1 The classification of ELT
management studies

Francis Online, SpringerLink, Wiley Online Library, and
Google Scholar, are used to explore the literature.

The relevant studies are classified into five categories as
follows (Fig. 1):

(1) Literature survey: Relevant state-of-art reviews are pro-
vided in this category. They are evaluated by taking into
account their primary scope, coverage of the major cate-
gories of ELT management, and the number of reviewed
papers.

(2) Regulations review: As regulations play an essential role
in ELT management, the regulations review studies are
overviewed by considering their primary scope and fo-
cus, management regulation system, and subject area.

(3) Treatment review: Publications that deal with treatment
processes and material analysis are analyzed based on their
primary scope, treatment type, and ELT application(s).

(4) Engineering applications: Researches that explore or
provide new applications/markets for the ELT industry
from this category. They are surveyed based on their
primary scope, considered treatment type, and ELT
application(s).

(5) Network design and analysis: Studies that are suggesting
new methodologies and decision-making approaches for
ELT management are grouped into this category. They
are reviewed based on their primary scope and focus,
considered aspects, and applied method(s).

This classification aims to categorize the relevant studies
and to make them more visible for researchers.

Results

The classification of 151 collected and analyzed researches
generates the main framework of the review. Distribution is
performed according to the focus of the problems analyzed in
the research, i.e., by the field of ELT management to which
these papers belong.

Literature survey
ELT management is becoming more and more interesting and

challenging for researchers. Table 1 overviews relevant liter-
ature reviews regarding their scope.

ELT management

!

Literature
survey
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Table 1 The summary of the

literature survey category Author(s) and year Scope Category Reviewed

papers
RL TR EA NDA
Presti (2013) ELTs in civil engineering - - v - 80
Shu and Huang (2014) - - v - ~80
Thomas and Gupta (2016) - - v - 50
Wang et al. (2018) - - v - ~80
Lietal. (2019) - - v - 90
Siddika et al. (2019) - v v - ~150
Yadav and Tiwari (2019) - - v - ~70
Du et al. (2020) - - v - 134
Milad et al. (2020) - v - 110
Picado-Santos et al. (2020) - - v - 118
Roychand et al. (2020) - - v - ~130
Mokhtar et al. (2012) Material properties - v - ~60
Williams (2013) - v v - ~80
Danon et al. (2015) Cost-effective thermochemical — — - v - 86
Kumaravel et al. (2016) process — — v — ~50
Czajczynska et al. (2017) - - v - 70
Martinez et al. (2019) - - v - ~60
Junqing et al. (2020) - v v - ~120
Santos et al. (2020) - v v - ~100
Quek and Balasubramanian ~ Fuel for gas turbines - - - v 65
(2012)
Oboirien and North (2017) - v - v ~55
Sienkiewicz et al. (2017) ELT management legislative v - - - ~100
Uriarte-Miranda et al. v v - - 62
(2018)

Sienkiewicz et al. (2012) Alternative fuels — — v - ~70
Ramos et al. (2013) Treatment comparison - v - ~50
Bharat and Dipak (2014) LCA - v - - 44
Saleh and Gupta (2014) Tire derived carbons - v - 115
Rowhani and Rainey (2016)  Reuse and energy recovery - v v - ~150
Labaki and Jeguirim (2017) methods - v v 158
Iraola-Arreguia et al. (2019)  Demineralization - v - - ~200
Mmereki et al. (2019) Innovative treatment methods v v - - 58
Bockstal et al. (2019) Recycling improvement - v - - ~120
Lewandowski et al. (2019) Reactor efficiency - v v - ~150
Our review Whole ELT management area v v v 151

ELTs have very wide applications in civil engineering.
Presti (2013) investigated the performances of pavements
comprising bitumen from ELT recycling. Shu and Huang
(2014) outlined the most frequent applications of recycled
ELTs as asphalt paving mixtures and lightweight fillers.
Rubberized concrete has good mechanical properties and is
often an environmentally friendly material used in the con-
struction industry (Thomas and Gupta 2016; Li et al. 2019;
Siddika et al. 2019; Roychand et al. 2020). Wang et al. (2018)
discussed the eco-efficiency when rubber is used in asphalt
mixtures. Yadav and Tiwari (2019) provided an overview of

ELT applications in construction for highway and railway
embankments, the base material for roads, and as filling
material behind a retaining wall. Milad et al. (2020) and
Picado-Santos et al. (2020) reviewed ELT applications in as-
phalt mixtures. Du et al. (2020) investigated the low-
temperature performance of asphalt mixtures.

A significant number of review papers is related to the field
of pyrolysis as an increasingly common type of ELT treat-
ment. Mokhtar et al. (2012) analyzed microwave pyrolysis
for the conversion of materials to energy. In the same year,
Quek and Balasubramanian (2012) and Oboirien and North
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(2017) pointed out the importance of the pyrolitic process for
obtaining the gases used in gas turbines. Williams (2013) con-
cluded that tire pyrolysis oil (TPO) is environmentally and
economically advantageous to use in comparison to diesel.
Martinez et al. (2013) found that pyrolysis represents an at-
tractive thermochemical process, in the meantime. Thereafter,
Danon et al. (2015) discussed oils obtained by ELT pyrolysis
as chemical resources. Kumaravel et al. (2016) analyzed TPO
as an alternative fuel for diesel engines. Similarly,
Czajczynska et al. (2017) discussed the characteristics of
TPO as a valuable energy source. In 2020, Junging et al. and
Santos et al. provided several studies. Junqing et al. (2020)
analyzed carbon black from ELT pyrolysis. Santos et al.
(2020) surveyed the feasibility to convert ELTs into chemical
components as an alternative recycling method by focusing on
TPO.

