
RESEARCH ARTICLE

Application of the Paracentrotus lividus sea-urchin embryo-larval
bioassay to the marine pollution biomonitoring program
in the Tunisian coast

Chayma Gharred1
& Maroua Jenzri1 & Zied Bouraoui2 & Hamadi Guerbej2 & Jamel Jebali3 & Tahar Gharred1

Received: 27 May 2021 /Accepted: 18 August 2021
# The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The pollution of the marine environment by treated and untreated effluents has increased due to human activities.
Monitoring the marine ecosystem is nowadays a global concern. In this work, we evaluated the effect of contam-
inated and uncontaminated seawater, from different Tunisian coastal areas, on the fertilization, gastrulation, and
embryo-larval development events of sea urchins (Paracentrotus lividus). The station of Salakta (SA) is considered
as a control station, while the stations of Hamdoun Wadi (HW), Port of Monastir (PM), Karaia Monastir (KM),
Teboulba (TE), and Khniss Lagoon (KL) are considered to be contaminated stations. The analysis of seawater
physicochemical characteristics showed that levels of the total suspended matter (TSM), chemical oxygen demand
(COD), biochemical oxygen demand (BOD), total organic carbon (TOC), and nitrate (NO3−) were lower in the
seawater of the reference site Salakta (SA) when compared to those of the contaminated seawater sites. In addition,
a very strong variation in the levels of trace metals in seawaters sampled in the studied sites was noted. In fact, the
highest concentrations of Pb and Cu were observed in Hamdoun Wadi (HW), port of Monastir (PM), and Karaia
Monastir (KM), while the highest concentration of Zn was noted in the Teboulba lagoon (TE) and Khniss (LK).
Alterations in physicochemical characteristics as well as elevated trace metal levels in the studied seawater samples
were correlated with reduced fertility rate, gastrulation rate, and the frequency of normal sea urchin larvae. The total
absence of normal sea urchin pluteus larvae in the sea waters of heavily polluted sites proves the great sensitivity of
the larval frequency to mixed pollution. This work recommends the utility of urchin fertilization and gastrulation
rates and normal pluteus larval frequencies as useful bioassays to monitor the exposure of marine ecosystems to
mixed pollution.
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Introduction

Several pollutants enter the marine ecosystems as a result of
anthropogenic activities such as agriculture, industries, tour-
ism, and shipping, and as consequence, these pollutants are
rich in higher concentrations in different compartments of the
natural ecosystem depending of type of contamination, acute
or chronic exposure release (days, month, or years…), and
concentrations. Due to their toxicity, persistence, and ability
to accumulate in marine organisms and sediments, chemical
compounds are widely called persistent pollutants. This group
includes polycyclic aromatic hydrocarbons (PAHs),
polychlorinated biphenyls (PCBs), and heavy metals.
However, other compounds that have not been considered as
contaminants have appeared recently. These are called
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emerging pollutants, which involve a long list of compounds
including drugs, hormones, antimicrobials, and plasticizers

(Parra Luna et al. 2020). The increasing toxic discharges
into the marine environment led to a decline in species diver-
sity and negative consequences for human health when con-
sume contaminated seafood (e.g., natural toxins, metals, or-
ganic pollutants). For this reason, the monitoring of this eco-
system contamination is an urgent necessity. Furthermore,
there is growing concern about how to assess the marine en-
vironmental pollution. The monitoringmarine ecosystem con-
tamination is based on the combination of the two approaches;
the first is the chemicals quantifications by analytical tools
which includes high-performance liquid chromatography as-
sociated to mass spectroscopy (HPLC-MS) and gas chroma-
tography coupled to the mass spectroscopy (GC-MS). The
second approach is based on the assessment of biological ef-
fects of pollutants in the particular animal living in contami-
nated ecosystem. This approach is called biomonitoring,
which aims to assess the ecotoxicological risks of pollution.

