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Abstract
Unplanned anthropogenic activities and erratic climate events pose serious threats to groundwater contamination. Therefore, the
vulnerability assessment model becomes an essential tool for proper planning and protection of this precious resource. DRASTIC
is an extensively adopted groundwater vulnerability assessment model that suffers from several shortcomings in its assessment
due to the subjectivity of its rates and weights. In this paper, a new framework was developed to address the subjectivity of
DRASTIC model using a bivariate, multi-criteria decision-making approach coupled with a metaheuristic algorithm. Shannon
entropy (SE) and stepwise weight assessment ratio analysis (SWARA) methods were coupled with biogeography-based opti-
mization (BBO) to modify rates and weights. The performance of developed models was assessed using area under the receiver
operating characteristic (AU-ROC) curve and weighted F1 score. The Shannon-MH model yields better results with an AUC
value of 0.8249, whereas other models resulted in an AUC value of 0.8186, 0.7714, 0.7672, and 0.7378 for SWARA-MH,
SWARA, SE, and original DRASTIC models, respectively. It is also evident from weighted F1 score that Shannon-MH model
produced maximum accuracy with a value of 0.452 followed by 0.437, 0.419, 0.370, and 0.234 for SWARA-MH, SWARA, SE,
and original DRASTIC models, respectively. The results indicated that Shannon model coupled with metaheuristic algorithm
outperforms other developed models in groundwater vulnerability assessment.

Keywords Groundwater vulnerability . DRASTIC model . Shannon entropy . Stepwise weight assessment ratio analysis
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Introduction

Groundwater is a finite amount of resource, supplying nearly
half of all drinking water in the world (WHO 2011). India is
considered to be one of the largest consumers of groundwater
resources and has overexploited most of aquifer (Aeschbach-
hertig and Gleeson 2012). Demand for freshwater resources is
increasing rapidly due to population growth, urbanization, and
industrialization which specifically increases the water stress
in developing nations (UN-Water 2020). It is estimated that
two-thirds of the global population will be living in cities by
the year 2050 (DeSA 2013). Due to erratic climate events
available, surface and groundwater resources have been de-
pleted in most of the urbanized regions (Gober et al. 2010;
Famiglietti 2014). In addition to increasing demand and cli-
mate change, groundwater gets contaminated through
manmade activities such as industrial wastewater discharge
(Selvakumar et al. 2017), fertilizers use in agriculture (Nas
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and Berktay 2006), poor sewerage system (Bishop et al.
1998), and dumping sites (Han et al. 2016). Once groundwater
resource gets contaminated, it takes huge cost and time to
replenish it (Kazemzadeh-Parsi et al. 2015). To protect this
most valuable groundwater resource from contamination, a
proper management strategy needs to be deployed (El-Naqa
and Al-Shayeb 2009; Wachniew et al. 2016). Groundwater
vulnerability assessment is considered to be an effective tool
for groundwater protection and planning (Panagopoulos et al.
2006). Generally, groundwater vulnerability of an aquifer is
assessed through three different techniques, (i) index-based
models (Foster 1987; Aller et al. 1987; Van Stempvoort
et al. 1993; Civita 1994; Chachadi and Lobo-Ferreira 2001),
(ii) statistical models (Burkart et al. 1999; Johnson and Belitz
2009; Rawat et al. 2019), and (iii) process-based models
(Jeannin et al. 2001; Schlosser et al. 2002; Milnes 2011).

The statistical method is associated with uncertainty and
applies to regions with similar groundwater contamination
factors, whereas the process-based model requires adequacy
of data and capture-associated physical, chemical, and biolog-
ical reactions beneath the surface (Shirazi et al. 2012). The
index-based method has an advantage over abovementioned
methods and applicable to the large region withminimum data
requirement. Some of the previous studies which employed
different index-based methods are (i) DRASTIC (Secunda
et al. 1998; Kim and Hamm 1999; Shouyu and Guangtao
2003; Koo and O’Connell 2006; Pacheco and Sanches
Fernandes 2013), (ii) SINTACS (Kumar et al. 2013;
Noori et al. 2019; Jahromi et al. 2020), (iii) GALDIT
(Recinos et al. 2015; Kazakis et al. 2018; Bordbar et al.
2020), (iv) GOD (Ghazavi and Ebrahimi 2015; Boufekane
and Saighi 2018; Mfonka et al. 2018), (v) AVI (Raju et al.
2014; Jilali et al. 2015; Luoma et al. 2017), and (vi) SI
(Ribeiro et al. 2017; Ghouili et al. 2021). DRASTIC is the
widely adopted index-based model for groundwater vulner-
abili ty assessment (Rahman 2008). However, the
abovementioned methods have certain limitations because
the ratings and weights associated with this approach are
site specific and based on an expert judgment which in-
creases subjectivity of DRASTIC model.

In recent years, many researchers developed various ap-
proaches to reduce the subjectivity of DRASTIC model.
There are two general approaches followed to improve the
DRASTIC method. The first category involves inclusion or
exclusion of certain parameters from original DRASTICmodel
based on aquifer characteristics. Kazakis and Voudouris (2015)
replaced the original parameters such as soil media, aquifer
type, and vadose zone characteristics with nitrogen losses from
the soil, aquifer thickness, and hydraulic resistance. The mod-
ified DRASTIC-PA and DRASTIC-PAN (includes land use)
perform better than original DRASTIC model. Jia et al. (2019)
considered parameters like aquifer thickness, nitrate attenuation
intensity, hydraulic resistance, groundwater velocity, and

pollutant intensity to develop DRANTHVPmodel. In conjunc-
tion with the developed model, parameter ratings were altered
using projection pursuit dynamic clustering (PPDC) model.
Kumar and Pramod Krishna (2020) consider land use parame-
ter in addition to seven hydrogeological parameters for estimat-
ing the groundwater vulnerability of hard rock aquifer system.
Abunada et al. (2021) utilize the SWAT model to calculate net
recharge parameter in the DRASTIC model and improved the
model accuracy.

