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Abstract
Location-routing problem is a combination of facility location problem and vehicle routing problem. Numerous logistics prob-
lems have been extended to investigate greenhouse issues and costs related to the environmental impact of transportation
activities. The green capacitated locating-routing problem (LRP) seeks to find the best places to establish facilities and simul-
taneously design routes to satisfy customers’ stochastic demand with minimum total operating costs and total emitted carbon
dioxide. In this paper, features that make the problem more practical are: considering time windows for customers and drivers,
assuming city traffic congestion to calculate travel time along the edges, and dealing with capacitated warehouses and vehicles.
The main novelty of this study is to combine the mentioned features and consider the problem closer to the real-world case uses.
A mixed-integer programming model has been developed and scenario production method is used to solve this stochastic model.
Since the problem belongs to the class of NP-hard problems, a combination of the progressive hedging algorithm (PHA) and
genetic algorithm (GA) is considered to solve large-scale problems. It is the first time, as per our knowledge, that this combination
is implemented on a green capacitated location routing problem (G-CLPR) and resulted in satisfactory solutions. Nondominating
sorting genetic algorithm II (NSGA-II) and epsilon constraints methods are used to face with the bi-objective problem. Finally,
sensitivity analysis is performed on the problem’s input parameters and the efficiency of the proposed method is measured.
Comparing the results of the proposed solution approach with those of the exact method indicates that the solution approach is
computationally efficient in finding promising solutions.

Keywords Green location routing problem . Timewindow . Bi-objective optimization . Genetic algorithm . Progressive hedging
algorithm . NSGA-II

Introduction

While logistics costs are one of the major costs of distribution
companies, managing a distribution network has always been
one of the most important issues in the supply chain manage-
ment. Supply chain activities include around 10% of the gross

domestic product (Simchi-Levi et al. 2008). In today’s compet-
itive marketing environment, industry efficiency is the key to
success. As a result, businesses must improve their efficiency
in all areas, particularly in their logistical operations
(Nekooghadirli et al. 2014).

Moreover, businesses and governments understand the neces-
sity to assess impacts of their logistics activities on the environ-
ment (Nujoom et al. 2018). The importance of the green location-
routing problems is reflected in reducing fuel consumption, time
loss, traffic volume, and air pollution. Nowadays, most corpora-
tions recognize and accept the need to evaluate and decrease the
environmental impact of their products’manufacturing and han-
dling. Thus, this study’s main motivation is to decrease such
logistics costs and total CO2 emission by considering both loca-
tion and routing problems in an integrated multiobjective model
to come up with better results.
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On the other hand, one of the main challenges of location
routing problems (LRP) is to strike a balance between strate-
gic and operational goals. Also, since the LRP should simul-
taneously deal with location and routing problems simulta-
neously, many different aspects, features, and parameters
must be considered in this study. As a result, we would con-
sider time windows for customers and drivers, assume city
traffic jams to calculate travel time along the edges, and deal
with the capacitated warehouses and vehicles. The key contri-
butions of this work are given below that set it apart from other
studies in the related literature:

& Studying a bi-objective integrated G-CLRP
& Investigating the problem in multiproduct mode
& Considering city traffic depending on vehicles’ departure

time
& Considering the social factor by focusing on managing the

working time of drivers
& Eliminating the assumption that the slope of roads is con-

stant at each edge

In general, the problem discussed in this paper seeks to satisfy
the stochastic demand of customers by finding the best places for
establishing the warehouses and routing vehicles with the lowest
cost as well as by emitting the lowest carbon dioxide. Urban
traffic, which has a notable impact on the travel times of product
shipments and CO2 emission is also considered in the problem.
Moreover, shortage is allowed and it is assumed to be lost sales.
To increase drivers’ satisfaction and reduce the risk and destruc-
tive effects of overworking, their working hours during the day
will be managed. Meanwhile, soft time windows (TW) are con-
sidered for each customer. Fig. 1 demonstrates an example solu-
tion of the current problem schematically.

The rest of the paper is organized as follows. In the “Literature
review” section, we give a summary of discussions about the
previous related studies in LRP. The problem will be stated
and mathematical formulations will be given in the “Problem
description and mathematical formulation” section. The
“Solution approach” section provides an overview of the solution
approach for the underlying problem. In the “Numerical results”
section, numerical and computational results are reported. The
proposed framework is implemented on a real case study in the
“Isfahan case study” section. The “Sensitivity analysis” section
presents the sensitivity analysis and managerial insights and fi-
nally, “Conclusion and future works” section provides conclud-
ing remarks and enlightens the future research directions.

Literature review

The first location-routing models were studied in the late 1970s
and early 1980s; however, Weber (1929) first introduced the con-
cept of location-routing in the 1960s. Over the past few years,

researchers have added other features to the location-routing prob-
lem. The emergence of location-routing problem with more accu-
rate assumptions is related to the late 1990s (Min et al. 1998). In
LRP, the capacity limit is usually related to the facility or the
vehicle, and several researchers have examined this problem with
the capacity limit, both for facilities and vehicles. This is known as
capacitated location routing problem (CLRP). It means that the
amount of cargo that each truck travels in its tour should not
exceed themaximum fixed volume of that truck (Prins et al. 2006).

Many studies have examined the environmental aspects of
product delivery. Govindan et al. (2014) considered a
multiobjective location-routing problem applied to perishable
food delivery. The two objective functions were to minimize
the total costs and to reduce the total carbon dioxide emissions.
Toro et al. (2017) raised a two-objective problem, G-CLRP,
intending to minimize operating costs as well as total greenhouse
gas emissions. They proposed a new approach for calculating the
vehicles’ total fuel consumption and subsequently the total
greenhouse gas emissions. Finally, they employed the epsilon
constraint method to solve the model. Tang et al. (2016) tried
to minimize the total costs and the amount of carbon emissions
for an inventory-location-routing problem. One of the latest stud-
ies on the green location-routing problem is the combination of
fuzzy decision-making trial and evaluation (FDEMATEL) and
fuzzy analysis network process (FANP). The associated
multiobjective mixed-integer programming model aims to mini-
mize total costs while reducing the shortage of uncertain fuzzy
demands (Govindan et al. 2020).

The time window constraint is less focused on capacitated
location-routing problems, despite its several real-world applica-
tions. Jabal-Ameli et al. (2011) presented a mathematical model
for the CLRP with soft and hard time windows constraint. The
objective function of the problemwas tominimize the total costs.
Their solution approach was based on a variable neighborhood
descent and they validated their method by solving small
examples. Nikbakhsh and ZEGORDI (2010) presented a two-
level location-routing problem considering soft timewindows for
customers. They expanded a mathematical modeling and used a
heuristic method to tackle the problem. Hu et al. (2019) ad-
dressed a multiobjective model for the LRP with city traffic
congestion constraints. It aims to minimize total costs and total
risks and to maximize customer satisfaction simultaneously.
They applied genetic algorithm to tackle the problem and
considered a case study to demonstrate the proposed solution
approach. Zhong et al. (2020) addressed a multiobjective
mixed-integer nonlinear programming model for LRP with sto-
chastic demand to manage and control operational and strategic
issues in disaster recovery. The solution approach to solve the
problem was based on a genetic algorithm. To encounter the bi-
objective model, NSGA-II method has been adopted to produce
the Pareto front.