Bioindicators are marine organisms that able to provide
qualitative and quantitative information about the quality of
its environment and has a high degree of sensitivity or toler-
ance to many types of contamination or its effects (Vallaeys
et al. 2017; Bonanno and Orlando-Bonaca 2018). Sea urchins
are considered as preferred model organisms in ecotoxicology
(Amri et al. 2017). Besides their key role in structuring benthic
communities and whole marine ecosystems through their
grazing activity, sea urchins are important bioindicators of
marine pollution for their sedentary and benthic lifestyle, its
wide geographical distribution, its year-round availability, its
easy sampling, its well-known biology, its high bioaccumula-
tion of chemical contaminants, and subsequent ability to re-
flect the health of the surrounding environment (Milito et al.
2020).

This species is sensitive to pollutants including trace metals
(Gharred et al. 2016; Guendouzi et al. 2017; Bonaventura
et al. 2018), pesticides (Levert et al. 2018), endocrine
disruptors (Bošnjak et al. 2014; Tato et al. 2018), antibiotics
(Gharred et al. 2016), and polycyclic aromatic hydrocarbons
(Bellas et al. 2008; Rocha et al. 2018), as well as physical
agents (X-ray, UV ...) (Matranga et al. 2010; Bonaventura
et al. 2011).

The assessment and monitoring marine pollution by
larvae bioassay and chemical determinations are essen-
tial for the marine ecosystem management and the pro-
tection. Several invertebrates’ larvae bioassays have
been developed and validated its usefulness in many
in field ecotoxicology exercises (His et al. 1997;
Beiras et al. 2003; Van Dam et al. 2016). The sea
urchin embryo-larval bioassays are the old biological
tests, frequently used in the determination of the avail-
ability of chemicals and assess its toxicity (Bougis
1959; Kobayashi 1971. Several authors reported the

sensibility of the sea urchin larvae abnormalities fre-
quency response to pollutants exposure in controlled
conditions of laboratory or in natural marine-polluted
ecosystems (Nacci et al. 1986; Saco-Álvarez et al.
2010; Beiras et al. 2012; Gharred et al. 2015, 2016).
The sea urchin embryo-larval bioassay low cost, ease
of realization, and particularly sensitivity to pollutants
exposures encouraged ecotoxicologists to standardize
this test for its future use in the biomonitoring of ma-
rine pollution (Kobayashi et al. 1994; ASTM 1995).

This study aims to assess the usefulness of the sea
urchin P. lividus embryo-larval malformations as bioas-
say test for the biomonitoring of Tunisian marine waters
contamination. We are particularly interested first, in the
assessment of the seawater physicochemical proprieties
which include TSM, BOD, COD, NO3, and TOC and
in the trace metal levels such as Pb, Cd, Cu, Ca, Mg,
and Zn in the seawaters collected from six studied sites
on the eastern coast of central Tunisia. Secondly, we
evaluated the sensi t iv i ty of the embryo-larval
malformations to the contamination level of the
Tunisian coast area. This study hypothesize that
embryo-larval malformations can be easy, fast, and sen-
sitive procedure for biomonitoring of Tunisian marine
waters and others around the world exposed to various
anthropogenic discharges.

Material and methods

Animal sampling

Sexually mature sea urchins were sampled from reference site
of the Tunisian littoral (Salakta site) (SA) (Fig. 1) from April
to June 2019, using a landing net or submarine diving in the
coastal region at depths less than 2 m. They were then
transported to the laboratory in a cooler filled with seawater,
where they have been kept in aquaria with clean, run, and
aerated seawater until the start of tests, which will be initiated
on the same day.

Study area and seawater sampling procedures

Seawater samples were taken approximately at the same depth
(~3m) in all the studied sites to avoid the interference of sa-
linity on the responses (false positives). The studied sites have
been presented in (Figure 1). Salakta (SA) is a control site with
low susceptibility to human influence and low levels of envi-
ronmental contamination (Gharred et al. 2020). The other five
sampling sites were chosen according to potential sources of
industrial, harbor, and urban activities. Teboulba (TE), Khniss
Lagoon (KL), and Hamdoun Wadi (HW) were characterized
with chronic treated wastewater discharges (Jebali et al. 2011,
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2013). Port of Monastir (PM), and Karia Monastir (KM) were
characterized with the higher influence of harbor (Gharred
et al. 2019).