In the second category, the most common approach to im-
prove DRASTIC framework is by optimizing its rates and
weights using different techniques. Neshat et al. (2014) devel-
oped five different approaches for vulnerability assessment.
The Wilcoxon rank-sum nonparametric statistical test was
used to adjust the rates of model parameters and used an an-
alytical hierarchy process to modify criteria and sub-criteria of
the DRASTIC model. Neshat and Pradhan (2015) adopted
frequency ratio (FR) approach to modify the rates further in-
tegrated with weights obtained from an analytical hierarchy
process (AHP) and single-parameter sensitivity analysis
(SPSA). Pacheco et al. (2015) attempted weight modification
of DRASTIC model based on Spearman correlations, sensi-
tivity analysis, correspondence analysis, and logistic
regression. Jang et al. (2016) employed discriminant analyzed
to alter the factors weighting coefficients. Khosravi et al.
(2018b) used four objective methods such as Shannon entropy
(SE), weights-of-evidence (WOE), logistic model tree (LMT),
and bootstrap aggregating (BA) to modify the original
DRASTIC model. Barzegar et al. (2019) used Wilcoxon
rank-sum test and frequency ratio (FR) to modify rates and
optimize weights using correlation coefficient, analytic hier-
archy process (AHP), and genetic algorithms (GA).
Torkashvand et al. (2020) hybridized stepwise weight assess-
ment ratio analysis (SWARA) with the entropy and genetic
algorithm (GA) to alter the rates and weights. Balaji et al.
(2021) used Wilcoxon rank-sum test to modify rates and
further used five metaheuristic algorithms such as IWO, FA,
PSO, TLBO, and SFLA to modify the weights of DRASTIC
parameters. Elzain et al. (2021) developed deep learning neu-
ral networks (DLNN) with two optimization algorithms PSO
and DE to improve vulnerability assessment. Agossou and
Yang (2021) used DRASTIC, additive model of DRASTIC
(DRASTICLcLu), classic DRASTIC weights modified using
Shannon’s entropy (entropy weight DRASTIC), entropy
weight DRASTICLcLu, and AVI for assessing groundwater
vulnerability. Khosravi et al. (2021b) developed DRASTIC,
modified DRASTIC, and three statistical bivariate models
(frequency ratio (FR), evidential belief function (EBF), and
weights-of-evidence (WOE)). Norouzi et al. (2021) used ran-
dom forest (RF) and genetic algorithm (GA) for DRASTIC
framework optimization. Previous studies show the effi-
ciency of the multi-criteria decision-making (MCDM)
method and metaheuristic algorithm in improving the
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DRASTIC framework. Among the MCDM techniques,
AHP was adopted by several researchers to alter the rates
and weights of DRASTIC (Thirumalaivasan et al. 2003;
Sener and Davraz 2013; Yang et al. 2017; Santhosh and
Sivakumar Babu 2018; Karan et al. 2018). Garewal et al.
(2017) modified weights using AHP and analytic network
process (ANP). SWARA is the recently developed efficient
MCDM technique that is adopted in several complicated
environmental studies (Hong et al. 2018; Khosravi et al.
2018a; Chen et al. 2019b). Despite this interest, few re-
searchers have attempted SWARA method to modify the
index-based model rates (Torkashvand et al. 2020;
Khosravi et al. 2021a). Torkashvand et al. (2021) employed
particle swarm optimization (PSO) and genetic algorithm
(GA) for optimizing the weights and SWARA for rate mod-
ification of DRASTIC model.

In this study, to improve the robustness of groundwater
vulnerability assessment model, bivariate statistical and
MCDM approach were coupled with biogeography-based
optimization (BBO). SE and SWARA method were not
coupled with BBO algorithm so far in DRASTIC-based
studies. The novelty of this study is to use new framework
such as SE, SWARA and Shannon-MH, and SWARA-MH
and compare its performance in groundwater vulnerability
assessment.

The main objectives of this study are (i) to develop im-
proved DRASTIC model by modifying rates using bivariate
and MCDM approach; (ii) to develop coupled DRASTIC
model by integrating bivariate and MCDM model with
biogeography-based optimization; (iii) to compare the perfor-
mance of newly developed model with original DRASTIC
model based on weighted F1 score and area under the receiver
operating characteristic (AU-ROC) curve; and (iv) to delin-
eate groundwater vulnerability map using the best model for
this region.

Study area

Chennai Metropolitan Area (CMA) is selected for this study
as it is one of the rapidly urbanizing cities in the world. CMA
locates in northern portion of Tamil Nadu, extending between
latitudes of 12° 52′ 48″ to 13° 15′ 48″ and longitudes 80° 03′
04″ to 80° 20′ 37″ as shown in Fig. 1a. This is the fourth
biggest and one of the rapidly urbanizing cities of India. The
rapid urbanization has resulted in uneven and unplanned
growth which in turn has increased the vulnerability of certain
areas of the city in terms of water pollution and climate resil-
ience (Krishnamurthy and Desouza 2015), and hence, this city
is selected for the study. CMA covers an area of 1189 km2 and
is spread over three districts, namely, Chennai, Thiruvallur,
and Kancheepuram. The major region of the study area falls
under flat and low elevation ranging from 0 to 162 m above

mean sea level. The geology comprises of four major forma-
tions such as black sandy clay and sand and silt of
Quaternary era, followed by Proterozoic granite and
Mio-Pliocene sandstone. In addition to these four major
formations, Archean age amphibolite, gneiss, mylonite,
Late Cretaceous argillaceous, Quaternary fluvial marine,
and Proterozoic syenite are available over the study area
(Fig. 1b). The city has three rivers flowing from west to
east namely Cooum, Adyar, and Kosasthalaiyar and
reaches Bay of Bengal (Fig. 1c). The study area has four
major lakes such as Chembarambakkam, Red Hills,
Korattur, and Sholavaram. The aquifers of Chennai city
are phreatic. The groundwater extraction in the city is
only for domestic purpose (CGWB, 2019). CMA has a
tropical semiarid climate with an annual average maxi-
mum temperature of 36.9 °C and a minimum temperature
of 20.9 °C. The humidity ranges between 58 and 84%.
Rainfall in the study area is chiefly by northeast monsoon
during October to December.

Methodology

Aller et al. (1987) developed the original DRASTIC model
which considers parameters related to hydrogeological char-
acteristics, which are D, depth to groundwater table; R, net
recharge; A, aquifer media; S, soil media; T, topography; I,
impact of vadose zone; and C, hydraulic conductivity. The
original rates and weights proposed by Aller et al. (1987) are
based on expert opinion and also vary from region to region.
To overcome this limitation, an improved framework is pro-
posed which are summarized below:

i. The seven data layers were processed in the ArcGIS envi-
ronment by using original rates and weights. Original
DRASTIC vulnerability indices were calculated.

ii. The nitrate concentration was spatially distributed over
each class of DRASTIC parameters to modify rates using
the bivariate statistical (Shannon entropy) and multiple
criteria decision-making (stepwise weight assessment ra-
tio analysis).

iii. Modifying weights using biogeography-based optimi-
zation considering each pixel of the entire study
region.

iv. Using optimized rates and weights, four different models
(SE, SWARA, Shannon-MH, SWARA-MH)were devel-
oped to assess groundwater vulnerability.

v. Determining the best model based on weighted F1 score
from confusion matrix and AU-ROC curve evaluation.

vi. Estimating groundwater vulnerability using the best
model.

vii. Proposed methodology for the improved DRASTIC
framework is shown in Fig. 2.
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Fig. 1 Study area description: a location and elevation, b geology, and c waterbody
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DRASTIC layers

Depth to groundwater (D)

It is the distance measured between water table and surface
level (Aller et al. 1987). Higher depth to groundwater
lowers the groundwater vulnerability. Groundwater level
data collected from 45 wells were used to interpolate depth
to groundwater layer using inverse distance weighting
(IDW) method. The interpolated values were classified into
two classes (Santhosh and Sivakumar Babu 2018). If the
water table is too shallow, the pollutants can easily contam-
inate aquifer. Depth to groundwater level of the study area
varies from 1.6 to 10.6m bgl. Hence, it is considered dom-
inant factor for groundwater vulnerability to emphasize
more weightage on this parameter; this layer was classified
into two classes with higher rating.