The European landfill directive 1999/31/EC has been the
key driver for improving ELT management. Sienkiewicz et al.
(2017) concluded that many countries established correspond-
ing management systems or standards for increasing resource
efficiency and reducing negative environmental impacts. As
another legislation-based study from a different angle, Uriarte-
Miranda et al. (2018) provided the legislative basis for empir-
ical research regarding the assessment of reverse logistics
(RL) processes in ELT management.

In today’s environmental conditions, ELTs should be treat-
ed not only as a pollutant but also as a valuable raw material
(Sienkiewicz et al. 2012). Ramos et al. (2013) analyzed the
efficiency, environmental friendliness, and economic viability
of technologies for ELT treatment. Regarding ELTs as a
group of ELV parts, Bharat and Dipak (2014) provided a
review of applications of the life cycle analysis (LCA) meth-
odology. Saleh and Gupta (2014) analyzed the cost-
effectiveness of the utilization of ELTs for wastewater treat-
ment. Later on, Rowhani and Rainey (2016) highlighted the
importance of ELT recycling and reusing to sustainable
environmental stewardship. Labaki and Jeguirim (2017)
pointed out thermochemical processes as attractive and prac-
ticable ways for recovering energy and materials from ELTs.
In 2019, several studies in the same scope were published.
Iraola-Arreguia et al. (2019) found the demineralization was
one kind of ELT pyrolysis for improving bio-oil quality.
Mmereki et al. (2019) discussed an effective ELT manage-
ment system from technical, environmental, economic, legal,
and institutional aspects. Bockstal et al. (2019) analyzed
physical and chemical processes for ELT recycling.
Lewandowski et al. (2019) described various types of reactors
for ELT pyrolysis.

Table 1 shows that the available review papers are focused
only on one or two categories of ELT management. Most of
the review papers are related to pyrolysis as chemical treat-
ment and ELT applications in civil engineering. Besides, only
a few review papers analyzed regulations and network design.

@ Springer

Finally, to the best of our knowledge, there is no comprehen-
sive review of the whole ELT management area.

Regulations review

In terms of worldwide recycling rates of ELTs, the EU takes
first place in the list (Gigli et al. 2019). The EU already has
appropriate regulations and organizations for ELT manage-
ment. Besides, there are three different ELT management reg-
ulation systems worldwide:

(1) Extended producer responsibility (EPR)—tire manufac-
turers and importers are responsible for ELT collection
and treatment

(2) Tax system (TS)—ELT collection and treatment are fi-
nanced through consumer taxes

(3) Free-market system (FMS)—Ilocal regulations define
ELT collection and treatment

In Europe, EPR is the most common in ELT collection and
treatment. Santini et al. (2011) found that ELT removal from
vehicles needed to fulfill rigorous eco-efficiency targets of the
Directive 2000/53/EC. Sohaney et al. (2012) provided analy-
ses of ELT noise in the case of heavy trucks. Bravo and Brito
(2012) considered that 5%, 10%, and 15% of the volume of
natural aggregate can be replaced by aggregate derived from
ELTs. Afterward, Uruburu et al. (2013) highlighted the strong
role of non-profit organizations in ELT management. Elnour
and Laz (2014) found that lawfully labeling tires could reduce
ELT quantity. Hiratsuka et al. (2014) concluded that the Japan
automobile tire manufacturer association gave voluntary con-
tributions for the collection of ELTs. In addition to this, Niza
et al. (2014) investigated the implementation of the EPR con-
cept in Portugal. Zhang et al. (2016) analyzed legislative
barriers and incentive measures to support local enterprises
in pyrolysis initiatives. Rodrigues et al. (2016) presented an
extended waste input-output model to assess the economic,
environmental, and social impacts of the EPR system.
Karaagag et al. (2017) analyzed the degree of ELT recycling
in Turkey. Park et al. (2018) concluded that the Colombian
EPR system increased the number of ELTs collected over the
last 5 years. Malyshkov et al. (2019) analyzed recycling stan-
dards for ELTs in Russia. Winternitz et al. (2019) found that
the best recycling results were achieved with quantitative
targets and clearly defined status of ELT management.
Zorpas (2020) promoted the WFD strategies for improving
the quality of living conditions, especially in urban areas.

Although EPR is dominant, some studies analyzed TS and
FMS regulation systems. Samolada and Zabaniotou (2012)
concluded that Greece had nevertheless adopted the EPR sys-
tem despite the numerous benefits of TS. As a different ap-
proach, Sienkiewicz et al. (2012) described different organi-
zational approaches for ELT management in the EU and some
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possible usages of ELTs as a source of raw materials or
alternative fuels. Antoniou and Zabaniotou (2013) outlined
general guidelines for EU member states related to ELT dis-
posal. Zabaniotou et al. (2014) continued research to improve
pyrolysis due to deficient market analysis, legislative barriers,
economic instability, and public acceptance. Later on, Torreta
et al. (2015) analyzed treatment and disposal schemes with
ELTs in Italy and Romania. Alwaeli (2016) pointed out that
Poland was the first European country to introduce an ELT
management system, which was initiated by tire manufac-
turers and importers. Clar-Garcia et al. (2016) studied the
European regulations devoted to the reduction of tire noise
depending on the age structure of ELTs. Xie et al. (2016)
concluded that tire manufacturers took measures to modify
the structure of tires to avoid uneven wear. Godlewska
(2017) analyzed increased imports of ELTs into Poland.
Sienkiewicz et al. (2017) concluded that the establishment of
the restrictive regulations, monitoring of improper
warehousing, EPR, and TS had a pivotal role in the progress
of ELT recovery. In 2018, Uriarte-Miranda et al. (2018) sug-
gested an integrated model by considering regulations and
policies in several countries and regions.