The seawater was collected according to the standard sam-
pling methods explained by Rodier et al. 1984, then,
transported to the laboratory, and stored at −20°C until the
analyses.

Chemical analysis of the seawater collected from the
control and polluted sites

Seawater physicochemical proprieties determinations

The analysis of the chemical oxygen demand (COD), bio-
chemical oxygen demand (BOD), total organic carbon
(TOC), total suspended matter (TSM), and nitrate (NO3−)
were determined in seawaters collected from control and pol-
luted sites using a portable UV analyzer (Pastel UV, Secomam
multimete, Alès, France) (Afsa et al. 2020)

The pH and the salinity of seawater of each site are mea-
sured by a pH meter and a refractometer respectively.

Trace metals analysis

Trace metals lead, copper, cadmium, calcium, magnesium,
and zinc were quantified in seawater samples collected from
reference and polluted sites (HW, PM, KM, KL, TE, and SA),
by flame atomic absorption spectrometry (SP-AA 4000).
(Aydin Urucu and Aydin 2015; Hernández et al. 2020).

Sea urchin embryo-larval test

Sea urchin bioassay was performed according to the
methods described by many authors (McGibbon and
Moldan 1986; Fernández and Beiras 2001; Bellas
et al. 2005; Gharred et al. 2015, 2016). Mature sea
urchins were placed individually, aboral side down on
50-ml beakers containing filtered seawater, collected
from contaminated sites, Hamdoun Wadi (HW), Karaia
Monastir (KM), Port of Monastir (PM), Khniss Lagoon
(KL), Teboulba (TE) and from the reference site,
Salakta (SA). Spawning is induced experimentally by
injecting 1 ml of KCl (0.5 M) into the peristome, and
the emission of the gametes occurs a few minutes later.
Gamete emission and quality were visually inspected
under light microscope at 200–×400 magnification to
ensure the maturity of the gametes (mobile spermatozoa
and regular spherical oocytes). Sperm suspension of one
male and oocytes suspension of one female were mixed
into 100 mL, using a sperm/oocyte ratio of 10/1. To
follow the urchin embryo-larval development, three pa-
rameters were studied: the percentage of normal fertili-
zation (% F), the percentage of normal gastrulas (% G),
and the percentage of normal Pluteus larvae (% LP)
determined after 20 min and 20 h and 48 h, respective-
ly. These percentages were determined by counting at
random a hundred oocytes, gastrulas, and larvae after
their fixation with 100 μl of 40% formaldehyde.
(Bellas et al. 2005; Manzo et al. 2013), and the calcu-
lation was done according to the following formulas:
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Fig. 1 Seawater sampling sites at
contaminated sites Hamdoun
Wadi (HW) (6), Monastir Karaia
(KM) (5), Fishing Port of
Monastir (PM) (4), Lagoon de
Khniss (KL) (3), Teboulba (TE)
(2), and at the reference site
Salakta (SA) (1)
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% NF = 100 × ((number of fertilized eggs) / (total
number of eggs counted))% NG = 100 × ((number of
normal gastrulas) / (total number of gastrulas count-
ed))% NLP = 100 × ((number of normal larvae) / (total
number of larvae counted))

Values are shown as percentages ± standard devia-
tion. Groups of 100 fertilized oocytes, gastrulas, or lar-
vae were analyzed by optical microscopy and
photographed using a digital camera. Three replicates
per treatment were carried out.