Net recharge (R)

Net recharge transports the contaminant to groundwater table
and spread laterally in the aquifer (Khosravi et al. 2018b). It

was estimated using the Piscopo method which depends on
the three factors, topography, rainfall, and soil permeability
(Piscopo 2001).

The percentage slope of the study area was estimated
using digital elevation model (DEM). Rainfall data from
Indian Meteorological Department (IMD) for 10 years pe-
riod was used to calculate rainfall. Soil map was procured
from the Institute for Water Studies (IWS), Tamil Nadu, to
estimate soil permeability. The net recharge was estimated
using the following equation and obtained rates are shown
in Table 1.

Recharge value ¼ Slope%þ Rainfall mmð Þ
þ Soil permeability ð1Þ

Aquifer media (A)

Aquifer media is the saturated zone that controls contaminant
movement within the media (Babiker et al. 2005). It was pre-
pared using a map collected from the aquifer system of Tamil

Fig. 1 continued.
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Nadu and Puducherry atlas (prepared by CGWB). It consists
of four lithological classes, namely alluvium, charnockite, lat-
erite, and sandstone.

Soil media (S)

Soil media reflects the water holding capacity and contami-
nant travel time (El Naqa 2004). This layer was prepared using
a soil map obtained from the Institute for Water Studies
(IWS), Tamil Nadu. It was divided into five classes: sandy,
marsh, fine, coarse loamy, and clayey.

Topography (T)

Shuttle Radar Topography Mission (SRTM) satellite data was
used to develop topographymap. It shows the slope variability
of the study region and implies the runoff time based on a flat
or steep slope. Themajor study region falls under the flat slope
(0–6%).

Impact of vadose zone (I)

The vadose zone is the layer between upper soil zone and
aquifer media. It controls the attenuation behavior below the

Fig. 2 Methodology flowchart for DRASTIC framework improvement

Table 1 Net recharge ratings
using Piscopo approach Slope Rainfall Soil permeability Recharge value

Slope (%) Factor Rainfall (mm/year) Factor Range Factor Range Rating

<2 4 >850 4 High 5 11–13 10

2–10 3 700–850 3 Moderate to high 4 9–11 8

10–33 2 500–700 2 Moderate 3 7–9 5

>33 1 <500 1 Low 2 5–7 3

Very low 1 3–5 1
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ground surface and water table (Baghapour et al. 2016). This
layer was prepared using the lithology profile of 93 wells
within the study region maintained by CGWB. It is divided
into five categories, namely clay, sandy clay, weathered rock,
topsoil, and sand.

Hydraulic conductivity (C)

Hydraulic conductivity shows the potential of aquifer to trans-
fer groundwater through its void spaces, it plays a critical role
in pollutant velocity and mechanical dispersion (Khosravi
et al. 2018b). Hydraulic conductivity is estimated by Eq. (2).

K ¼ T :b−1 ð2Þ

where K and T are the hydraulic conductivity (m.d−1) and
transmissivity (m2.d−1) of the aquifer and b is the thickness of
aquifer (m).

The estimated values of K lie between 0.0286 and 172.8
m.d−1 and is classified into six classes.

Table 2 presents the description about data source and its
processing for groundwater vulnerability assessment. The
original ratings fromAller et al. (1987) were assigned to seven
hydrogeological parameters. Spatial distribution of the seven
DRASTIC layers is shown in Fig. 3a–g.

Nitrate concentration

Nitrate concentration (NO3) is considered to be the influenc-
ing parameter for assessing groundwater vulnerability in ur-
ban region. Nitrate concentration data for 46 wells were ac-
quired from the Central Groundwater Board, South Eastern
Coastal Region, for the period 2018. The collected wells are
uniformly spread over the study region and represent the sta-
tus of groundwater. The nitrate concentration of the study
region was obtained through the inverse distance weighting
method (IDW) (Nadiri et al. 2017). IDW interpolation yields
smooth and gradual surface. In addition to smoothness, IDW
yields convexity in result, whereas kriging estimates outside

the range of the observed values (Li and Heap 2014). The
estimated nitrate concentration of the study region varies be-
tween 4 and 217 mg/L (Fig. 4). The highest level of nitrate
concentration was observed in the northeastern fringe of the
study area and the lowest level was found in the western
region of the study area.

Original DRASTIC method

Seven hydrogeological parameter ratings were assigned using
original DRASTIC rates (Aller et al. 1987). The classified
range and rates are given in Table 3. The weighted sum meth-
od in the ArcGIS environment is used to calculate groundwa-
ter vulnerability indices.

The assigned rating and weights are based on the expert
approach as suggested by Aller et al. (1987). The higher the
resultant groundwater vulnerability index, the greater the pol-
lution risk (Babiker et al. 2005; Jamrah et al. 2008; Huan et al.
2012; Khosravi et al. 2018b).

DRASTIC framework improvement

As discussed earlier, the subjectivity of the original DRASTIC
model can be reduced through modification of rates and
weights. In this study, bivariate statistical and multiple criteri-
on decision-making approaches enable the rate modification
followed by metaheuristic algorithm application in the weight
modification.