A comprehensive summary of the regulations’ review cat-
egory is presented in Table 2. The table shows that most of the
papers are related only to the treatment of ELTs. Besides, only
a few papers took into account the strong connection between
RL and ELT regulation. Finally, the papers are only focused
on the economic and environmental components of sustain-
ability, while the social component is completely neglected.

Treatment review

Inadequate ELT treatment creates major environmental issues.
Besides, landfilling might be the most economically sound
management option, but it should not be allowed since it pre-
sents a major threat to the environment and public health.

ELT treatment and improvement of environmental condi-
tions are some of the most important concerns of sustainable
business (Sadiktsis et al. 2012; Ghasemzadeh et al. 2020). In
practice, four types of ELT treatment are applied: pyrolysis,
recycling, retreading, and energy recovery.

Many researchers have focused on pyrolysis as an attrac-
tive ELT treatment. ELT pyrolysis is important for the circular
economy since it can provide materials for the production of
rubber from which tires are made. Abdul-Raouf et al. (2010)
outlined that pyrolysis could be very appropriate for complex
materials, such as tires. Sienkiewicz et al. (2012) and Williams
(2013) noticed a growing interest in pyrolysis as a technology
for producing TPO, char, and gas products. Due to the energy
crisis and environmental degradation, Kandasamy and Gokalp
(2014) analyzed energy recovery from not biodegradable
waste, such as ELTs. Thereafter, Hita et al. (2016) claimed
that ELT pyrolysis was the most environmentally friendly

option for ELT treatment. Kordoghli et al. (2017) found that
the temperature had an important impact on the gas quality.
Cherbanski et al. (2017) studied the kinetic reaction of ELT
pyrolysis. Martinez et al. (2019) examined the performances
of carbon black obtained by ELT pyrolysis. Wang et al.
(2019) proposed a new protocol for high-value reusing of
ELTs. In addition to these, Zhang et al. (2019) analyzed using
carbon from ELT pyrolysis for wastewater treatment.
Abdallah et al. (2020) found that the produced pyrolysis oil
could replace conventional liquid fuels. Buadit et al. (2020)
evaluated the potential environmental impacts of an ELT py-
rolysis plant in Thailand by using the LCA method. For
Sathiskumar and Karthikeyan (2019) and Junqing et al.
(2020), pyrolysis is a promising thermochemical process to
deal with ELT waste flow.

Recycling is a very common ELT treatment. Recycled
ELTs are used in both engineering and non-engineering ap-
plications, from raw materials, through semi-finished products
to packaging. Gupta et al. (2011a, b) and Derakhshan et al.
(2017) pointed out the high potential of recycled ELTs for
wastewater treatment applications. Ramarad et al. (2015) an-
alyzed progress in ELT recycling with particular attention to
the incorporation of waste tire rubber into polymeric matrices.
Kardos and Durham (2015) investigated the properties of rub-
berized concrete. Depaolini et al. (2017) proved that older
ELTs were less favorable due to their chemical composition.
In the meantime, Tsai et al. (2017) analyzed ELTSs as a sup-
plement of conventional fossil fuel to attain a positive impact
on environmental sustainability in Taiwan. Rashid et al.
(2019) identified the great potential of using recycled ELTs
in concrete as a low- and medium-strength material.
Yamashita et al. (2020) analyzed the chemical reactions in
the recycling of ELTs.

Retreading is one of the popular approaches for sustainable
environmental stewardship of ELTs. This is a process of re-
placing the spent tread (outer layer of the tire) with a new one
by vulcanization to prolong their life cycle exploitation.
Retreading is especially beneficial for used truck tires since
they could be processed three to four times (Dabi¢-Ostoji¢
et al. 2014). This type of treatment can have significant envi-
ronmental and economic sustainability effects (Abdul-Kader
and Haque 2011). Bazan et al. (2015) found that retreading
offers the most resource-efficient strategy for ELTs because it
provided the possibility to save both material and energy.
Ortiz-Rodriguez et al. (2017) found the strongest environmen-
tal impacts were associated with retreading and recycling of
ELTs. Lonca et al. (2018) revealed that extending the lifetime
through retreading and recycling improves the circularity of
ELTs. Later on, Mrad and El-Samra(2020) analyzed different
strategies for ELT management in Lebanon and concluded
that retreading is the most economically, environmentally,
and socially appropriate treatment.

@ Springer
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Table2  The summary of the regulations review category
Author(s) and year Scope System Focus Subject area
EPR TS FMS COL TRE APP
Santini et al. (2011) ELT recycling and recovery v - - - v - Italy
Sohaney et al. (2012) Noise from heavy trucks v - - v v - Europe
Bravo and Brito (2012) ELT cement granulate v - - - v v Portugal
Uruburu et al. (2013) ELT management v - - v v v Spain
Elnour and Laz (2014) ELT quantity reduction v - - v v - Saudi Arabia
Hiratsuka et al. (2014) Recycling improvement v - - - v - Japan
Niza et al. (2014) ELT management v - - - v - Portugal
Zhang et al. (2016) ELT pyrolysis v - - - v - Global
Rodrigues et al. (2016) EPR system financing v - - - v - Global
Karaagag et al. (2017) ELT quantity v - - - v v Turkey
Park et al. (2018) Cost-effectiveness of EPR v - - - v - Colombia
Malyshkov et al. (2019) EPR and recycling standards v - - v v - Russia
Winternitz et al. (2019) EPR system comparison for ELTs v - v - Belgium, Italy, The Netherlands
Zorpas (2020) Energy managing in TPO v - - - v v EU
Samolada and Zabaniotou (2012) ELT pyrolysis v v - - v v Greece
Sienkiewicz et al. (2012) Alternative fossil fuels v v - - v EU
Antoniou and Zabaniotou (2013) Features of ELT pyrolysis v v v - v v EU
Zabaniotou et al. (2014) Pyrolisis improvement v v - - v - EU
Torreta et al. (2015) ELT management schemes v v - v - Italy, Romania
Alwaeli (2016) ELT recycling level analysis v - v - v - Poland
Clar-Garcia et al. (2016) Noise and tire age relationship v v - - v - EU
Xie et al. (2016) Tread depth v v - v v - Global
Godlewska (2017) ELT recycling - v - v - Poland
Sienkiewicz et al. (2017) Regulations in ELT recovery v v - - v - EU
Uriarte-Miranda et al. (2018) RL improvement in ELT management v - v - Mexico, Russia, Japan, EU