The egg fertilization test was considered successful
when the percentage of oocytes fertilization obtained
in the seawater of the reference site was at least 90%
(Nacci et al. 1986; Gharred et al. 2015, 2016). The
percentage of abnormally fertilized eggs (those not
surrounded fully or partially by a fertilization mem-
brane), or failure rate, in 100 eggs was recorded in
seawaters of the control and the contaminated sites.
The frequencies of embryo-larval abnormalities were
performed after the egg fertilization test. The gastrula-
tion test was considered successful when the percentage
of normally gastrula in the control was at least 90%
(Gharred et al. 2015, 2016). The percentage of abnor-
mal gastrula is characterized by the absence of the arch-
enteron invagination and secondary mesenchymal cell
detachment or failure rate. The larval test was consid-
ered successful when the percentage of normally devel-
oped pluteus in the control was at least 90% (Bellas
et al. 2005; Gharred et al. 2015, 2016). The percentage
of abnormally developed pluteus (those who do not
have well-developed arms), or failure rate, was taken
as an endpoint of contaminant toxicity according to
the criteria of many previous works (Pesando et al.
2003, 2004; Carballeira et al. 2012a, b; Gambardella
et al. 2013; Gharred et al. 2015, 2016).

Statistical analyses

The multiple comparisons of the seawater physicochemical
parameters including TSM, COD, BOD, TOC, and NO3 and
the embryo-larval development parameters %F, %G, and
%LP between sites were conducted using SPSS software
20.0. The results were expressed as mean ± SD. Results were
analyzed by one-way ANOVA followed by Duncan’s multi-
ple range test. Differences were considered statistically signif-
icant at p<0.05.

The agglomerative hierarchical clustering (AHC), as mul-
tivariate analysis of the embryo-larval and physicochemical
parameters, was conducted using the XLSTAT 2014 software.
In this study, the embryo-larval and physicochemical param-
eters were used as variables and the six studied sites as obser-
vations. The similarity between sites was measured by
Pearson correlation coefficient.

Results

Seawater physicochemical characteristics

The analysis of seawater physicochemical characteristics
showed that levels of the total suspended matter (TSM),
chemical oxygen demand (COD), biochemical oxygen de-
mand (BOD), total organic carbon (TOC), and nitrate (NO3-)
were lower in the seawater of the reference site Salakta (SA)
when compared to those of the contaminated seawater sites.
The highest levels of the parameters TSM, COD, TOC, NO3−

were noted in the seawater of the Khniss Lagoon (KL) which
could be related to the higher urban discharges rich in organic
matter (Fig. 2).

The most acidic pH and the highest salinity were noted in
the seawater of (KL) (Table 1).

Seawater trace metals levels

The results of trace metals concentrations in seawaters of the
reference and contaminated sites are presented in (Table 1).
There is a very strong variation in the trace metals concentra-
tions found according to the sampling stations. The results
clearly show that the high Pb and Cu seawaters concentrations
were observed in Hamdoun Wadi (HW), port of Monastir
(PM), and Karaia Monastir (KM), while the high Zn seawater
concentrations were noted in Teboulba (TE) and Khniss
Lagoon (KL) sites. Indeed, the highest Cd seawater concen-
tration was marked in Hamdoun Wadi (HW) site (Table 1).

Assessment of embryo-larval development of
P. lividus in seawaters of reference and contaminated
sites

The embryo larval development of P. lividus is characterized
by crucial successive stages from fertilization to organogene-
sis. The success of each stage was evaluated by the percentage
of the fertilized eggs, normal gastrulas, and the normal larva
frequencies.

The percentage of oocyte fertilization success (%F) in sea-
water from each study site is given in (Fig. 3). The results
clearly show that a distinguished higher fertilization rate was
observed in the seawater of the reference site Salakta (SA)
with 96 ± 2.3%, and very low percentages of oocyte fertiliza-
tion (%F) were noted in the seawaters of the contaminated
sites Khniss lagoon (KL), Port of Monastir (PM), Hamdoun
Wadi (HW), and Karaia Monastir (KM). The lowest percent-
age of oocyte fertilization (%F) was in seawater of PM site
with 53 ± 2.15% indicting a higher contamination level of this
site.