Stepwise weight assessment ratio analysis (SWARA)

SWARA developed by Keršulienė et al. 2010 is a multiple
criteria decision-making (MCDM) method that considers ex-
pert opinion in evaluating the rates and weights of criteria and
sub-criteria. Based on the expert implicit knowledge, informa-
tion, and experiences, each criterion was ranked (Zolfani and
Saparauskas 2014). The criteria are ranked according to their
significance. The main feature of this method is the ability to

Table 2 Data source for DRASTIC layers

Layer Source Process/maps

Depth to groundwater level (D) Central Groundwater Board, South Eastern Coastal Region, India Interpolation (IDW)

Net recharge (R) Indian Meteorological Department, Institute for Water Studies,
Tamil Nadu, Shuttle Radar Topography Mission

Weighted sum (GIS processing)

Aquifer media (A) Central Groundwater Board, South Eastern Coastal Region, India Aquifer system of Tamil Nadu and
Puducherry atlas

Soil media (S) Institute for Water Studies (IWS), Tamil Nadu Soil map

Topography (T) Shuttle Radar Topography Mission (SRTM) Slope (GIS processing)

Impact of vadose zone (I) Central Groundwater Board, South Eastern Coastal Region, India Interpolation (kriging)

Hydraulic conductivity (C) Central Groundwater Board, South Eastern Coastal Region, India Interpolation (IDW)
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include importance ratio of the criteria based on expert opin-
ion for weight determination (Keršulienė et al. 2010). Steps to
determine the relative weights of criteria are explained below
(Torkashvand et al. 2020):

Step 1: Criteria are prioritized according to the importance
and sorted in descending order.

Step 2: Estimating the relative importance of criterion j in
relation to the preceding j-1 criterion, for every criterion
(Stanujkic et al. 2015). Calculate the comparative importance
of average value, Sj (Keršulienė et al. (2010).

Step 3: Determine the coefficient Kj for each criterion:

K j ¼ 1 if j ¼ 1
S j þ 1 if j > 1

�
ð3Þ

Step 4: Qj, recalculated weight is estimated as follows:

Qj ¼
1 if j ¼ 1
K j−1

K j
if j > 1

8<
: ð4Þ

Step 5: Estimation of relative weights of the criteria.

W j ¼
Qj

∑n
j¼1Qj

ð5Þ

whereWj represents the relative weight of criterion j and n
denotes the number of criteria.

Shannon entropy (SE)

Entropy is a measure of uncertainty, disorder, and imbalance re-
lated to the system (Khosravi et al. 2016). It is a measure of the
average of proportional differences between unit groups and the
overall system (Naghibi et al. 2015). Shannon developed informa-
tion theory bymodifying the Boltzmannmodel (Shi and Jin 2009;
Khosravi et al. 2018b). The information entropymethod is used to
estimate the weight index of several systems and has been inte-
grated with flash flood susceptibility mapping (Khosravi et al.
2016), qanat potential mapping (Naghibi et al. 2015), and urban
flood (Xu et al. 2018). The equation used to estimate the informa-
tion coefficient (Vj) representing the weight value of each param-
eter is as follows (Constantin et al. 2011; Reza et al. 2012):

Eij ¼ FRij

∑M j

i¼1FRij

ð6Þ

where FR represents the frequency ratio (i is the number of classes
in parameter j and Mj is the total number of classes for each
parameter) and Eij is the probability density for class i in the
parameter j.

H j ¼ −∑M j

i¼1Eij � log2Eij ð7Þ

where Hj is the entropy value of parameter j.

H j max ¼ log2M j ð8Þ

where Hj max is the maximum entropy value of parameter j.

I j ¼
H j max−H j
� �

H j max
ð9Þ

�Fig. 3 DRASTIC parameters map. a Depth to groundwater, b net
recharge, c aquifer media, d soil media, e topography, f impact of
vadose zone, g hydraulic conductivity

Fig. 4 Nitrate concentration
distribution in the study area
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where Ij is the information for the factor ranges between 0
and 1.

V j ¼ I j � ∑M j

i¼1FRij

M j
ð10Þ

where Vj is the weight of parameter j.

Biogeography-based optimization

Biogeography-based optimization is a population-based
metaheuristic algorithm introduced by Simon (2008) which
inspired biogeography. The BBO has similar features like other
population-based metaheuristic algorithms such as genetic al-
gorithm (GA) and particle swarm optimization (PSO) to find

the best candidate solution in the search space of optimization
problem (Lim et al. 2016). The genes in GA and particles in
PSO are equivalent to habitat in the BBO algorithm (Khosravi
et al. 2021a). Each habitat has its own habitat suitability index
(HSI). Based on the optimization problem, low or high HSI
habitat is considered for further iterations. Migration and mu-
tation are two significant operators of BBO. BBO algorithm
solves many complex numerical problems and it is highly ef-
ficient in the optimization of many real-world complex prob-
lems like reservoir operation (Haddad et al. 2016), mapping of
groundwater potential (Chen et al. 2019a), and flood suscepti-
bility assessment (Ahmadlou et al. 2019).

Migration The migration operator is used to improve the so-
lution of habitat within the population by transferring

Table 3 Original ratings of
DRASTIC parameters and
modified ratings from improved
framework

Parameters Range/type Original
DRASTIC

SWARA Shannon
entropy

Depth to groundwater (m) 0–5 10 0.543 1.14

5–15 9 0.457 0.95

Net recharge 7–9 5 0.330 1.02

9–11 8 0.318 0.99

11–13 10 0.352 1.09

Aquifer media Charnockite 3 0.236 0.93

Laterite 4 0.302 1.19

Sandstone 6 0.203 0.77

Alluvium 7 0.259 1.03

Soil media Marsh 2 0.257 1.40

Clayey/clayey skeletal 3 0.179 1.01

Fine/fine loamy/contrasting particle
size

4 0.168 0.94

Loamy skeletal/coarse loamy/mixed 5 0.194 1.09

Sandy 6 0.202 1.13

Topography (% slope) >18 1 0.184 0.89

12–18 3 0.203 0.99

6–12 5 0.206 1.01

2–6 9 0.206 1.01

0–2 10 0.201 0.98

Impact of vadose zone Clay 3 0.191 1.02

Sandy clay 4 0.187 1.01

Weathered rock 5 0.173 0.92

Top soil 6 0.205 1.10

Sand 7 0.245 1.29

Hydraulic conductivity
(m/day)

0.04–4.1 1 0.147 0.92

4.1–12.3 2 0.164 1.03

12.3–28.7 4 0.146 0.91

28.7–41 6 0.247 1.51

41–82 8 0.177 1.11

>82 10 0.118 0.68
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information among them. Emigration and immigration are
two forms of migration (Simon 2011). The immigration rate
is used to choose whether habitat solutions need to modify or
not (Ahmadlou et al. 2019). If a particular solution needs to
improve, the emigration rate of other habitats is used to decide
which of them should migrate (Bhattacharya and
Chattopadhyay 2010). The emigration rate and immigration
rate are obtained using the following equations (Simon 2008;
Ahmadlou et al. 2019):

λs ¼ I 1−
S

Smax

� �
ð11Þ

μs ¼
ES
Smax

ð12Þ

where μs and λs are the emigration rate and immigration
rate of S species, respectively. Smax stands for the maximum
number of species. E indicates emigration rate and I indicates
immigration rate.