Energy recovery is an attractive treatment commonly relat-
ed to the combustion of ELTs in cement kilns. Feraldi et al.
(2013) applied LCA to compare different ELT treatment op-
tions in the USA context. Aziz et al. (2018) concluded that
TPO obtained from pyrolytic reactors could be used in indus-
trial furnaces, power plants, and steam boilers.

The summary of the treatment review category is given in
Table 3. As can be seen from this table, ELT pyrolysis and
recycling are the most common treatment options. The waste
hierarchy emphasizes the reuse and extension of the tire life
cycle as a primary ELT management scheme. However, re-
treading is put into focus in only a few studies. On the other
hand, economic efficiency is the primary comparison criterion
in most studies. Sustainable ELT treatment should take into
account the environmental, economic, and social dimensions
of investigated waste flow.

Engineering applications

Improper management of ELTs is still a common phenome-
non. It produces serious air, water, and soil pollution issues.

@ Springer

Fortunately, there are many environmentally friendly
applications of ELT treatment products. Besides, ELT
treatment can provide materials that have a wide range of
applications from everyday life to commercial and industrial
applications. As a result, it is of great interest to explore new
applications/markets for the ELT industry.

In 2010, Edingliler et al. (2010) found that processing tech-
niques and ELT content significantly affect the mechanical
properties of used tires-sand mixtures in soils. Fiksel et al.
(2011) concluded that the usage of ELTs in civil engineering
applications is an environmentally suitable alternative. In the
years ahead, Centonze et al. (2012) and Guo et al. (2017)
found that there are great possibilities to use steel and rubber
from ELTs in civil engineering. Chyan et al. (2013) analyzed
ELTs as pollutant removal material from the constructed wet-
land. Undri et al. (2013), Song et al. (2018), and Ma et al.
(2020) analyzed characteristics of limonene as typical valu-
able chemical products of ELT pyrolysis. Torreta et al. (2015)
concluded that ELT treatment has considerable ecological im-
portance. Ayanoglu and Yumrutas (2016) claimed that lime
TPO mixture had better results compared to gasoline and
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Table 3  The summary of the treatment review category
Author(s) and year Scope Treatments type Application(s)

PYR REC RET ER
Abdul-Raouf et al. (2010) Factors affecting prod. composition v - - - TPO, gas, char
Gupta et al. (2011a, b) Recycled ELT usage - v - - Wastewater treatment
Feraldi et al. (2013) Treatment option comparison - - v v Civil engineering, fuel
Williams (2013) Pyrolysis product characteristics v - - TPO, gas, char
Kandasamy and Gokalp (2014) ELT treatment improvement v - - - TPO, gas
Bazan et al. (2015) Treatment cost analysis - - v v Civil engineering
Kardos and Durham (2015) ELT utilization improvement - v - - Civil engineering
Ramarad et al. (2015) Polymer blends - v - - -
Hita et al. (2016) TPO upgrading characteristics v - - - TPO, gas
Cherbanski et al. (2017) ELT pyrolysis kinetics v - - - TPO, rubber
Depaolini et al. (2017) Recycled rubber characterization - v - - Rubber, playgrounds
Derakhshan et al. (2017) Recycled ELT usage - v - - Wastewater treatment
Kordoghli et al. (2017) Product quality v - - - TPO, gas
Ortiz-Rodriguez et al. (2017) Management option comparison - - v v Civil engineering, fuel
Tsai et al. (2017) ELT recycling status v - — TPO, gas, carbon black
Aziz et al. (2018) Pyrolitic reactors characteristics v - - - TPO, char
Lonca et al. (2018) Treatment environmental benefits - - v v Civil engineering
Zhang et al. (2018) Pyrolysis efficiency improvement v - - - TPO, carb. black, char
Martinez et al. (2019) Carbon black production v - - - Carbon black
Rashid et al. (2019) Rubberized concrete properties - v - - Civil engineering
Sathiskumar and Karthikeyan (2019) ELT pyrolysis methods v - - - TPO, gas, char
Wang et al. (2019) High-value temperature pyrolysis v - - - Carbon black, graphene
Zhang et al. (2019) Pyrolytic carbon preparation v - - - Carbon black
Abdallah et al. (2020) ELT pyrolysis products analysis v - - v TPO, gas
Buadit et al. (2020) Pyrolysis environmental impacts v - - - Energy
Junging et al. (2020) Pyrolysis efficiency improvement v - - - TPO, carbon black
Mrad and El-Samra(2020) Management option comparison v v v v Fuel
Yamashita et al. (2020) Recycled tire properties - v - - -

diesel fuels for diesel engines. Bicakova and Straka (2016)
concluded that some pyrolysis products can serve as heating
oil or a source for repairing asphalt surfaces. Fakhri (2016)
found that the replacement of the sand by ELT particles in
concrete pavement reduced water absorption. Derakhshan
et al. (2017) showed the high potential of recycled ELTs for
a variety of wastewater treatment applications. Hiirdogan et al.
(2017) analyzed how to improve the effects of ELT pyrolysis.
Machin et al. (2017) analyzed the energetic valorization of
ELTs in Brazil in contexts of job creation, environmental
footprint reduction, and electricity generation. Gnanaraj
et al. (2018) promoted environmental sustainability through
the use of ELTs in the battery industry. After 2018, several
studies were published in the same scope. Antoniou and
Zorpas (2019) found that ELT waste flow could be a valuable
source for energy recovery. Brandsma et al. (2019) found
some kinds of paraffin might end up in recycled products.