The gastrula stage of the sea urchin was obtained 20-h post-
fertilization and by adding buffered formaldehyde to stop em-
bryo larval development. The normal sea urchin gastrula is
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characterized by the archenteron invagination and by the sec-
ondary mesenchyme cells detachment. The percentages of
normal gastrulas observed in the marine waters collected from
several sites Tunisian littoral areas are given in (Fig. 3). The
results show a higher rate of normal gastrulas in seawater of
the reference site and low percentages that did not exceed 60%
in contaminated sites. The normal gastrula rates significantly
differed among the studied sites and were 54 ± 1.75%, 52 ±
3.15%, 52 ± 1.5%, 52± 2.5%, and 43 ± 2.8% for Teboulba
(TE), Hamdoun Wadi (HW), Karaia Monastir (KM), Port of
Monastir (PM), and Khniss Lagoon (KL) respectively.

The larval stage of the sea urchin is obtained 48-h post-
fertilization and by adding buffered formaldehyde to the me-
dium to stop embryo-larval development. Organogenesis of
the sea urchin gastrulas begins with the opening of the anus,
then the mouth on the opposite side, then the formation of
spicules and the four oral and anal arms of the pluteus larvae.
The rates of normal larvae in seawaters from the control and
contaminated sites are shown in (Fig. 3). A higher rate of
normal larvae was noted in seawater of the control site, a
low percentage of normal larvae seawater from TE, and dra-
matically diminished rates in seawaters of the KaraiaMonastir

(KM) and Hamdoun Wadi (HW) sites with percentages of 18
± 1.78% and 12 ± 2.8%, respectively. Interestingly, total ab-
sence of larvae was in the seawaters of the Port of Monastir
(PM) and Khniss Lagoon (KL) sites.

Evaluation of the embryo-larval development of
P. lividus in diluted seawaters of highly contaminated
sites

The total absence of larvae in the waters of the Khniss Lagoon
site (KL) and port of Monastir (PM) encouraged us to inves-
tigate the effect of diluted seawaters on the fertilization suc-
cess, gastrulation, and embryo-larvae of P. lividus. Successive
dilutions of ½ and 1/3 of the contaminated sites seawater:
Khniss Lagoon (KL) and port of Monastir (PM) with control
seawater were adopted.

The percentages of fertilization success, gastrulation, and
normal larvae are given in (Fig. 4). The obtained results show
that the ½ and 1/3 dilutions of Khniss Lagoon (KL) seawaters
improved the percentages of fertilization success at 61 ±
1.75% and 72 ± 2.5% respectively. The gastrulation rate ame-
liorated up to 55 ± 1.75% in ½ diluted contaminated seawater
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Fig. 2 Analysis of the
physicochemical parameters
TSM, BOD, COD, TOC, and
NO3 of marine waters from
contaminated sites Hamdoun
Wadi (HW), Monastir Karaia
(KM), Port of Monastir (PM),
Khniss Lagoon (KL), Teboulba
(TE), and at the Salakta (SA) ref-
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Table 1 pH, salinity (g/L), and content (mg/L) of six metals (Pb, Cu, Mg, Ca, Zn, and Cd) in the seawater of the studied sites (SA Salakta, KLKhniss
lagoon, TE Teboulba, HW Hamdoun Wadi, PM Port of Monastir, KM Karaia Monastir)