Mutation Mutation operator enhances the habitat diversity to
prevent trapping in local minima. The mutation value of spe-
cies is estimated using the following equation:

m Sð Þ ¼ mmax 1−
1−ps
pmax

� �
ð13Þ

where m(S) is the mutation rate of habitat containing S
species, mmax is the maximum mutation rate, and ps and pmax
are the probability of each species and maximum probability,
respectively.

The hyperparameters of the BBO algorithm used for opti-
mization are shown in Table 4.

Weight optimization using BBO

The metaheuristic algorithms employed in the previous stud-
ies of index-based groundwater assessment models such as
DRASTIC (Jafari and Nikoo 2016; Barzegar et al. 2020;
Balaji et al. 2021) and GALDIT (Bordbar et al. 2020;
Khosravi et al. 2021a) were considered representatives on
well contaminant concentration available in the respective
study region to optimize the weights of index-based models.
The abovementioned approach reduces the metaheuristic al-
gorithm capability because of the reduced sample size in op-
timization (Davoudi et al. 2020). In previous multiple model
studies, well concentration studies were used to optimize the
weights of DRASTIC parameter. In this study, to explore the
advancement of computing power, and to improve the
DRASTIC framework, nitrate concentration of each pixel of
the entire study region was considered to optimize the weights

by creating spatial profile of nitrate concentration. The im-
proved framework (SWARA and SEmodels) for groundwater
vulnerability assessment is coupled with biogeography-based
optimization for modifying the weights. Therefore, the objec-
tive function of BBO algorithm was to obtain maximum
Pearson correlation between the groundwater vulnerability in-
dices and nitrate concentration of SWARA and SE models.

Maximize F ¼ corr GVI ;Nð Þ ð14Þ

Constraint : 1 < wj < 5; j ¼ 1; 2; ::; 7

F ¼
∑n

i¼1 GVIi−GVI
� �

Ni−N
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 GVIi−GVI
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Ni−N
� �2

r ð15Þ

where F represents the objective function, n denotes the
number of pixels, GVIi is the groundwater vulnerability index
of the ith pixel, GVI is the average groundwater vulnerability
index, Ni indicates the nitrate concentration of the ith pixel

(NO3) (mg/L), N is the average nitrate concentration (NO3)
(mg/L), and wj is the weight.

Groundwater vulnerability map

Groundwater vulnerability indices obtained from all the de-
veloped models are used to construct a vulnerability map. The
resultant vulnerability map was generated using the weighted
summethod in the ArcGIS environment with a pixel size of 30
× 30 m which is consistent with DEM. The rates and weights
of seven DRASTIC layers were assigned according to the
original DRASTIC model (Tables 3 and 7). For the modified
groundwater vulnerability framework, the optimized rates and
weights were assigned from SWARA, Shannon, SWARA-
MH, and Shannon-MHmodel (Tables 3 and 7). All generated
vulnerability map pixel values were categorized into five clas-
ses, namely very low, low, moderate, high, and very high,
using the natural Jenks method (Jenks and Caspall 1971;
Torkashvand et al. 2020). After the classification, each pixel
resembles a vulnerability category which shows the probabil-
ity of pollution occurrence (Khosravi et al. 2018b).

Table 4 Hyperparameters of BBO algorithm

Parameter Adopted value

Number of habitats 50

Number of iterations 1000

Keep rate 0.2

Probability of mutation 0.1
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Model performance using the confusion matrix

To evaluate the groundwater vulnerability classification, per-
formance F1 score and confusion matrix were selected (Zhang
et al. 2020). In this case, classification accuracy is the number
of predictions correctly made over the total number of pixels
available. The metrics precision and recall are used to evaluate
accuracy in classification using a confusion matrix. Generally,
there is a trade-off between precision and recall; the F1 score
on the other hand considers both the values of precision and
recall to evaluate the classification performance. The metrics
precision, recall, and F1 score were estimated using the fol-
lowing equations (Zhang et al. 2020):

precision ¼ yij
yi

� 100% ð16Þ

recall ¼ yij
y j

� 100% ð17Þ

where yij indicates the value in row i and column j; yi
represents a marginal total of row i; and yj represents a mar-
ginal total of column j of the confusion matrix.

F1 score ¼ 2� precicion� recall
precisionþ recall

ð18Þ

For multi-class classification, the weighted F1 score was
used which is calculated by considering the F1 score of each
class to the number of pixels in that particular class (Pan et al.
2019).

Comparison and validation of maps

To compare the developed groundwater vulnerability model
prediction accuracy, area under the receiver operating charac-
teristic (AU-ROC) curve was used (Torkashvand et al. 2020;
Abunada et al. 2021). The ROC value indicates the prediction
ability of the model and ensures map accuracy quantitatively
(Khosravi et al. 2018b). The receiver operating characteristic
(ROC) is a plot between sensitivity (true positive rate) and 1-
specificity (false positive rate). In this study, nitrate concen-
tration pixel values and groundwater vulnerability indices
were used to prepare the ROC curve. It is a scalar measure
which ranges between 0 and 1.0. AUC ranges were ranked as
follows: 0.5–0.6 (poor), 0.6–0.7 (average), 0.7–0.8 (good),
0.8–0.9 (very good), 0.9–1.0 (excellent) (Marmion et al.
2009). Model with a higher AUC indicates better model
predictability.

Results

Original DRASTIC model

Groundwater vulnerability indices were calculated using
Equation (19) and respective rates and weights of DRASTIC
parameters were assigned from Tables 3 and 7. The thematic
layers were assigned with rates (1 to 10) and weights (1 to 5)
to calculate vulnerability indices based on the original
DRASTIC model. The estimated vulnerability indices range
between 102 and 188 as shown in Fig. 5a.

GVI ¼ Dr:Dw þ Rr:Rw þ Ar:Aw þ Sr:Sw þ Tr:Tw

þ I r:Iw þ Cr:Cw ð19Þ

where D, R, A, S, T, I, C represents the hydrogeological
parameters, subscripts r and w are the respective rates and
weights, and GVI is the groundwater vulnerability index.

To overcome the subjectivity and improve the performance
of the vulnerability assessment framework, SWARA and SE
approach was coupled with a metaheuristic algorithm.

Shannon entropy

Shannon entropymodel modifies both weights and rates of the
DRASTIC parameter using nitrate density. The weight values
obtained from SE model for D, R, A, S, T, I, and C were
0.00624, 0.00078, 0.00882, 0.00680, 0.00061, 0.00447, and
0.01700, respectively. The modified rates of each class of
DRASTIC parameters are given in Table 5. Hydraulic con-
ductivity and topography were identified as the most and least
significant weights for estimating groundwater vulnerability
indices. Groundwater vulnerability indices using SE were cal-
culated by using Equation (20). The resultant vulnerability
map was divided into 5 classes using natural Jenks method
as shown in Fig. 5b.