Grioui et al. (2019) analyzed usage of olive oil in ELT pyrol-
ysis for the production of upgraded pyrolytic oil as an alterna-
tive fuel. Uyumaz et al. (2019) showed that the TPO-diesel
blend gave acceptable performances compared to diesel fuel.
Karagoz et al. (2020b) investigated the optimal percentage of
TPO in diesel fuel. Liu et al. (2020) provided a brief overview
of the engineering properties and environmental effects of
recycled ELTs. Narani et al. (2020) concluded that textile
fibers from ELTs could enhance the geotechnical characteris-
tics of the expansive soil. Toteva and Stanulov (2020) ex-
plored environmentally friendly applications of ELT
pyrolysis.

Lately, ELT recycling has attracted more and more atten-
tion. Recycled tire rubber is being used in new tires, in tire-
derived fuel, in civil engineering applications and products, in
molded rubber products, in agricultural uses, recreational and
sports applications, and rubber-modified asphalt applications.
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Thus, the benefits of using rubber-modified asphalts are being
more widely experienced and recognized. The incorporation
of tires into asphalt is likely to increase, as indicated by an
increasing number of researches in this area.

In addition to many well-known, mostly engineering appli-
cations, there are many applications where whole, unpro-
cessed ELTs are used. The most interesting and frequent
ELT applications are boat protection (Abdul-Kader and
Haque 2011), conveyor belts (Aziz et al. 2018), footwear in-
dustry (Machin et al. 2017; Aziz et al. 2018; Araujo-Morera
et al. 2019), gardening (Figlali et al. 2015; Singh et al. 2019;
Zorpas 2020), lawn grounds (Symeonides et al. 2019), pack-
ing material (Thomas and Gupta 2015; Karaagag et al. 2017,
Heidari and Younesi 2020), playground flooring (Bravo and
Brito 2012; Girskas and Nagrockiené 2017; Brandsma et al.
2019), thermal and acoustic isolation (Abdul-Kader and
Haque 2011; Asaro et al. 2018; Araujo-Morera et al. 2019),
vibration reduction on railway tracks (Sol-Sanchez et al.
2014), and wagon wheels (Girskas and Nagrockiené 2017).

The engineering applications category is summarized in
Table 4. As can be seen from this table, the most common
engineering applications of ELTs are civil engineering and
energy sources. ELT recycling is mainly associated with civil
engineering applications even though recycled rubber could
also be used in other industries. Besides, not enough emphasis
is given to explore new fields of applications. Also, there are
no researches on ELT applications in logistics activities (e.g.,
for logistics units in material flows).

Network design and analysis

There are a significant number of studies that applied existing
models or provided new methodologies to solve problems
related to ELT management. In 2010, Sasikumar et al.
(2010) developed the mixed-integer non-linear programming
(MINLP) model for maximizing the profit of a multi-echelon
reverse logistics network for retreading truck tires. Thereafter,
Abdul-Kader and Haque (2011) presented an agent-
basedmodeling and simulation approach for improving ELT
retreading. Aranda et al. (2012) investigated environmentally
friendly locations of ELT concept treatment plants.

De Souza and D’Agosto (2013) proposed a value chain
analysis for RL supply chain management and explored the
financial benefits of sending ELTs to the cement industry.
Kannan et al. (2014) presented a decision-making framework
to assess ELT management drivers in the Indian context.
Dabi¢-Ostoji¢ et al. (2014) introduced a model based on
Bayesian belief networks for making tire retreading-related
decisions. Dhouib (2014) used the fuzzy MACBETH to rank
remanufacturing alternatives for ELTs.

In 2015, Bazan et al. (2015) presented an economic order
quantity-based model for minimizing the costs of the tire re-
treading industry in Canada, which captured the costs for
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greenhouse-gasemissions and energy usage. Similarly, Radhi
and Zhang (2015) developed MINLP models to simultaneous-
ly determine the optimal configuration of ELT
remanufacturing networks and return quality decisions under
uncertainty. Subulan et al. (2015) formulated a sustainable
logistics network design model for tire closed-loop supply
chains (CLSC).

Demirel et al. (2016) proposed a mixed-integer linear pro-
gramming (MILP) model with different scenarios for the num-
ber of ELVs in the future. Pedram et al. (2016) presented the
MILP model of a multi-echelon CLSC for the tire industry in
Tehran, Iran. They used a simple scenario-based approach to
represent uncertainties in demand, return rate, and quality of
ELTs.

In 2017, Afrinaldi et al. (2017) used a multi-objective ge-
netic algorithm (GA) to determine preventive replacement
schedules for bus tires. Amin et al. (2017) formulated a
single-objective MILP model for ELT remanufacturing for a
real network in Toronto, Canada. Costa-Salas et al. (2017)
analyzed the ELT recycling process according to waste col-
lection, processing, and customer zones from a Colombian
city. Simic and Dabic-Ostojic(2017) developed an interval-
parameter chance-constrained programming model for opti-
mizing long-term purchasing, retreading, and inventory plan-
ning in used tire management systems under multiple uncer-
tainties. Simi¢ et al. (2017) introduced an interval-parameter
semi-infinitive programming model for used tire management
and planning that can successfully handle real-life complex
uncertainties.