From the social issues point of view, Zhalechian et al. (2016)
extended a sustainable mixed-integer model for the inventory-
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location-routing problem, which involved a variety of uncer-
tainties in demand. The feature of their proposed model is the
study of potential new job opportunities. Minimizing costs and
maximizing the job opportunities were the two objectives of this
model, which were solved by a metaheuristic hybrid algorithm.
Reducing costs and increasing public satisfaction were the two
objective functions that Caballero et al. (2005) considered in their
multiobjective model. They used metaheuristic methods to solve
the problem. Ghaderi and Burdett (2019) studied a two-stage
stochastic programmingmodel for a bi-modal transportation net-
work. It simultaneously minimizes the total costs and risks. Abdi
et al. (2021) studied a supply chain network problem under un-
certainty and suggested a new two-stage stochastic optimization
approach. Also, GA was used as one of the solution methods to
solve the problem. In another study, Fathollahi-Fard et al.
(2020a) investigated a two-stage stochastic programming formu-
lated on a scenario-based approach for a multiobjective problem
for a closed-loop supply chain network. Biuki et al. (2020)
discussed sustainability in their location-routing-inventory prob-
lem of supply chain for perishable products in a four-echelon
network. The proposed multiproduct problem assumes that the
type of demand is fuzzy. In addition to the particle swarm opti-
mization method, GA has been used as a solution approach to
solve this problem. Shen et al. (2019) studied emergency logis-
tics conditions using a two-phase solution algorithm with fuzzy
demand. The proposed mixed-integer programming model aims
to reduce the total costs and delivery time while minimizing the
total amount of CO2 emissions. Thus, the model considers both
economic and social factors.

Since location-routing is one of the NP-hard problems, re-
searchers mostly have focused on heuristic and metaheuristic

solutions. Quintero‐Araujo et al. (2017) considered the LRPwith
limited vehicle capacity and proposed a metaheuristic algorithm
to solve it. Reducing operating costs andminimizing service time
were the two objective functions of Nekooghadirli et al. (2014).
In their problem, travel time and customer demands were uncer-
tain. Stochastic travel time was considered in (Fathollahi-Fard
et al. 2020b), too. Four metaheuristic methods had been utilized
to solve this problem, includingmultiobjective parallel simulated
annealing (MOPSA), nondominated sorting genetic algorithm
(NSGA-II), multiobjective imperialist competitive algorithm
(MOICA), and Pareto archived evolution strategy (PAES).
Zarandi et al. (2013) considered a fuzzy constraint programming
and simulated annealing solution approach to solve the CLRP
with time windows. Minimizing the total costs and travel dis-
tance were the two objective functions of their presented mathe-
matical model.

Assuming lost-sales for unmet demand during the delivery
process for LRP could be seen in (Chan et al. 2001),
(Caballero et al. 2005), and Bozorgi-Amiri and Khorsi (2016).
Bozorgi-Amiri and Khorsi (2016) investigated a multiobjective
location-routing model. The objective functions were minimiz-
ing the maximum amount of unsatisfied demand, reducing costs,
and decreasing travel times. The proposed model was solved by
the epsilon constraint method and implemented on a case study.
They assumed shortage allowance in both lost-sale and
backorder. Rabbani et al. (2019) studied a stochastic location-
routing problem for waste disposals recycling centers of hazard-
ous wastes. Their multiobjective model takes into account the
inventory decisions, too. The model aims to minimize the total
operating costs, site risks, and transportation risks. They used a
scenario-based solution approach to solve their mixed-integer

Potential Locations

Selected Locations

Depot

Retailer

Truck

Route

Drivers’ TW

Retailers’ TW

Fig. 1 Example of a solution to
the problem
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linear programming model and combined NSGA-II and Monte
Carlo simulation to face with the multiobjective problem.

Table 1 presents the comparison between previous studies
and the current research. As shown, the current paper is covering
all of the mentioned features for the green capacitated location
routing problem. This paper’s distinctive feature is to consider
the combination of attributes such as capacitated trucks, shortage
allowance, closed loops, social concerns, time window, and traf-
fic. The combination of such features, which make the problem
closer to real-life situations, is the paper’s main contribution.

Problem description and mathematical
formulation

In the proposed model, we have a set of nodes called V, which is
the collection of facilities (warehouses) I and customers’ nodes J.
The problem aims to connect the customers to the facilities to
minimize the total costs and CO2 emissions. Eachwarehouse has
a specific establishing cost, Oi, and a specific capacity,Wi. Each
edge (i, j) has the cost of cij and distance of dij. Each truck has a
fixed cost of F and a fixed capacity of Qi. Each customer can be
served in a specific time interval [LBi,UBi]. Also, each customer
has a certain soft time window [ei, ri]. Delivery outside of this
range leads to earliness and tardiness penalty costs. Drivers, like
customers, have a hard [LK,UK] and a soft time window [eki,
rki]. The travel time, which affects the arrival time to customers
and drivers’working hours, depends on the time that trucks leave
each node, LTi.

In soft time window, delivery of products outside the spec-
ified time window is also allowed. More precisely, for each
customer, in addition to a time window, a time interval is
defined. The services performed outside the time window in-
terval are penalized. If the fine is considered infinite, then the
soft time window becomes a hard time window. For each
driver, a soft time window is considered, and for the amount
of working hours beyond the soft time windows, additional
fees should be paid to the drivers. Thus, the amount of work-
ing hours is controlled by the amount of penalty costs paid.
Customers’ demands are uncertain, and every customer re-
quires a set of products; in other words, the problem is con-
sidered in a multiproduct mode.

This study seeks to minimize the total operational costs and
total emission of carbon dioxide by calculating the amount of
energy consumed by vehicles. This paper aims to simulta-
neously select a set of customers to meet their demands, find
a set of locations for establishing the distribution centers and
design the delivery routes to the customers. City traffic (traffic
congestion), which affects delivery time of products and the
emission of polluting gasses, is considered in the problem to
approach the real world situations. Moreover, the real travel
times are obtained as follows. The minimum travel time be-
tween all pairs of nodes when the streets are solitary will be

calculated. Then incremental coefficients were added to esti-
mate the travel time in different periods of the day. Other
features of the problem include closed-loop, homogenous
fleet and soft time window.

The following list of assumptions are taken from (Toro
et al. 2017):

& Each customer is served only once and only by one truck.
& Each customer’s demand can be satisfied only by one

warehouse with limited capacity.
& Each tour starts from a warehouse and ends at the same

warehouse.
& The cost of establishing warehouses is fixed.
& The cost of using vehicles is fixed.
& The size of the vehicles’ fleet is fixed and homogeneous

and has limited capacities.