The groundwater vulnerability indices of SE model were
calculated using the following equation:

GVISE ¼ 0:00624� DFR þ 0:00078� RFR þ 0:00882

� AFR þ 0:0068� SFR þ 0:00061� TFR

þ 0:00447� IFR þ 0:017� CFR ð20Þ

where FR indicates the rates obtained from SE model of
respective parameters.

SWARA

SWARA technique improves vulnerability assessment reli-
ability by ranking each class of DRASTIC parameters accord-
ing to its nitrate concentration distribution over each class.
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The nitration concentration observed from 46 wells was spa-
tially distributed over the entire region of interest using inverse
distance weighting method (IDW). The relative weights and
final rates of DRASTIC parameters rates were modified by
calculating nitrate density of each class using the SWARA
method. Based on SWARA rate modification, laterite
(0.302) exerts a greater impact than alluvium (0.203) aqui-
fer media. In soil media, marsh (0.257) exhibits more im-
pact on vulnerability indices than sandy (0.202) soil.

Hydraulic conductivity in the range 28.7–41(m/day)
(0.247) is the most influencing class than the >82 (m/day)
(0.118). Due to normalization step, modified rates lie in the
range of 0 to 1.

The resultant vulnerability indices from SWARA frame-
work were calculated from Equation (21) using modified
SWARA rates (Table 6) and original DRASTIC weights
(Table 7). The final vulnerability map using SWARA model
is shown in Fig. 5c.

Fig. 5 Groundwater vulnerability maps based on a original DRASTIC, b Shannon entropy, c SWARA, d SWARA-MH, and e Shannon-MH
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GVISWARA ¼ DRsw:Dw þ RRsw:Rw þ ARsw:Aw þ SRsw:Sw

þ TRsw:Tw þ IRsw:Iw þ CRsw:Cw ð21Þ

where Rsw indicates the rates obtained from SWARA
model of respective parameters and w is the weight of original
DRASTIC model.

SWARA-MH and Shannon-MH

Hybridization of modified DRASTIC model with
metaheuristic algorithm will further improve the reliability
of groundwater vulnerability assessment model. As discussed
earlier, metaheuristic algorithm employed in this study con-
siders each pixel of the entire region to optimize weights of the

SWARA and SE model. The objective function of BBO algo-
rithm is to optimize weights of DRASTIC parameters. The
algorithm was coded in MATLAB 2016b platform with the
lower and upper bound constraint of DRASTIC weights as 1
to 5. The calculated weights of the SWARA and SE model
using biogeography-based optimization (BBO) are given in
Table 7. It is to be noted that these optimized weights were
obtained from rate-altered SWARA and SE model.

GVISWARA−MH ¼ DRsw:DMH þ RRsw:RMH þ ARsw:AMH

þ SRsw:SMH þ TRsw:TMH þ IRsw:IMH

þ CRsw:CMH ð22Þ

Table 5 Spatial distribution of nitrate concentration across DRASTIC parameters and modified rates using Shannon entropy method

Parameter Class Nitrate (%) Class area (%) FR Eij Hj Ij Vj

Depth to groundwater 5–15 67.62 71.49 0.95 0.45 0.994 0.0059 0.00624

0–5 32.38 28.51 1.14 0.54

Net recharge 7–19 15.81 15.45 1.02 0.33 1.584 0.00076 0.00078

9–11 75.34 76.41 0.99 0.32

11–13 8.85 8.14 1.09 0.35

Aquifer media Charnockite 24.82 26.72 0.93 0.24 1.982 0.00901 0.00882

Laterite 14.99 12.55 1.19 0.31

Sandstone 6.62 8.60 0.77 0.20

Alluvium 53.58 52.12 1.03 0.26

Soil media Marsh 1.45 1.03 1.40 0.25 2.308 0.00612 0.00680

Clayey/clayey skeletal 17.38 17.28 1.01 0.18

Fine/contrasting particle size 47.98 51.18 0.94 0.17

Coarse loamy/mixed 31.88 29.34 1.09 0.19

Sandy 1.32 1.17 1.13 0.20

Topography >18 0.50 0.56 0.89 0.18 2.320 0.00063 0.00061

12–18 1.03 1.04 0.99 0.201

6–12 14.69 14.59 1.008 0.207

2–8 58.79 58.40 1.007 0.206

0+2 24.99 25.41 0.98 0.20

Impact of vadose zone Clay 12.17 11.90 1.02 0.19 2.312 0.00419 0.00447

Sandy clay 24.96 24.83 1.01 0.19

Weathered rock 36.15 39.29 0.92 0.17

Top soil 24.20 22.02 1.10 0.21

Sand 2.52 1.95 1.29 0.24

Hydraulic conductivity 0.04–4.1 2.96 3.22 0.92 0.15 2.542 0.01657 0.01700

4.1–12.3 36.95 35.91 1.03 0.17

12.3–28.7 35.42 38.87 0.91 0.15

28.7–41 10.16 6.73 1.51 0.25

41–82 10.70 9.62 1.11 0.18

>82 3.81 5.64 0.68 0.11

4487Environ Sci Pollut Res  (2022) 29:4474–4496



where subscript Rsw indicates the rates obtained from
SWARA model of respective parameters and subscript MH
is the optimal weights using BBO algorithm.

GVIShannon−MH ¼ DFR � DMH þ RFR � RMH þ AFR

� AMH þ SFR � SMH þ TFR � TMH

þ IFR � IMH þ CFR � CMH ð23Þ

where MH indicates the optimal weights obtained from
BBO algorithm.

The resultant groundwater vulnerability maps using
SWARA-MH and Shannon-MH model are shown in Fig. 5d
and e.