Several studies dealt with network design and analysis
issues of ELT management in 2018. Banguera et al. (2018)
provided a MILP model for a reverse logistics network for
used tires to meet the EPR national law in Chile. Ebrahimi
(2018) developed a stochastic multi-objective programming
model for the CLSC network design problem and took into
consideration sustainability aspects and quantity discounts un-
der uncertainty. Fathollahi-Fard et al. (2018) formulated a tri-
level programming model based on the static Stackelberg
game between manufacturers, distributors, and collectors to
optimize location-allocation decisions in a tire CLSC.
Hajiaghaei-Keshteli et al. (2018) modeled a CLSC of the tire
industry as a two-stage stochastic program. Pereira et al.
(2018) introduced a forecasting model to estimate the
volume and time of used tire returns. Sahebjamnia et al.
(2018) formulated a multi-objective MILP model to solve
the tire CLSC problem by considering economic,
environmental, and social dimensions. Saxena et al. (2018)
developed a fuzzy multi-objective mixed-integer program-
ming model to determine organizational and policy insights
for a tire remanufacturing SC.

In 2019, Oyola-Cervantes and Amaya-Mier(2019) used the
MILP approach to design an RL network for off-the-road tires
discarded from the mining industry. Symeonides et al. (2019)
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Table 4 The summary of the engineering applications category

Author(s) and year Scope Treatment type Application(s)
Pyrolysis Recycling

Edingliler et al. (2010) Embankment constructions - v Civil engineering

Fiksel et al. (2011) Environmental benefits — v Civil engineering

Centonze et al. (2012) Modified rubber concrete properties - v Concrete

Chyan et al. (2013) Recycled ELT usage v Wastewater treatm.

Undri et al. (2013) Limonene production improvement v Limonene

Torreta et al. (2015) ELT management - v Civil engineering

Ayanoglu and Yumrutas (2016) Sulfur amount, environmental protection v - TPO, fuel

Bicakova and Straka (2016) Preparation process activities v - TPO, asphalt

Fakhri (2016) Modified rubber concrete properties - v Concrete

Derakhshan et al. (2017) Recycled ELT usage - v Wastewater treatm.

Guo et al. (2017) Modified rubber concrete properties - v Concrete

Hiirdogan et al. (2017) ELT pyrolysis effects - v Fuel

Machin et al. (2017) Energetic valorization v - Civil engineering

Gnanaraj et al. (2018) Anode in lithium-ion batteries - v Carbon black

Song et al. (2018) Limonene production improvement v Limonene

Antoniou and Zorpas (2019) TPO in diesel fuel v TPO, fuel

Brandsma et al. (2019) Product characteristics - v Paraffines

Grioui et al. (2019) ELT pyrolysis products v TPO

Ma et al. (2020) Limonene production improvement v Limonene

Uyumaz et al. (2019) Sulfur amount, environmental protection v - TPO, fuel

Karagoz et al. (2020b) TPO in diesel fuel v v TPO, fuel

Liu et al. (2020) Recycled ELT applications - v Civil engineering

Narani et al. (2020) Expansive soil characteristics - v Civil engineering

Toteva and Stanulov (2020) Environmentally friendly applications v v Energy source

compared existing ELT waste management strategies for
Cyprus. Zang et al. (2019) conducted an economic analysis
of ELT gasification by simulation processes in two types of
gasification models: semi-empirical and one-dimensional ki-
netic models.

In the years ahead, Abdolazimi et al. (2020) proposed a
three-objective MILP model for the selection of ELT suppliers
for recycling plants based on the time delivery, total profit,
and environmental impact. Ghasemzadeh et al. (2020)
established MILP formulations for real-life CLSC applica-
tions in the Iranian tire industry. Nowakowski and Krol
(2020) assessed possible scenarios of ELT collection and
transportation in Poland including their processing like
cutting, baling, and packing. Yu et al. (2020) used the AHP
method for investigating characteristics of rubberized asphalt
mixtures.

The review of the network design and analysis category is
summarized in Table 5. The surveyed ELT management
methodologies are rarely tailored for ELTs (Yadollahinia
et al. 2018; Xiao et al. 2019; Karagoz et al. 2020a). Only
one study took into account the third pillar of sustainable

development. The others completely ignored the social aspect
of ELT management. Also, the vast majority of the reviewed
NDA studies neglected the multi-layer hierarchical nature of
ELT management-related problems. Besides, only a few stud-
ies integrated legislation, treatments, and applications as three
key elements of ELT management. Finally, the available
methodologies and decision-making approaches are mostly
related only to ELT treatment.