PH Salinity Pb Cu Zn Ca Mg Cd

SA 7.37 ± 0.08 37.19 ± 0.32 10.151 ± 1.050 0.102 ± 0.006 0.140 ± 0.033 5.704 ± 0.480 8.338 ± 0.210 0.019 ± 0.002

KL 6.22 ± 0.06 40.42 ± 0.21 5.471 ± 0.320 0.099 ± 0.043 0.160 ± 0.087 5.341 ± 0.150 8.172 ± 0.130 0.016 ± 0.002

TE 6.49 ± 0.08 39.26 ± 0.77 6.593 ± 1.050 0.097 ± 0.026 0.150 ± 0.010 4.824 ± 0.076 8.388 ± 0.190 0.017 ± 0.007

HW 8.45 ± 0.04 35.97 ± 1.20 14.153 ± 0.370 0.105 ± 0.014 0.120 ± 0.014 5.306 ± 0.046 7.219 ± 0.241 0.020 ± 0.008

PM 7.84 ± 0.06 37.80 ± 0.41 15.659 ± 0.360 0.109 ± 0.026 0.120 ± 0.032 5.716 ± 0.412 8.280 ± 0.220 0.019 ± 0.002

KM 7.73 ± 0.03 34.38 ± 0.62 19.707 ± 0.700 0.115 ± 0.029 0.110 ± 0.079 4.735 ± 0.186 6.692 ± 0.313 0.019 ± 0.008
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and increased to 63 ± 1% in 1/3 diluted contaminated
seawater. The normal larvae frequency in ½ diluted
contaminated seawater was 10 ± 2% and 28 ± 3.1%
in 1/3 diluted contaminated seawater. The same for the
case of port of Monastir (PM), the dilution of ½ and 1/
3 shows a clear improvement in the percentages of fer-
tilization success at 63 ± 1.75% and 67 ± 1.5% respec-
tively. The gastrulation rate ameliorated up to 56 ±
1.75% in ½ dilution and increased to 60 ± 1% in 1/3
dilution. The normal larvae frequency was 11, 2 ± 2%
in the ½ diluted contaminated seawater and 20 ± 3.1%
in the 1/3 diluted contaminated seawater.

The improved fertilization, gastrulation, and organo-
genesis success of P. lividus confirmed the sensitivity of
these embryonic-larval developmental events to mixed
pollution exposure and proved its utility in the program
of biomonitoring of seawater contamination assessment.

The agglomerative hierarchical clustering (AHC) of
biological and physicochemical parameters

The agglomerative hierarchical clustering (AHC) was used to
investigate the possible correlation between the embryo-
larvae development and the physicochemical parameters of
the control and contaminated site seawaters. The AHC is the
most common type of hierarchical clustering used to group
objects (sites in this study) in clusters based on their similarity.
Thus, sites with similar biological and chemical data will be in
the same cluster. The full dendrogram (Fig. 5) displays the
progressive clustering of sites. The level of truncation marked
by a broken line shows three clusters. The first cluster
contained SA considered as reference and TE considered as
the less polluted sites. The second cluster of HW and KMwas
considered as polluted sites, and the third cluster contained
highly polluted sites PM and KL.
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Discussion

Mediterranean coastal areas, including Tunisian area, are
gradually affected by the intensification of anthropogenic ac-
tivities which increase pollution, eutrophication, and habitat
destruction that negatively affect coastal marine ecosystems
(Jebali et al. 2013; Gharred et al. 2019; Parra Luna et al. 2020).
The anthropogenic activities cause growing discharges of pol-
lutants of different nature into the marine environment that
threat aquatic organisms. Thus, development and validation
of the monitoring approach of marine pollution based on the
chemical and biological tools would be of great interest in
Tunisia and in other countries around the world. This study
aimed to assess the usefulness of the sea urchin P. lividus
embryo-larval malformations as bioassay test for the biomon-
itoring of Tunisian marine water contaminations. This study
hypothesizes that embryo-larval malformations can be easy,
fast, and sensitive biological approach for biomonitoring of
marine environment contamination. Sea urchins are a widely
used model system for toxicological studies in controlled and
in-field conditions (Warnau et al. 2006; Pétinay et al. 2009;
Martin et al. 2011; Amaroli et al. 2013; Gharred et al. 2015,
2016; Martino et al. 2018; Ruocco et al. 2020). Indeed, as key
species well represented both in planktonic and benthic ma-
rine ecosystem at larval and adult stages, respectively, and
being highly sensitive to ambient condition variations, sea
urchins can be used to assess the biological effects of marine
pollution on the early embryo-larval development disruption.