Validation of model

Vulnerability indices obtained from 5 developed groundwater
vulnerability models were validated and compared with the
ROC curve method. In this study, the ROC curve was plotted
by considering each pixel of vulnerability map developed.
The developed groundwater vulnerability indices and nitrate
concentration pixels were classified into 5 classes using natu-
ral Jenks method. As mentioned earlier, class obtained from
each pixel of the nitrate concentration map and vulnerability
indices was used to plot the ROC curve. The obtained ROC
curve using developed vulnerability models is shown in Fig.
6. Results showed that Shannon-MH model had the highest
AUC value of 0.8249. The performance accuracy for vulner-
ability assessment of other developed models were AUC =

Table 6 Spatial distribution of nitrate concentration across DRASTIC parameters and modified rates using SWARA approach

Parameter Original rate No3 (%) Area (%) No3 density Sj Kj Qj Wj

Depth to groundwater 10 32.38 28.51 1.14 1.00 1.000 0.543

9 67.62 71.49 0.95 0.19 1.19 0.841 0.457

Net recharge 10 8.85 8.14 1.09 1.00 1.000 0.352

5 15.81 15.45 1.02 0.07 1.07 0.939 0.330

8 75.34 76.41 0.99 0.04 1.04 0.906 0.318

Aquifer media 4 14.99 12.55 1.19 1.00 1.000 0.302

7 53.58 52.12 1.03 0.17 1.17 0.858 0.259

3 24.82 26.72 0.93 0.10 1.10 0.780 0.236

6 6.62 8.60 0.77 0.16 1.16 0.673 0.203

Soil media 2 1.45 1.03 1.40 1.00 1.000 0.257

6 1.32 1.17 1.13 0.27 1.27 0.786 0.202

5 31.88 29.34 1.09 0.04 1.04 0.754 0.194

3 17.38 17.28 1.01 0.08 1.08 0.698 0.179

4 47.98 51.18 0.94 0.07 1.07 0.653 0.168

Topography 5 14.69 14.59 1.0069 1.00 1.000 0.20583

9 58.79 58.40 1.0067 0.0003 1.0003 0.9997 0.20578

3 1.03 1.04 0.9941 0.0126 1.0126 0.987 0.2032

10 24.99 25.41 0.9834 0.0107 1.0107 0.977 0.2011

1 0.50 0.56 0.8913 0.0921 1.0921 0.894 0.1841

Impact of vadose zone 7 2.52 1.95 1.29 1.00 1.000 0.245

6 24.20 22.02 1.10 0.19 1.19 0.838 0.205

3 12.17 11.90 1.02 0.08 1.08 0.779 0.191

4 24.96 24.83 1.01 0.02 1.02 0.766 0.187

5 36.15 39.29 0.92 0.09 1.09 0.706 0.173

Hydraulic conductivity 6 10.16 6.73 1.51 1.00 1.000 0.247

8 10.70 9.62 1.11 0.40 1.40 0.716 0.177

2 36.95 35.91 1.03 0.08 1.08 0.661 0.164

1 2.96 3.22 0.92 0.11 1.11 0.595 0.147

4 35.42 38.87 0.91 0.01 1.01 0.591 0.146

10 3.81 5.64 0.68 0.23 1.23 0.479 0.118
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0.8186 (SWARA-MH), AUC = 0.7714 (SWARA), AUC =
0.7672 (Shannon), and AUC = 0.7378 (original DRASTIC).
The result shows the superiority of MCDM and SE approach
for improving the vulnerability assessment model which was
further improved by hybridizing the framework with a
metaheuristic algorithm.

Confusion matrix and F1 score

Confusion matrices for five developed models are shown in
Fig. 7a–e. The results from confusion matrices depict that the
Shannon-MH and SWARA-MHmodel was performing better
than generic DRASTICmodel. The nitrate concentration pixel
and vulnerability indices pixel were profound to be in good
agreement on metaheuristic coupled models. The assessment
of high and very high class was found poor in all 5 models
because most of the nitrate concentration pixels were falling in
the very low and low category. It is observed from resultant
vulnerability maps that the classified area mostly falls in very
low and low category which correctly correlates with true
nitrate concentration map. The F1 score comparison of five
models across each category is shown in Fig. 8. The weighted
F1 score from the confusion matrix for the Shannon-MH

model yields a best weighted F1 score of 0.452 among other
developed models. SWARA-MHmodel had weighted F1 val-
ue of 0.437 followed by 0.419 and 0.370 for SWARA and SE
models. Original DRASTIC model produces the least accura-
cy of weighted F1 value 0.234. In most instances, groundwa-
ter vulnerability framework improved withMCDM and bivar-
iate statistical method performs better than the original
DRASTIC model. It was found from F1 score of each cate-
gory (Fig. 8) that coupling of metaheuristic algorithm with
SWARA and Shannon framework considerably improves
the performance of vulnerability mapping. In the case of
multi-class classification, overall quality of the model was
assessed by calculating weighted F1 score (Castro et al.
2017). The weighted F1 score of Shannon-MH model was
found better than other developed models because of its clas-
sification accuracy.

Discussion

The original DRASTIC model has several shortcomings in
groundwater vulnerability assessment because rates and
weights adopted are not universal. Previous studies used a

Table 7 Original and optimized
weight using hybridized
metaheuristic framework

Parameter Original DRASTIC Shannon-MH SWARA-MH

Depth to groundwater 5 4.59 1.55

Net recharge 4 1.00 1.00

Aquifer media 3 2.49 1.81

Soil media 2 3.30 3.23

Topography 1 3.36 3.23

Impact of vadose zone 5 4.59 4.16

Hydraulic conductivity 3 5.00 5.00

Fig. 6 Assessment of model
performance using the ROC
curve
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different approach to alter the rates and weights of DRASTIC
parameters (Khosravi et al. 2018b; Nadiri et al. 2019;
Barzegar et al. 2020; Torkashvand et al. 2020; Balaji et al.
2021). In this study, to reduce its subjectivity, bivariate statis-
tical method (Shannon entropy) and MCDM (SWARA) ap-
proach were coupled with a metaheuristic algorithm. Current
study advances SE and SWARA methods further to improve
the accuracy of assessing vulnerability by coupling with
metaheuristic algorithm. The developed framework in this
study benefitted from bivariate and MCDM methods to

improve DRASTIC ratings and to optimize weights by BBO
algorithm.

Effects of modified rates and weights

Improvement of ratings for D, R, A, S, T, I, and C parameters
by SE and SWARA methods provides analogous results.
Modified rates of DRASTIC parameters in SE and SWARA
models show a similar pattern because nitrate concentration
distribution over each class was considered. According to the

Fig. 7 Confusion matrix corresponding to a original DRASTIC, b Shannon entropy, c SWARA, d SWARA-MH, and e Shannon-MH
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results of SE and SWARA method, soil media consists of
marsh (SES = 1.40; SWARAS = 0.257) which had a higher
rate than sandy (SES = 1.13; SWARAS = 0.202); this is due to
the highest amount of nitrate concentration in the region
which coincides with the respective class of soil media.
Modified rates for hydraulic conductivity in the range 28.7–
41 (m/day) (SEC = 1.51; SWARAC = 0.247) are the most
influencing class than the >82 (m/day) (SEC = 0.68;
SWARAC = 0.118). In topography, higher retention time of
water on the surface occurs where the slope is flat. Results
from the SE and SWARA method showed that slope of 6–
12% (SET = 1.008; SWARAT =1.0069) was observed to be
higher than the slope of 0–2% (SET = 0.98; SWARAT =
0.9834).