Discussion

The annual distribution of researches in the ELT management
area between 2010 and 2020 is given in Fig. 2. As can be seen
from Fig. 2, there is a significant increase in the number of
researches from 2017. Besides, over the last 2 years, almost
one-third of the analyzed papers have been published. This
indicates a growing interest in the ELT management area.
This presented critical review comprehensively analyzes
state-of-the-art studies published by the world’s largest pub-
lishers. Figure 3 presents the distribution of the reviewed
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Table 5 The summary of the network design and analysis category
Author(s) and year Scope Goal function(s) Method(s) Focus
Aspect Type
Max Min LEG APP TRE
Sasikumar et al. (2010) Retreading facility locations Profit v - MINLP - - v
Abdul-Kader and Haque (2011) Remanufacturing and retreading  Profit, environmental v v ABMS v - v
Aranda et al. (2012) ELT treatment plant locations Distance - v CWA v - v
De Souza and D’Agosto (2013) RL for ELT Cost - v VCA - v -
Kannan et al. (2014) ELT management drivers - - - ISM v - -
Dabi¢-Ostoji¢ et al. (2014) Tire retreading Distance - v BN v v v
Dhouib (2014) ELT remanufacturing strategy - - - Fuzzy MACBETH - v v
Bazan et al. (2015) Tire RL inventory management ~ Cost - v EOQ - v v
Radhi and Zhang (2015) Remanufacturing production Profit v - MINLP v v v
network
Subulan et al. (2015) Tire manufacturing CLSC Profit, environmental v v MILP, IFGP - - v
Demirel et al. (2016) ELV reverse logistics network Cost - v MILP - v
Pedram et al. (2016) Tire management CLSC Profit v - MILP - - v
Afrinaldi et al. (2017) Tire replacement schedule Profit, environmental v v MOP, GA - - v
Amin et al. (2017) Tire management CLSC Profit v - MILP, DT - - v
Costa-Salas et al. (2017) Tire recycling network Profit, environmental v v DES, MOP - - v
Simic and Dabic-Ostojic(2017) Used tire management and Profit v - IPCCP - - v
planning
Simi¢ et al. (2017) Used tire management and Profit v IPSIP - v v
planning
Banguera et al. (2018) RL for used tires Cost - v MILP v - v
Ebrahimi (2018) Tire management CLSC Cost, environmental, v v SMOP, e-constrain v - v
awareness
Fathollahi-Fard et al. (2018) Tire management CLSC Cost - v TLP, SA, VNS, KA, SFS - - v
Hajiaghaei-Keshteli et al. (2018) Tire management CLSC Cost, risk - v TSSP, PSO, GA - v v
Pereira et al. (2018) ELT quantity forecasting - - - TFM, ARIMA - - v
Sahebjamnia et al. (2018) Tire management CLSC Cost, environmental, social — v MOP, MILP, GA, SA, TAS, RDA, - — v
WwO
Saxena et al. (2018) Tire remanufacturing SC Profit, coverage, flexibility, v FMOMIP - - v
env.
Opyola-Cervantes and Off-the-road tire RL Profit v - MILP - v v
Amaya-Mier(2019)
Symeonides et al. (2019) ELT strategy selection - - - SWOT - - v
Zang et al. (2019) ELT gasification Cost - v TCM - v v
Abdolazimi et al. (2020) Tire management CLSC Delivery, profit, v v MOP, MILP, ¢-constrain - - v
environmental
Ghasemzadeh et al. (2020) Tire management CLSC Profit, environmental v v MILP, ¢-constrain - v v
Nowakowski and Krol (2020) ELT collection - - - AHP, PROMETHEE - v
Yu et al. (2020) CRMA mixing sequence - - - AHP - v

studies based on the publisher. The primary publisher for the
ELT management research area is Elsevier with 100 publica-
tions and a 66.2% share. Twenty-two studies were published
by Springer (14.6% share), seven studies were published by
MDPI (4.6% share), and four studies were published by

Taylor & Francis (2.6% share). The other 18 studies, which
is less than 12% of the analyzed papers, were published by
some other publishers such as ASME and SAGE.

This research presents a comprehensive overview of 151
papers published in 69 peer-reviewed journals. Figure 4 de-
picts the distribution of the reviewed papers based on the
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Fig. 2 The distribution of papers per year across the period 2010-2020

@ Springer

Fig. 3 The distribution of the reviewed studies based on the publisher
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Fig. 4 The distribution of the
reviewed studies based on the
source of publication

Environmental Science and Pollution Research 3

Energy [ 3
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Management
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source of publication. The largest number of papers were pub-
lished in the Journal of Cleaner Production (25 publications)
and Waste Management (14 publications), i.e., 25.8% of all
collected papers. A significant number of contributions were
also published in journals such as Construction and Building
Materials (8 publications), Renewable and Sustainable Energy
Reviews (7 publications), and Journal of Material Cycles and
Waste Management (6 publications). The remaining 66 papers
were published in 58 different journals.

The EU and Japan have the most developed regulations in
the field of ELT management. However, only three papers
investigated ELT management regulation systems on a global
level (Table 2). Figure 5 presents the number and percentage
of the regulations review papers based on the ELT manage-
ment regulation system. EPR system is favored in almost all
papers, as the most common regulation system for ELT man-
agement. A large number of studies (14 out of 24) advocates
exclusively this system. This indicates the importance of the
fact that tire manufacturers are increasingly taking responsi-
bility when products end their service life. Such practice has
positive effects on environmental, economic, and social
sustainability.

Figure 6 gives the distribution of the treatment review pa-
pers based on investigated ELT treatment. As can be seen
from Fig. 6, pyrolysis is the most common type of ELT treat-
ment since it is investigated in the majority of the treatment

Fig. 5 The ELT management
regulation system of the
regulations review category

Extended producer responsibility & Tax system & 1
Free-market system
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Extended producer responsibility ::':':':':::::':':':':':':':':::::':':':':'::::::::::::.'.:.:.:.; 14

Waste Management [

Others [t

review papers. More than 80% (23 out of 29) of papers inves-
tigate recycling and/or pyrolysis, although in the waste hier-
archy, extending the life of tires is an imperative of sustainable
treatment. Besides, retreading is investigated in only five stud-
ies even though it is fully in line with the environmental,
economic, and social dimensions of ELTs. These facts indi-
cate that there are many challenges for future research in the
treatment review category.

After appropriate ELT treatment, certain materials are ob-
tained which are later used as a substitute for raw materials. In
almost all papers related to ELT management, their applica-
tions are analyzed, discussed, and evaluated. Figure 7 pro-
vides the distribution of the engineering applications category
based on provided ELT waste flow applications. According to
Fig. 7, 24 papers deal exclusively with applications, with
ELTs being analyzed as an energy source in more than 41%
of the engineering applications category, while 37.5% of this
category prefers construction-related applications. These re-
sults are directly related to investigated ELT treatment, where
pyrolysis and recycling are most commonly used.