And the second list of assumptions are contributed to the
problem as follows:

& Demand shortage assumed as lost in sales.
& Customers must be visited within a specified time win-

dow; otherwise, either earliness or tardiness penalty costs
are applied.

& Drivers have a specific time for service i.e. if the driver's
working time is outside a specific range, earliness and
tardiness penalty costs will be added to the total costs.

& The cost of establishing warehouses is fixed.
& The cost of using vehicles is fixed.
& The size of the vehicles’ fleet is fixed and homogeneous

and has limited capacities.

The following sets, parameters and decision variables are
used for the mathematical description of the problem:

Sets

I Set of warehouses i={1,2,…,I}

J Set of costumers j={1,2,…,J}

V Set of nodes v={1,2,…,V}

L Set of time interval l={1,2,…,L}

P Set of products p={1,2,…,P}

Ω Set of scenarios θ∈Ω Ω={1,2,…, |Ω|}

Parameters

βij The gradient of the road from node i to j

v Fixed vehicles speed

[ei,ri] Soft time window of costumer i

Pe Customers earliness penalty cost

Pl Customers tardiness penalty cost

LBi Lower bound of hard time window of customer i

UBi Upper bound of hard time window of customer i

LK Lower bound of hard time window for each driver

UK Upper bound of hard time window for each driver
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PKe Earliness penalty cost per unit of drivers’ workload time

PKl Tardiness penalty cost per unit of drivers’ workload time

[eki, rki] Soft time window of driver i

Oi Cost of activating of warehouse i

Wip Capacity of warehouse i of product p

M A big number

F Fixed cost of using trucks

Q Capacity of each truck

Djpθ Demand of customer j of product p in scenario θ

sc Penalty cost of each product shortage

Table 1 Comparing previous researches with the current study

Objective function Capacitated
vehicles

Shortage Closed
loop

Homogenous
fleet

Social issues Time
window

Traffic Uncertainty

Caballero et al.
(2005)

Min total costs, Max
social satisfaction

✓ - ✓ ✓ Social equity, negative
implications and social
denial by neighbors on
the truck routes

- - -

Jabal-Ameli
et al. (2011)

Min total costs ✓ - ✓ ✓ - ✓ - -

Zarandi et al.
(2013)

Min total costs and
distance traveled

✓ - ✓ ✓ - - - travel time
and
demand

Nekooghadirli
et al. (2014)

Min total costs and
service time

- ✓ ✓ - - - - travel time
and
demand

Bozorgi-Amiri
and Khorsi
(2016)

Max reduction in
unsatisfied
demand, Min
costs and travel
time

✓ ✓ - - - - - demand

Zhalechian
et al. (2016)

Min total costs, Max
the positive
effects of network
design

✓ - ✓ ✓ Job opportunities - - demand

Ghaderi and
Burdett
(2019)

Min total costs and
risks

✓ - - - Risk of the transportation
of hazmat

- - demand

Govindan et al.
(2020)

Min total costs and
amount of
shortage

- ✓ ✓ ✓ - - - demand

Biuki et al.
(2020)

sustainable approach ✓ ✓ - - Customer satisfaction,
employee numbers,
human rights, and labor
working condition

- - demand

Rabbani et al.
(2019)

Min total costs, site
risk, and
transportation risk

✓ ✓ ✓ - - - - people at
risk and
generat-
ed waste

Shen et al.
(2019)

Min total costs,
delivery time and
CO2 emissions

✓ - - - customer satisfaction - - demand

Hu et al.
(2019)

Min total costs and
risk, Max
customer
satisfaction

- - ✓ ✓ customer satisfaction ✓ ✓ -

Zhong et al.
(2020)

Min the CVaR-Ra of
the overall cost
and the waiting
time

✓ - ✓ ✓ - ✓ - demand

This study Min total costs and
amount of CO2

emissions

✓ ✓ ✓ ✓ Drivers satisfaction ✓ ✓ demand

a Conditional value at risk with regret (CVaR-R)
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cij Travel cost between nodes i and j

dij Distance between nodes i and j

g Gravity constant

b Constant depending on the terrain

m0 Mass of each truck

E Total CO2 emissions per unit of energy (kg of CO2/J)

σl Coefficients for travel time between two nodes regarding trucks
leaving time

timeij Travel time between nodes i and j when the streets are solitary

EPM Amount of CO2 emissions while the vehicle is in place
(working but not moving)

Decision variables

xijθ 1, if the path between nodes i and j ∈ V in scenario θ is used; 0
otherwise

yi 1, if facility i ∈ I is used; 0 otherwise

fijθ 1, if the customer at node j ∈ J is served by a route that starts at
the warehouse i ∈ I in scenario θ; 0 otherwise

aijθ 1, if a vehicle uses node j to return from the end of its route (at
node j) to a warehouse (at node i) in scenario θ; 0 otherwise

tijθ The volume of load transported between nodes i and j in
scenario θ

zjθ 1, if the customer j is the last customer served in a route in
scenario θ

shipθ The amount of shortage of product p of customer i in scenario θ

ybilθ Binary auxiliary variable indicating if the leaving time of
customer i is in the time interval l in scenario θ

LTLilθ Continuous auxiliary variable for linearization of the constraint
regarding city traffic

LTiθ Departure time of truck from node i in scenario θ

gijlθ Binary auxiliary variable to linearize the second objective
function in scenario θ

Tiθ Arriving time of truck in node i in scenario θ

yeiθ Amount of earliness of delivering for customer i in scenario θ

yliθ Amount of tardiness of delivering for customer i in scenario θ

ykeiθ Amount of earliness of driver i service time in scenario θ

ykliθ Amount of tardiness of driver i service time in scenario θ

In this section, a scenario-based modeling method is pre-
sented. Our model’s goals are to minimize the total costs,
(fixed costs, expected travel costs, and expected penalty costs,
in all scenarios) and to minimize the total amount of CO2

emissions. We consider a two-stage stochastic programming
approach to deal with the stochastic demands. Location deci-
sions are made in the first stage, and decisions regarding
routing and scheduling customers’ visits are made in the sec-
ond stage.