It is well known that the pollutants arriving in the marine
environment are distributed in the different compartments of
sediments, seawater, and living organisms. However, the sed-
iments are the main compartments of pollutants storage and
are in continuous exchange of pollutants with the other com-
partments in which directly linked seawater and organisms
(Jebali et al. 2012). In this work, we decided to assess the

impact of the polluted seawaters of polluted sites of the
Tunisian coastal areas on the embryo-larval developmental
stages of sea urchin (P. lividus). Several arguments encourage
us to select the seawaters of polluted sites to assess the re-
sponses of this sea urchin bioassay test to seawaters pollutants;
the first, this animal occupied the rocky littoral zones and in
direct contact with seawater and secondly, the embryo-larval
development accrued in seawaters.

The results indicated that fertilization, gastrulation, and
normal pluteus larvae frequencies were highly diminished in
the contaminated sites and were correlated to the measured
physicochemical parameters and traces metals. The alteration
of the seawater physico-chemical parameters such as TSM,
BOD, COD, NO3, TOC, and turbidity could be indicators of
eutrophication phenomenon when dissolved oxygen highly
decreased and negatively affect on the sea urchin embryo-
larvae development and animal growth (Ternengo et al.
2018). The low seawater pH of khniss lagoon (KL; pH =
6.22) affected the normal fertilization, gastrulation, and organ-
ogenesis processes of sea urchin (Paracentrotus lividus).
These results are in agreement with those found by Limatola
et al. (2020). In addition, Dorey et al. (2018) clearly demon-
strated that a reduction in the seawater pH by one unit (from
pH 8.1 to 7.1) increased the incorporation kinetics of six trace
metals (Mn, Co, Zn, Se, Ag, Cd, Cs) in the sea urchin larvae.

Interestingly, a total absence of pluteus larvae was noted in
the seawaters of the highly polluted sites: Port of Monastir
(PM) and Khniss Lagoon (KL) sites. Zúñiga et al. (1995)
reported strong effects on fertilization after exposure of the
sperm cell of the sea urchin Arbacia spatuligira to the seawa-
ters from two coastal areas with different sources of pollution;
the first site characterized with high organic-waste discharges
(Rocuant site) and the second site received chemical
discharges.

The agglomerative hierarchical clustering (AHC) analysis
of the chemical and embryo-larval results showed a dendro-
gram of three distinct site groups.

The first cluster formed by SA as reference and TE as the
less polluted sites. Indeed, the site of Salakta (SA) is far from
any source of contamination because its coast forms a cape
sheltered from any discharge of wastewater and is character-
ized by constant agitation and coastal currents promoting
good water renewal (Gharred et al. 2019, 2020). This explains
why Salakta (SA) site reflects the highest percentages of em-
bryonic development success.

The Teboulba (TE) is a moderately polluted site with trace
metals. The presence of these elements could be linked to road
traffic, maritime activities, the fishing port, and human activity
marked by the drainage of wastewater to the sea. This explains
the highest percentages of embryonic development success
among all polluted sites.

The highly polluted cluster is formed by the Khniss Lagoon
site (KL) and the Port of Monastir. The Khniss Lagoon site
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Fig. 5 Dendrogram for the biological and the physicochemical
parameters of the studied sites
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(KL) is affected by the presence of multiple sources of pollu-
tion from urban, industrial, and aquaculture activities of the
limitroph agglomerations. The anthropogenic activities result
in significant increase in several chemical concentrations in
different compartments of the littoral area (Damak et al.
2019a, b). In an example, a recent study of Amor et al.
(2020) shows that the coastal area of Khniss to Sayada is
contaminated particularly by trace metals (Zn, Cu…) and with
higher contents of TOC. The discharges cause also eutrophi-
cation phenomenon altering the seawater quality (Nouira et al.
2013). Recently, Khiari et al. (2021) reported that Monastir
lagoon sediments have been polluted for a long time, with
hydrocarbons from varied anthropogenic sources and fifteen
total polyaromatic hydrocarbon (15 priority pollutants) were
found at different levels ranged from 222 to 2992 μg kg−1 of
core sediments.

The chronic pollution of the Port of Monastir (PM) comes
from hydrocarbons resulting from normal maritime and port
activities or from involuntary or voluntary leaks and dis-
charges of fuels and used oils.