In a significant number of analyzed papers, optimization
approaches are applied to improve ELT management.
Figure 8 presents the number and percentage of the network
design and analysis papers based on their research focus.
From Fig. 8, it can be noticed that in 35.5% (11 out of 31)
of the network design and analysis papers, the authors

Extended producer responsibility & Free-market -g 1
system

Free-market system
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Fig. 6 The distribution of the
treatment review category by
ELT treatment
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recovery

Pyrolysis & energy recovery E 1

Retreading & energy recovery E 4

developed new methodologies and decision-making ap-
proaches that only deal with ELT treatment. In addition to
treatment, legislation is also respected in 25.8% (8 out of 31)
of papers. In most of the developed new methodologies and
decision-making approaches, at least two key elements of
ELT management are respected: most often applications and
treatment as well as treatment and legislative. However, only
two studies integrated applications, treatments, and legisla-
tion, as three key elements of ELT management. Based on
these indicators, it can be outlined that the vast majority of
network design and analysis papers failed to take into account
all three key elements of ELT management.

Conclusions

This study presents the first critical review of the ELT man-
agement area. Relevant peer-reviewed publications in the
journal in the period 2010-2020 are collected, analyzed, cat-
egorized, and critically reviewed. As a result, an extensive
content analysis overview of 151 state-of-the-art studies is
provided.

There is a significant increase in the number of studies after
2017. Besides, almost one-third of the reviewed papers were
published in the last 2 years. These indicators highlight the
growing importance of ELT management. On the other hand,
the reviewed studies were published in 69 peer-reviewed
journals. The major publishers for the ELT management area
are Elsevier (66.2% share) and Springer (14.6% share). The
primary publication outlets are the Journal of Cleaner
Production and Waste Management. The secondary publica-
tion outlets are Construction and Building Materials,
Renewable and Sustainable Energy Reviews, and Journal of
Material Cycles and Waste Management.

Most of the papers are related only to the treatment of
ELTs. Pyrolysis and recycling are the most common ELT

Fig. 7 The distribution of the
engineering applications category

Recycling

©

Pyrolysis i 14

treatment options, while economic efficiency is the primary
comparison criterion. The EU and Japan have the most devel-
oped regulations in the field of ELT management. From the
regulation aspect, the EPR management system is most often
implemented. This indicates that environmental awareness is
becoming increasingly important in ELT management.

According to the performed review, the major gaps and
significant research directions are as follows:

i. Sustainable waste management should take into account
the environmental, economic, and social dimensions of
ELT material flow. The social dimension, as the third pil-
lar of sustainable development, is mainly ignored in the
available studies. Also, social indicators (i.e., affected pop-
ulation, customer satisfaction, health and safety practices,
job opportunities and unemployment, local influence and
development, occupational hazards, public awareness lev-
el, safety management, etc.) should be taken into account
in future research efforts to generate comprehensive guide-
lines for relevant decision-makers.

ii. Regulations play an essential role in ELT management.

However, they have not been sufficiently respected in a

significant portion of the previous studies. This negative

trend is especially visible in the available network design
and analysis research efforts. Future studies on new meth-
odologies and decision-making approaches for ELT man-
agement should cover all three key elements of ELT man-
agement, i.e., legislation, treatments, and applications.
Besides, future models need to be specifically tailored
for ELTs.
Little has been done to investigate ELT management
regulation systems on a global level. Also, the influence
of EPR, TS, and FMS regulation systems on tire material
circularity is missing. Besides, critical enablers and bar-
riers for tire material circularity still have to be revealed.
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Fig. 8 The research focus of the
network design and analysis
papers
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iv. The waste hierarchy emphasizes the reuse and extension
of the tire life cycle as a primary ELT management
scheme. Retreading is explored in only a few studies. It
is on top of the waste management hierarchy. This insuf-
ficiently researched management scheme, which is fully
in line with the environmental, economic, and social di-
mensions of ELTs, needs to be put into focus in future
studies.

v. ELT recycling is mainly associated with civil engineering
applications even though recycled rubber could also be

used in many other areas. New fields of applications of
recycled ELTs have to be explored and well-documented
to minimize ELT waste flow, e.g., innovative applications
for thermal and acoustic isolation, vibration reduction,
packaging as well as widespread utilization in the foot-
wear industry and logistics activities.

vi. Many studies in the literature deal with network design
and analysis of ELTs; however, there are significant gaps
in this scope. Only a few studies propose a strategic ap-
proach for the remanufacturing process of ELTs. In ad-
dition, very few studies focus on the social and environ-
mental impacts of ELTs. Since uncertainty is one of the
crucial factors in an effective network design process,
there is no significant number of studies in the literature
that takes uncertainty into account. As sustainability and
resilience are key factors for the future of a realistic pro-
ject, researchers can include these factors in future studies
related to ELT management. Last but not least, reconcile-
ment of conflicting goals in ELT optimization models
could be an interesting topic to deal with for future re-
searchers since economic, social, and environmental ob-
jectives tend to trade-off in waste management models.

vii. Short- and long-term effects of external impact factors

on the tire industry must be comprehensively assessed.
Also, possibilities for increasing supply chain resilience
should be extensively explored. Besides, a key challenge
is to provide a set of alternative solutions that can serve
as a rule of thumb for supply chain managers under
medical crises, like the COVID-19(coronavirus) out-
break. To help researchers and practitioners in related
future efforts, we introduce the novel concept of a “so-
cially resilient supply chain”, where social resilience is
defined as the ability of a sustainable supply chain to

ANNNNNNNNNNNNRNNNRNNNNNN
Treatment KNNNNNNENNNNNNE NN RN 1

2 4 6 8 10 12

o

timely, eco-efficiently, and cost-effectively recover from
social disruption events. It should be outlined that this
research avenue deserves special attention.

The presented critical review provides comprehensive in-
sights, a valuable source of references, and major opportuni-
ties for researchers and practitioners interested in not only
ELT material flow but also the whole waste management area.
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