FS ¼ ∑
i∈I

Oiy j ð1Þ

FS indicates decision variables and their values in the
first stage. The formula selected for the second stage of
the ith objective function, SSi, are as follows: (For more
details regarding the calculation of total CO2 emission,
see (Toro et al. 2017))

SS1 ¼ ∑
i∈I ; j∈ J

Faijθ þ ∑
i; j∈V

cijxijθ þ ∑
i∈I ; j∈ J

cijaijθ

þ ∑
i∈I

Pe � yeiθ þ Pl � yliθð Þ

þ ∑
i∈I

PKe � ykeiθ þ PKl � ykliθð Þ þ ∑
j∈ J ;p∈P

sc

� shjpθ ð2Þ

SS2 ¼ E ∑
i; j∈V

m0g bcosβij þ sinβij
v2

2gdij

� �
dijxij þ ∑i∈I ; j∈ J dijaij

" #

þ E ∑
i; j∈V

g bcosβij þ sinβij
v2

2gdij

� �
tijdij

" #

þ EPM ∑
i; j∈V ;l∈L

σl LTið Þ*timeijxij

ð3Þ

where Ψ1 is the sum of first stage value and the expected value
of second stage variables of the first stage variables and Ψ2

denotes the expected value of second stage variables of the
second objective function. More details have been provided in
the appendix (section (a)) regarding the two objective func-
tions. The complete model is presented below:

Ψ1 ¼ FS þ E SSΨ1ð Þ ð4Þ
Ψ2 ¼ E SSΨ2ð Þ ð5Þ
Min Ψ1;Ψ2 ð6Þ
∑
i∈v

xijθ≤1 ∀ j∈J ;∀θ∈Ω ð7Þ

∑
k∈ J

xjkθ þ ∑
i∈I

aijθ ¼ ∑
i∈v

xijθ ∀ j∈J ;∀θ∈Ω ð8Þ
∑
j∈ J

xijθ ¼ ∑
j∈ J

aijθ ∀i∈I ;∀θ∈Ω ð9Þ
xijθ þ xjiθ≤1 ∀I ; j∈V ;∀θ∈Ω ð10Þ
∑

i∈V ;i≠ j
tijθ ¼ ∑

k∈V ;k≠ j
tjkθ þ ∑

p∈P
Djpθ− ∑

p∈P
shipθ ∀ j∈J ;∀θ∈Ω ð11Þ

∑
i; j∈V

xijθ≤ Jj j ∀θ∈Ω ð12Þ
∑
i∈I

f ijθ≤1∀ j∈J ;∀θ∈Ω ð13Þ
tijθ≤Qxijθ ∀I ; j∈V ;∀θ∈Ω ð14Þ

∑
j∈ J

tijθ≤ ∑
i∈I

Wipyi ∀i∈I ;∀θ∈Ω; p∈P ð15Þ

∑
k∈I

xjkθ ¼ 1−zjθ ∀ j∈J ;∀θ∈Ω ð16Þ
1þ aijθ≥ f ijθ þ zjθ ∀i∈I ;∀ j∈J ; ∀θ∈Ω ð17Þ

− 1−xjuθ−xujθ
� �

≤ f ijθ− f iuθ ∀i∈I ; ∀ j; u∈V ; ∀θ∈Ω ð18Þ
f ijθ− f iuθ≤ 1−xjuθ−xujθ

� �
∀i∈I ; ∀ j; u∈V ; ∀θ∈Ω ð19Þ
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f ijθ≥xijθ ∀i∈I ; j∈J ;∀θ∈Ω ð20Þ

∑
i
yi≥

∑ j∑p Djpθ−shipθ
� �
∑i∑pWip

∀i∈I ;∀θ∈Ω ð21Þ

∑ j∈ J xijθ≤
∑pWip

Q
∀i∈V ;∀θ∈Ω ð22Þ

∑
i∈I ; j∈ J

xijθ≥ ∑
j∈ J

∑p Djpθ−shipθ
� �

Q
∀θ∈Ω ð23Þ

Tiθ þ ∑
l∈L

gijlθ � timeij � 1þ σlð Þ≤Tjθ þM 1−xijθ
� �

∀i; j∈V ;∀θ∈Ω

ð24Þ
Tiθ þ ∑

l∈L
gijlθ � timeij � 1þ σlð Þ≤Tjθ þM 1−aijθ

� �
∀i; j∈V ;∀θ∈Ω

ð25Þ
Tiθ≥LBi ∀i∈V ;∀θ∈Ω ð26Þ
Tiθ≤UBi ∀i∈V ;∀θ∈Ω ð27Þ
yeiθ≥ei−Tiθ ∀i∈V ;∀θ∈Ω ð28Þ
yliθ≥Ti−ri ∀i∈V ;∀θ∈Ω ð29Þ
Tiθ≥LK ∀i∈V ;∀θ∈Ω ð30Þ
Tiθ≤UK ∀i∈V ;∀θ∈Ω ð31Þ
ykeiθ≥eki−Tiθ ∀i∈V ;∀θ∈Ω ð32Þ
ykliθ≥Tiθ−rki ∀i∈V ;∀θ∈Ω ð33Þ
σl LTiθð Þ ¼ ∑

l∈LnLend
σl � ybilθ ∀i∈V ;∀θ∈Ω ð34Þ

Ll ≤LTi≤Llþ1 ∀i∈V ;∀l∈LnLend ð35Þ
T 0θ≥6 ∀θ∈Ω ð36Þ
Tiθ≤24 ∀θ∈Ω ð37Þ
xijθ; yi; f ijθ; ziθ; aijθ; ybijθ; gijlθ∈ 0; 1f g ∀i; j∈V ;∀θ∈Ω;∀θ∈Ω

ð38Þ
tijθ; LTLilθ∈ℝ ∀i; j∈V ;∀θ∈Ω ð39Þ
shipθ; LTiθ; Tiθ; yeiθ; yliθ; ykei; ykli∈ℝ

þ ∀i∈I ;∀p∈P;∀θ∈Ω
ð40Þ

Constraint (7) ensures that a maximum of one edge is
connected to each customer, meaning that any customer
is visited by only one truck. Constraint (8) states that
the input and output edges of a node must be balanced,
i.e., the number of input paths to the node must be
equal to the node’s output paths. Constraint (9) balances
the number of output paths from each facility with the
number of edges entering the facility. Constraint (10) is
applied to prevent duplication of the arcs at the same
time. Constraint (11) sets the balance of the truck's load
and demand of each customer and the amount of its
shortage. The minimum number of edges needed to con-
nect customers is expressed in constraint (12). This

eliminates subtours in the problem. Constraint (13)
guarantees that customers’ demand on each route must
be connected to a warehouse. Constraint (14) prevents
cargo overload from truck capacity. Constraint (15)
limits the amount of cargo associated with each ware-
house according to its capacity. Constraint (16) ensures
the last visited customer on each route to return to the
warehouse. Constraint (17) ensures that an edge exists
which connects the last customer to a warehouse.
Constraints (18) and (19) ensure that all the active
edges are connected to warehouses. If an edge connects
warehouse i to customer j, it is guaranteed by constraint
(20) that customer j is connected to warehouse i.
Constraint (21) indicates a lower bound for the number
of warehouses used based on total demand and ware-
house capacity. By constraint (22), the number of routes
started from a warehouse is limited. Constraint (23) en-
sures the number of routes is sufficient to meet all cus-
tomers’ demands. Constraints (24) and (25) guarantee
that if a truck travels from node i to node j, the time
to reach node j is greater than the time spent to reach
node i, according to the time spent along the edge ij.
Constraints (26) and (27) state that trucks must deliver
products to each customer within their hard time win-
dows. Constraints (28) and (29) calculate the earliness
and tardiness of product deliveries to each customer
regard ing each cus tomer ’s sof t t ime window.
Constraints (30) and (31) ensure that drivers’ working
time should be in the required range, from 6 a.m. to 12
p.m. Constraints (32) and (33) calculate the earliness
and tardiness of each driver’s working hours. The arriv-
al time of the customer j is considered as the arrival
time of the previous customer plus the travel time be-
tween customers i and j, which is a function of traffic
congestion at the time of leaving the customer i,
σl(LTiθ). This is satisfied by constraint (34). In this con-
straint, Lend is referred to as the last range of time
interval. Constraints (35) guarantee that the departure
time of each truck be in range of time intervals.
Constraints (36) and (37) ensure the daily planning in-
terval. Constraints (38) to (40) determine the variables
of the problem.