The mixture contaminations of these two sites explained
the highest rates of failure of the sea urchin embryonic devel-
opment noted in this work.

The second cluster gathers the two polluted sites: Hamdoun
Wadi (HW) and Karaia Monastir (KM).

The Hamdoun Wadi (HW) site is subjected to metal con-
taminations which include Pb and Cu and other organic
chemicals such as textile disperse red 1 and the disperse yel-
low 3, which were detected in the Hamdoun River with con-
centrations of 3.873 μg/L and 1895 μg/L, respectively
(Methneni et al. 2021).

For the Karaia Monastir (KM) site (swimming area), the
presence of the contamination elements could be linked to
road traffic and maritime and tourist activities.

Metallic pollution by Cd, Pb, Zn, Mg, and Cu of marine
environment has been considered as serious health hazard for
living organisms due to their persistence, ability to accumulate
in marine organisms, and toxicity (Guendouzi et al. 2017).
There are many studies reported the effects of Cd on the de-
velopment of sea urchin embryos and morphological effects
on larvae. In the laboratory conditions, Gharred et al. (2016)
showed that concentrations of Cd and Cu superior to 338 μg/L
and 0.56 μg/L respectively caused significant larval
malformations in P. lividus. In this work, we noted that the
seawater-contaminated sites by Cd and Cu (HW) have a min-
imal normal larval development and maximum larval anoma-
lies. It has been shown that high concentrations of Cu and Pb
caused larval malformations and blockage at different stages
of P. lividus embryo-larval development (Fernández and
Beiras 2001; Lewis and Ford 2012). That may explain our
results where sites with high level of Pb (PM and KM) pre-
sented respectively 100% ± 2.7 and 82% ± 1.75 of larval
malformation.

According to Casas (2005), the presence of Zn in sea water
at high concentrations causes disturbances in sea urchin fertil-
ization and segmentation (Lallier 1965) and inhibits the sea
urchin embryonic development through the delay of the fer-
tilization membrane elevation (Kobayashi and Okamura
2005).

The comparison of the sensitivity of the analyzed embryo-
larval events to control and contaminated seawater’s exposure
showed that the sea urchin larval plutei were strongly affected
than the fecundity and gastrula frequencies. Thus, sea urchin
larval plutei anomalies could be a useful bioassay to assess
mixture pollutions of marine ecosystem and involved in the
biomonitoring program.

The total absence of larvae in the waters of the Khniss
Lagoon site (KL) and port of Monastir (PM) encouraged us
to investigate the effect of polluted seawater dilutions on the
fertilization success, gastrulation, and embryo-larvae of
P. lividus. The diluted polluted seawaters highly improved
the sea urchin embryo-larval development. Thus, the obtained
results proved the sensitivity of the fertilization, gastrulation,
and particularly the embryo-larvae anomalies to polluted sea-
waters. Previous work showed the exposure of spermatozoids
to copper concentrations superior to 50 μg/l for 30 min in-
hibits fertilization, and lower concentrations have a severe
toxic effect concentration-dependent on the acceleration of
kinetics blastomere divisions, reduction of pluteus larvae size,
general larva shape alteration, and increase in the embryo
anomalies (Gharred et al. 2015). Moreover, the sea urchin
P. lividus embryo-larval malformation is a very sensitive bio-
assay to a variety of effluents in coastal areas including the
effluents from pisciculture farms (Carballeira et al. 2012a) and
industrial and urban agglomeration (Meriç et al. 2005).

Conclusions

This study confirmed the different contamination levels of
Tunisian coast areas via the trace metals and seawater’s
physic-chemical parameter alterations. The high trace metals
were correlated with the reduction of fecundity, gastrulation,
and normal sea urchin pluteus larval frequencies. A total ab-
sence of the sea urchin pluteus larval in the highly polluted
seawaters proved the high sensitivity of the larval anomalies
frequency to the mixture of pollution. All the results recom-
mended the usefulness of the sea urchin Paracentrotus lividus
as appropriate indicator of the marine environment quality and
can be integrated in the biomonitoring program of the marine
pollution.
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