Optimized weights using biogeography-based optimiza-
tion show hydraulic conductivity parameter is the highly sig-
nificant parameter (weight = 5) in both Shannon-MH and
SWARA-MH models for estimating groundwater vulnerabil-
ity indices.

Contrarily, the weight considered for net recharge parame-
ter is considerably reduced (w= 4 to 1) for both Shannon-MH
and SWARA-MH models. In the case of Shannon-MH and
SWARA-MH models, weight of topography factor increased
from 1 to 3.36 and 3.23, respectively. Weight of depth to
groundwater was reduced from 5 to 4.59 for Shannon-MH,
while for SWARA-MH model, drastically to 1.55. Depth to
groundwater had a high weight in bivariate model (Shannon-
MH) but the inverse result was obtained using MCDM
(SWARA-MH) model for attaining the defined objective
function. Considerable weight increase has occurred in both
the models for topography factor (1 to 3.36 for Shannon-MH
and 3.23 for SWARA-MH). Among all parameters, hydraulic
conductivity had the highest weight and net recharge had the
lowest weight in both models. Rates from Table 3 depict an
interesting finding that a moderate hydraulic conductivity with
moderate terrain slope is subjected to high groundwater

vulnerability than the flat terrain slope with high hydraulic
conductivity for this region which is in agreement with the
previous studies (Khosravi et al. 2018b).

Comparison with previous studies

Necessity to reduce the subjectivity of original DRASTIC
model leads to several modification approaches for ground-
water vulnerability assessment. Some of the researchers
attempted modification of DRASTIC model using statistical
(Pacheco and Sanches Fernandes 2013), multi-criteria deci-
sion-making (Torkashvand et al. 2020), bivariate (Khosravi
et al. 2021b), metaheuristic algorithm approach (Balaji et al.
2021), and deep learning neural network (DLNN) (Elzain
et al. 2021).

It is evident from the results that modifying the rates and
weights of the DRASTIC model could improve its
performance. The results obtained using bivariate statistical
from this study are in accordance with the results of Sahoo
et al. (2016) and Khosravi et al. (2018b). Generally, bivariate
model optimizes both rates and weights, whereas this study
maneuvers rates from the bivariate model and weights using
BBO algorithm to develop a coupled (Shannon-MH) model.
This improved framework enhances capability (AUC= 0.7672
to AUC = 0.8249) of the bivariate model further for better
groundwater vulnerability assessment. The ratings were mod-
ified through MCDM approach and original DRASTIC
weights (SWARA) model was obtained. The aforementioned
model is further coupled with a metaheuristic algorithm
(SWARA-MH) to improve its accuracy (AUC= 0.7714to
AUC = 0.8186). Results depict improvement in vulnerability
assessment framework by employing metaheuristic algorithm
which is in agreement with previous studies (Jafari and Nikoo
2019; Barzegar et al. 2020; Balaji et al. 2021; Torkashvand
et al. 2021). The multiple model framework for improvement
of robustness has been proven in previous studies such as

Fig. 8 F1 and weighted F1 score
for each model across different
classes
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Elzain et al. (2021); Norouzi et al. (2021); and Torkashvand
et al. (2021). This study further enhances the need of multiple
model framework to address the inherent subjectivity of
DRASTIC model.

According to the results of weighted F1 score from the
confusion matrix, Shannon-MH model had better prediction
accuracy and shows its superiority in vulnerability assess-
ment. However, SWARA-MH model had a better F1 score
for very low and moderate classes than Shannon-MH model.
The results from AU-ROC are based on sensitivity and spec-
ificity which are derived from TP, TN, FP, and FN (Khosravi
et al. 2018b). Findings indicated that higher classification ac-
curacy was obtained after optimizing rates and weights.
Results from AU-ROC, bivariate, and MCDM approach im-
prove the accuracy of vulnerability assessment, AUC =
0.7378 (original DRASTIC) to AUC = 0.7672 and 0.7714
(for Shannon and MCDM approach). MCDM method mar-
ginally performs better than the bivariate statistical method.
The modified model is further coupled with a metaheuristic
algorithm and improved the performance of vulnerability as-
sessment, SWARA-MH (AUC = 0.8186) and Shannon-MH
(AUC = 0.8249).

Application of the new models reduces error considerably
due to its objective nature of rates and weights modification by
considering nitrate density. The main advantage of SE is its
nonparametric nature and does not need any assumptions
about variable distribution (Reza et al. 2012). SWARA meth-
od is straightforward and model criterions were prioritized
based on the observed nitrate concentration which is its major
advantage (Zolfani and Saparauskas 2014; Torkashvand et al.
2021). This study further improves the effectiveness of this
model by coupling with BBO algorithm for vulnerability as-
sessment of this region.

Conclusion

This study proposes a novel approach to improve the
DRASTIC framework by coupling bivariate and MCDM ap-
proach with a metaheuristic algorithm. Four developed
models, namely SWARA, Shannon, SWARA-MH, and
Shannon-MH performance, were compared for vulnerability
assessment. SE and SWARA approaches were employed first
to modify the rates of the DRASTIC model and then
biogeography-based optimization algorithm was used to opti-
mize its weights. The results reveal that Shannon-MH model
performs better than other developed models. The resultant
vulnerability map obtained from the outperformedmodel clas-
sified northeastern region of study area as high to very high.
However, major region of the study area falls under very low
and low category. Moreover, performance of the developed
model was evaluated through a weighted F1 score and confu-
sion matrix. The result from this study depicts that bivariate

and MCDM approach coupled with metaheuristic algorithm
improves the assessment of groundwater vulnerability map-
ping. The framework developed in this study can be adopted
in similar regions for accurate vulnerability assessment which
helps policymakers to protect aquifer from contamination.
However, this study has certain limitations which should be
accounted for future improvement of DRASTIC framework.
Land use is considered to be an important factor associated
with anthropogenic vulnerability of urban region integrating
land use with this novel framework significantly improving its
prediction accuracy. In addition to spatial variation, spatio-
temporal variation of nitrate concentration may integrate with
this model by continuous monitoring of wells. The estimation
of recharge rate may improve by considering groundwater
pumping and recharge ratio integrated with land use.

Development of new models such as SWARA, SE,
Shannon-MH, and SWARA-MH models is new of its nature
for assessing vulnerability for this study region. The higher
predicting capability of developed models helps the
policymakers to identify the vulnerable zone and prevent it
from further exploitation. This study concludes that the devel-
oped novel DRASTIC framework fetches accurate groundwa-
ter vulnerability map of this study region, which in turn helps
policymakers in planning and adopting strategies for sustain-
able groundwater protection and management.
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