Model linearization

The second objective function of the proposed model and the
constraints of urban traffic are nonlinear. The term ∑i; j∈V ;l∈L

σl LT ið Þ � timeij xij is nonlinear in the second objective func-
tion. Consider σl as a function of LTi is a linear expression. By
adding an auxiliary binary variable, ybil, assume that
σl LT ið Þ ¼ ∑lσl � ybil. Since xij and ybil are two binary vari-
ables; thus, according to the technique used in (Liberti 2007),
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gijl, which is equal to xij × ybil would a binary variable. As a
result, Ψ2 would be linearized as follows:

Ψ2 ¼ E ∑
i; j∈V

m0g bcosβijdijxij þ sinβij
v
2g

� �
þ ∑i∈I ; j∈ J dijaij

" #

þ E ∑
i; j∈V

g btijdijcosβij þ sinβij
v
2g

� �" #
þ EPM ∑

i; j∈V ;l∈L
gijlσl � timeij

ð41Þ

Assume we have 9 time intervals from 06:00 AM to 12:00
AM. Then, the nonlinear format of their constraints would be
as follow:

6≤LTi≤8→σ1 ¼ 1:24 ∀i∈V ð42Þ
8≤LTi≤10→σ2 ¼ 0:52 ∀i∈V ð43Þ
10≤LTi≤12→σ3 ¼ 0:64 ∀i∈V ð44Þ
12≤LTi≤14→σ4 ¼ 0:60 ∀i∈V ð45Þ
14≤LTi≤16→σ5 ¼ 0:71 ∀i∈V ð46Þ
16≤LTi≤18→σ6 ¼ 1:25 ∀i∈V ð47Þ
18≤LTi≤20→σ7 ¼ 1:23 ∀i∈V ð48Þ
20≤LTi≤22→σ8 ¼ 0:55 ∀i∈V ð49Þ
22≤LTi≤24→σ9 ¼ 0:17 ∀i∈V ð50Þ

As it was mentioned before, σl is a function of LTi and
based on (Sherali and Adams 1998) the best way to linearize
such constraints with the minimum number of added con-
straints is to add the auxiliary binary variable ybil and a new
binary variable LTLilθ. Moreover, ybil indicates whether the
leaving time of truck i is in the range of time interval of l,
and LTLilθ represents the leaving time of trucks with respect to

the time intervals. Thus, to linearize the constraints related to
taking urban traffic at different hours of the day, the following
constraints will be considered:

σl LT ið Þ ¼ ∑
l
σl � ybil ð51Þ

S:t
Ll � ybilθ≤LTLilθ≤Llþ1 � ybilθ ∀i∈V ;∀θ∈Ω;∀l∈LnLend

ð52Þ

LTiθ ¼ ∑
LnLend

l¼1
LTLilθ ∀i∈V ;∀θ∈Ω ð53Þ

∑
LnLend

l¼1
ybilθ ¼ 1 ∀i∈V ;∀θ∈Ω ð54Þ

Constraint (51) represents the linear expression of coeffi-
cients for travel time between two nodes as a function of
trucks leaving time. Constraint (52) ensures that the leaving
time of each truck should be in the range of time intervals
associated with the auxiliary variables for the linearization
and constraint (53) indicates the increase in travel time ratio
according to different hours of the day. Constraint (54) en-
sures that each truck could leave only one node in each time
interval.

Solution approach

Themethod that has been chosen in this paper to encounter the
uncertainty of demand is the combination of progressive
hedging algorithm (PHA) method and genetic algorithm
(GA), called PHA-GA. In the following subsections,

Table 2 PHA algorithm

1. k=0

2. for all θ∈Ω; ykθ ¼ argminy;xθ cyþ f θð xθÞ : y; xθð Þ∈Φ y;Ωθð Þ
3. yk ¼ ∑θ∈Ω Prθykθ
4. for all θ∈Ω;wtkθ ¼ τ ykθ−y

k
� �

5. k=k+1

6. for all θ∈Ω; ykθ ¼ argminy;xθ cyþ wtk−1θ yþ τ
2 y−yk−1
�� ���

2 þ f θ xθÞ : y; xθð Þ∈Φ y;Ωθð Þ
7. yk ¼ ∑θ∈S Prθxkθ
8. for all θ∈Ω;wtkθ ¼ wtk−1θ þ τ ykθ−y

k
� �

9. πk ¼ ∑θ∈Ω Prθ ykθ−y
k

�� ��
10. if πk<ϵ then go to step 5. Otherwise, terminate.

Table 3 Solution set of the represented chromosome

Locations 2 6 9

Customers {3, 8, 10} {6, 2} , {1 ,4} {7, 9} , {5}
Fig. 2. An example of chromosome representation for decision variables
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individually, PHA and GA methods, are briefly described,
then combination of them is illustrated.

Progressive hedging algorithm

One way to solve stochastic problems based on problem divi-
sion is the PHA method, introduced by Rockafellar and Wets

(1991). The problems that are less solvable due to memory
limitation and computational time are made smaller and solv-
able by PHA. This method analyzes uncertainties based on
scenarios. The important feature of this method is that when
the stochastic problem space is convex, the PHA converges to
the optimal solution (Løkketangen and Woodruff 1996), (Fan
and Liu 2010), and (Watson and Woodruff 2011).

StartInput Model and GA 
and PHA Parameters

Ini�al Popula�on 
Produc�on

Iter = 1
Genera�on = MaxIter Iter ≤ Genera�on

YesParent Selec�on

Generate a number 
between {1,2} 

randomly
t = 1

Yes Single Point 
Crossover

No Double Point 
Crossover

New 
Genera�on 

Edi�ng

Generate a number 
among {1,2,3} 

randomly

t = 1 No t = 2

Change Muta�on on 
Loca�on Variables

Yes

No
Insert Muta�on on 

Loca�on and 
Rou�ng Variables

Yes
Swap Muta�on on 

Loca�on and 
Rou�ng Variables

Iter = Iter + 1

New Genera�on Ranking and Sor�ng 
by Distance Crowding Criterion

Create Ini�al 
Solu�on

Op�mal Pareto 
Front Stop

No

Itera�on = 1
PHA Genera�on = MaxNumGen

Itera�on ≤
MaxNumGenYes

Upda�ng τ

πk < ε Yes

No

StopNo

Fig. 3. The flowchart of the PHA-GA method
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The PHA method repeatedly solves the scenarios separate-
ly and tries to gradually approach to a viable solution by
adding a penalty cost to the objective function(s). Table 2
provides a general overview of the PHA algorithm. Assume
that τ > 0 is a penalty factor and ϵ is a convergence threshold.

The index k indicates the number of iterations, and the
Euclidean distance is expressed in the kth iteration as πk. The
vectors yks , y

k , and wtks , respectively, represent the decision
variables for scenario θ in iteration k, the weighted decision
variable in iteration k, and penalty cost for scenario θ at iter-
ation k.

Genetic Algorithm (GA)

Genetic algorithm is one of the most popular metaheuristic
solution approaches for solving NP-hard problems. In the pro-
posed genetic algorithm, first, the problem parameters are de-
termined, including the number of customers, the number of
potential locations for warehouses, the number of the initial
population, and customers' demands. Then, we produce the
initial population given by pop.

Chromosome representation

We define the individual chromosomes for the location and
routing variables by illustrating an example presented in Fig. 2.
Let’s suppose we have ten customers and ten potential locations
for locating warehouses. Numbers greater than the number of
customers (10 in this case) determine which vehicle is assigned
to which customers. Then for location variables, three locations

from the set of available locations are randomly selected, and the
customers of each section of the first array (chromosome) are
allocated to the warehouses in the specified locations. Table 3
shows the allocation of customers to warehouses with different
vehicles.

Population size and content

We use a random method to produce the initial population for
location and routing variables. It is assumed that n is the number
of potential locations for establishing warehouses, pop denotes the
number of primary population, r is the total number of customers,
and veh indicates the number of vehicles and d is the number of
selected facilities.

To generate the initial population for location and routing var-
iables, we first generate amatrix by dimension pop× (r+ veh) as a
random displacement of customers. Moreover, veh is randomly
selected in the range of 0; r=2

� �
and is numbered in greater order

than the customer index in the routing variables. This random
setup determines the sequence of customers’ visits and trucks’
tour. In the next step, we randomly divide each chromosome by
a random number in the range of [1, n− 1]. Then, according to the
number of sections separated from each chromosome, the selected
locations will be generated randomly for construction. Binary ar-
rayswill be created for each chromosome; 1 for the locationwhere
a warehouse is located and 0 for locations without located ware-
house. (To find details about parent selection procedure, crossover,
and mutation, see Appendix section (b))

Fitness function

Two fitness functions are examined to compare the popula-
tions produced in different generations. Total operating costs
and total CO2 emissions are the two objective functions that
should be considered as fitness functions for the genetic algo-
rithm.

Ψ1 ¼ FS þ E SSΨ1ð Þ ð55Þ
Ψ2 ¼ E SSΨ2ð Þ ð56Þ

Table 4 Ranges from which the parameters were randomly generated

Parameter Corresponding random distribution Description

Q ~uniform 0:5w; 0:9wð Þ w is the average facilitates capacities

Wip ~uniform 1:5D; 2:5D
� �

D is the sum of the total customers’ demands for
the number of potential locations

[ei,ri] ~uniform(7,10) In the morning

[eki, rki] ~uniform(8,12) Before noon

Oi ~uniform(100,200)

sc ~uniform(5,10)

timeij ~uniform(0.5,2)

Table 5 Candidate amount of parameters for the proposed GA

Level MaxIteration PopSize PCrossover, PMutation

1 100 20 0.6 , 0.4

2 200 50 0.7 , 0.3

3 500 75 0.8 , 0.2

4 1000 100 0.9 , 0.1
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PHA-GA approach

It is the first time, in our best knowledge, that combination of
progressive hedging algorithm and genetic algorithm is used and
implemented for a green location routing problem. The
“Experimental results” section presents the promising solutions
of the proposed approach which demonstrates that PHA-GA
approach is computationally efficient and produces satisfactory
results. The flowchart of the proposed solution approach is dem-
onstrated in Fig. 3.

The problem consists of |Ω| scenarios that their probabilities
are given by prθ. We start solving the problem in order from the
first scenario. We store the optimal solution for the location var-
iables and obtain theirmean based on each scenario’s probability.
According to Table 2, a penalty function is multiplied by the
difference in the solution of the location variables from the ob-
tained average and is added to the cost function. This algorithm
iterates until the convergence of the solutions.

In the PHA-GA method, if a solution is found in which the
decision variables are equal after several iterations, themethod
has converged. After reaching the maximum number of
generations, MaxNumGen, the algorithm terminates and the
results are obtained.

NSGA-II

Nondominated sorting genetic algorithm II (NSGA-II) is
among the most popular evolutionary algorithms for dealing
with multiobjective problems. As the name implies, the genet-
ic algorithm has an important role in this algorithm. The dif-
ference between this algorithm and single-objective genetic
algorithms is in the process of sorting solutions.

The nondominating sorting algorithm quickly offers a wide
range of solutions and its good performance is evident in

many two-objective problems (Rabbani et al. 2017),
(Rabbani et al. 2019), (Karampour et al. 2020). The NSGA-
II uses a Pareto front range and adopts the nondominating
sorting mechanism to maintain the best solutions. To get
acquainted with this algorithm, the concept of rank and
crowding distance should be defined. See Appendix section
(c) to find more information regarding NSGA-II and the con-
cepts of rank and crowding distance, see Appendix.

Numerical results

To analyze the performance of the proposed solution method,
several numerical examples in different scales are examined.
These examples are solved once with CPLEX software to
provide a basis for comparing the proposed algorithm solu-
tions with the exact solutions. All instances run on the Intel
Core ™ i7-8750 CPU 2.20 GHz processor with 16GB of
RAM.

Examples are shown in the format of R–F, where R returns
the number of customers and F returns the number of candi-
date spots for placing warehouses. For example, format 4–3
indicates that the number of customers and potential ware-
house locations are 4 and 3, respectively. Customers and fa-
cility coordinates are also randomly assigned in the range of
[1,100]. The distance between nodes in the problem network
is calculated based on the Euclidean distance. Other parame-
ters are illustrated in Table 4.

Parameter tuning

The optimization design method was first used by Ronald
Fisher (Yang and Tarng 1998) in 1920 and Taguchi presented
the Taguchi method as an effective and systematic approach

Fig. 4. Main effects plot of
factors for GA
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to obtain optimal parameters (Davidson et al. 2008). In this
paper, for parameter tuning of the proposed genetic algorithm,
the Taguchi method was implemented in Minitab 19.2. This
method dramatically reduces the number of necessary tests
using orthogonal arrays. To use the proposed GA, we set 3
factors as the input parameters of this algorithm. Candidate
values for the parameters are determined and are given in
Table 5:

Four comparison criteria are considered to validate the pro-
posed GA: Quality metric (QM), Mean ideal distance (MID),

Table 6 Computational results

Problem size: small ; R–F ≈4–3 Problem size: small ; R–F ≈5–3
NSGA-II (Run time=1305s) ε-constraint (Run time=264s) NSGA-II (Run time=1307s) ε-constraint (Run time=264s)

Ψ1 Ψ2 Ψ1 Ψ2 Ψ1 Ψ2 Ψ1 Ψ2

11966.49 0.00 11966.49 0.00 23036.28 0.00 23036.28 0.00

11766.49 540.87 11766.49 410.81 22918.27 369.49 22849.97 347.86

10237.31 597.69 9627.37 821.62 22476.17 668.43 19347.16 695.72

9773.49 934.42 8830.37 1232.43 21147.94 768.52 19347.16 1043.58

8731.48 1372.52 5929.49 1643.24 19348.33 963.76 18155.93 1391.44

8238.18 1627.23 5927.68 2054.05 18064.24 1391.55 16378.04 1739.30

6037.37 2083.39 5816.85 2464.86 17774.24 1868.71 16378.04 2087.16

4138.29 2281.70 2647.16 2875.67 15079.84 2133.77 13249.57 2435.02

3777.54 2951.49 2647.16 3286.47 13274.76 2679.63 12146.33 2782.88

2947.18 3286.48 2126.74 3697.28 12063.49 3132.74 11566.18 3130.74

Problem size: medium ; R–F ≈10–4 Problem size: medium ; R–F ≈15–4
NSGA-II (Run time=1396s) ε-constraint (Run time=10800s) NSGA-II (Run time=1393s) ε-constraint (Run time=10800s)

Ψ1 Ψ2 Ψ1 Ψ2 Ψ1 Ψ2 Ψ1 Ψ2

12006.92 213.83 11993.64 0.00 24140.62 395.16 24140.62 0.00

11815.92 540.87 11793.64 418.70 23167.44 501.34 20646.81 446.33

10286.74 597.69 9654.52 837.41 22375.32 946.61 20646.81 892.66

9815.92 934.42 8857.52 1256.11 21497.51 1472.38 19452.58 1338.98

8773.91 1372.52 5956.64 1674.81 19672.94 1934.86 17670.69 1785.31

8283.61 1627.23 5954.83 2093.52 19210.38 2268.19 17668.69 2231.64

6083.80 2083.39 2674.31 2512.22 17923.07 2549.28 14545.22 2677.97

4183.72 2281.70 2674.31 2930.92 15625.81 2716.69 13441.98 3124.29

3829.97 2951.49 2674.31 3349.63 14377.29 3248.49 12857.83 3570.62

2992.61 3286.48 2153.89 3768.33 13087.24 3793.51 12644.61 4016.95

Problem size: large ; R–F ≈50–5 Problem size: large ; R–F ≈75–5
NSGA-II (Run time=7058s) ε-constraint (Run time≥10800s) NSGA-II (Run time=7058s) ε-constraint (Run time≥10800s)
Ψ1 Ψ2 Ψ1 Ψ2 Ψ1 Ψ2 Ψ1 Ψ2

80475.29 7679.38 92384.73 0.00 81775.94 7694.88 93675.38 0.00

80226.83 7934.82 92384.73 7816.02 81527.48 7960.32 93683.38 7982.65

80216.82 13751.20 91388.47 15632.03 81516.47 13769.70 93683.38 15965.30

79971.65 17431.53 89341.26 23448.05 81269.30 17455.03 93683.38 23947.95

79216.08 24167.38 89341.26 31264.06 80514.73 24191.88 90639.91 31930.60

78467.24 36168.72 89341.26 39080.08 79766.89 36191.22 90641.91 39913.26

76926.19 45379.61 86493.10 46896.09 78226.84 45404.11 90641.91 47895.91

75733.81 53034.29 84379.68 54712.11 77034.46 53064.79 85674.33 55878.56

74268.67 64187.24 84379.68 62528.12 75560.32 64204.74 84272.16 63861.21

72631.94 68154.31 81375.46 70344.14 73924.59 68175.81 82670.11 71843.86

Table 7 Comparing the performance of NSGA-II and ε-constraint
method

Instance 1 2 3 4 5 6

#R – F 4 – 3 5 – 3 10 – 4 15 – 4 50 – 5 75 – 5

HR 1.02 1.04 1.06 1.07 0.86 0.83
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Diversification metric (DM), and Spacing metric (SM)
(Nekooghadirli et al. 2014). QM andMID are two quantitative
criteria and DM and SM are two qualitative criteria. The
weights of qualitative and quantitative criteria are 1 and 2,
respectively (Asefi et al. 2014). The utility function will be
as follows.

UF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QMð Þ2 þ MIDð Þ2 þ DMð Þ1 þ SMð Þ1

q
ð57Þ

The results of the implementation of the GA to investigate
the direct effect of factors using the Taguchi method can be
seen in Fig. 4:

Based on Fig. 4, it is recommended that MaxIteration,
PopSize, PMutation, and PCrossover be rated at their third
level so that the genetics algorithm can provide the best pos-
sible result.

Scenario reduction

In this paper, we use a scenario-based approach to deal with
the stochastic problem. The number of scenarios is determined

regarding the best solution’s accuracy and can be calculated
by the value of the expected objective function, given by,

S snð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑sn

s¼1 E Cost½ �−Costsð Þ2
sc−1

s
ð58Þ

where sn shows the number of scenarios, Costs is the total
value of the objective function for the scenario s and E[Cost]
indicates the value of the expected objective function.

The 1 −α confidence interval is given below,

E Cost½ �− zα=2S snð Þffiffiffiffiffi
sn

p ; E Cost½ � þ zα=2S snð Þffiffiffiffiffi
sn

p

 �

ð59Þ

where zα/2 is the standard deviation so that 1 −α/2 is the stan-
dard normal distribution in z~N(0, 1), Pr (z ≤ zα/2) = 1 − α/2
covers. If the sample estimator S(sn) and the optimal confi-
dence interval H are given, we can obtain the minimum num-
ber of required scenarios by,

N ¼ zα=2S snð Þ
H


 �2
ð60Þ
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Thus, to specify the number of scenarios N, we will
consider a small stochastic model with sn number of
scenarios. We may obtain the number of scenarios re-
garding the desired confidence interval in order to de-
termine the number of samples S(sn).

To estimate the required number of scenarios, we
first consider 30 scenarios in which the demand from
the first to the last scenarios are 5, 10, 15, ..., 150,
respectively. Then, we obtain the required number of
scenarios, which is 8. We divide the customer demand
values in the range of 5 to 150 for each product in
eight intervals to get the demand for eight scenarios.

Experimental results

This section examines the results of the proposed NSGA-II
method and epsilon-constraint method on the problem. The
proposed PHA-GA and the exact method are coded, respec-
tively, in MATLAB and CPLEX. The calculation time of
obtaining the Pareto front of ten Pareto optimal solutions is
given by Run time. According to Table 6, for medium and
large problems, the run time of the NSGA-II is significantly
shorter than that of the epsilon-constraint method. The maxi-
mum execution time for each step in the epsilon-constraint
method is set to 1080 seconds. Hence, the obtained Pareto

Fig. 7. Location of pharmacies
and health centers in Isfahan

-5.E-01

5.E-01

2.E+00

3.E+00

4.E+00

5.E+00

6.E+00

7.E+00

8.E+00

C
O

2
Em

is
si

on
 (g

r)

x 
10

^8

Total Cost (million Rial)

Fig. 8. Pareto front of the case
study

5065Environ Sci Pollut Res  (2022) 29:5052–5071



front solutions of medium and large problems are not opti-
mum. As it was mentioned before, instances are presented in
the format of R–F, where R returns the number of customers
and F returns the number of candidate locations for placing
warehouses. According to Table 6, the execution time for
instances more than R–F ≈15 – 4 would drastically increase
due to the large scale complexity of the problem.

The hyperarea is a criterion used to compare the proposed
solution approach’s results with the exact solution’s results
regarding each Pareto front polygons area. The value of this
criterion for each algorithm is calculated as follows (Van
Veldhuizen 1999),

HAA ¼ obj11 � obj21
� �þ ∑

num¼2
obj2num−obj

2
num−1

� �� obj1num
� � ð61Þ

where obj1num and obj2num are the values corresponding to the
first and second objective functions in the num th

nondominated solution. The hyperarea ratio is shown by:

HR ¼ HANSGA−II

HAepsilon−constraint ð62Þ

The corresponding value of this metric for instances in
Table 6 are shown in Table 7. IfHR be greater than 1, it shows
that the performance of the proposed solution method is better
than the epsilon-constraint method and vice versa. According
to Table 7, the epsilon-constraint method performs better for
small-scale problems. However, the proposed solution

method generates superior Pareto fronts for medium and large
problems in a shorter time.

As depicted in Fig. 5, the total operating costs and total
CO2 emissions are in conflict. By reducing the total costs,
the amount of emitted carbon dioxide increases. Such Pareto
front helps managers make the right decision regarding cor-
porations' current priorities. Subsequently, the optimal Pareto
front is presented in Fig. 6.

Isfahan case study

The case study is to locate the drug depots of a small local
drug distribution company (in Isfahan) and to schedule its
trucks to meet the demand of a number of pharmacies and
health centers, in a way that operating costs and emitted car-
bon dioxide will be minimized. In this case study, the drug
distribution company has provided a dataset related to the
demand of 30 pharmacies and 6 health centers in Isfahan.
Also, the number of potential places to establish warehouses
is 8. The number of health centers and pharmacies that the
drug distribution company should serve is 36, drawn in Fig. 7.

The distance between customers and the distance between
customers and depots are given. The slope between nodes in
the city network is obtained by an approximation of Google
Erath and ArcGIS software, and the travel times between nodes
in the best and most secluded states are also provided. Google

Table 8 Computational results of trucks' fixed cost changes

1 2 3 4 5 6 7 8 9 10

Vehicle fixed cost 25 30 35 45 65 100 200 500 1000 5000

Ψ1 926 941 956 986 1046 1151 1451 2351 3851 15851

Ψ2 14775 14775 14775 14775 14775 14775 16703 16147 16135 16197
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Fig. 9. Objective Functions
trends vs. fixed truck costs
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Map software was used to estimate the travel time between
nodes.

Figure 8 shows the Pareto front of the case study. This chart
helps managers make decisions and enables them to select a
point in the chart according to the company’s needs and
priorities.

Sensitivity analysis

We evaluate the performance of the model and its accuracy by
applying changes to the problem parameters in this section. We
have produced several small-scale problems in 4–3 format and in
each of them, we change a specific parameter and examine its
effect on the solution set and the objective functions.

We consider the effect of fixed cost changes in this problem.
First, we consider the effect of fluctuations on the fixed costs of
using each truck. Then, we examine the effects of fixed cost
changes on establishing warehouses on the objective functions.
We change the fixed cost of using each truck and keep the other
parameters of the problem constant. Table 8 presents the com-
parative results of the objective function’s values.

According to Fig. 9, operating costs increase as fixed vehicle
cost increases, but CO2 emissions do not have a significant rela-
tionship with the fixed costs. The noteworthy point is the sudden
increase in the fixed cost of vehicles. Instead of optimizing the
cost of shortages by increasing the customers’ demand, the

model seeks to reduce the use of high-cost fixed vehicles. In
other words, the amount of added costs caused by the demand
shortage is less than the use of vehicles with such fixed cost.

To study the effects of the fixed cost for establishing facil-
ities, several problems are generated with different fixed costs,
which are illustrated in Table 9:

As seen in Fig. 10, when fixed warehouse costs increase, the
total operating costs increase. The important point is an increase
in the shortage due to the fixed cost of establishing warehouses
and satisfying customer demand. In other words, in the trade-off
between the demand shortage and establishing the warehouses,
the first one is chosen.

Managerial insights

The points of view and approaches that help the distribution
company managers regarding the issue studied in this paper
are as follows:

& Negotiate with customers (pharmacies and health centers)
to increase the time window of product delivery to reduce
early and late fines for exceeding the time window.

& Negotiate with customers to share sales information to
reduce costs associated with shortages and fluctuations
in demand for various products.

& Operate the delivery processes on weekends due to light
traffic congestion.

Conclusion and future works

Since the LRP consists of a combination of location and
routing problems, and each of them is NP-hard, we encoun-
tered the problem with extraordinarily high solution time to
solve, especially for large-scale problems. That is why we
used genetic algorithm to solve the problem. To address the
uncertainty in the problem, we also considered using the

Table 9 Computational results of changing Oi

Fixed facility establishment cost Ψ1 Ψ2 sh y

1 {100–150–200} 890 36194 400 {1,2,3}

2 {200–300–400} 1340 36192 400 {1,2,3}

3 {500–750–1000} 2690 36033 400 {1,2,3}

4 {1000–1500–2000} 4593 36001 3640 {1,2}

5 {1500–2250–3000} 5183 35960 6880 {1}
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Fig. 10 Trend of total costs
towards the changes in Oi
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progressive hedging algorithm. We investigated the problem
by separating the main variables of the problem: location and
routing decisions. As a result, we considered the problem as a
two-stage problem. By using the progressive hedging algo-
rithm, we identified the variables of the first step, which were
the location variables, and then solved the routing problem.
The implementation of the PHAmethod was performed using
the genetic algorithm.

In general, the proposed problem is related to the integrated
decision-making of location and routing in a wide range of areas.
Researchers have done a lot of research and development over
the years, but this topic is still attractive for future research be-
cause of the applicability of this problem. The following remarks
are a number of aspects for developing the model:

& Considering service time for each customer according to
the customer’s demands

& Considering the probability of disruption occurrences
such as vehicle crashes and breakdowns

& Development of problem based on heterogeneous trans-
port fleet

& Allowance of backorders for demand shortage.

Appendix

Section a) CO2 emission formula

In Toro et al. (2017), all the forces toward the truck are
discussed. Below the schematic of such forces on the truck
is depicted. Using mathematical relations and static mechan-
ics, the total amount of energy consumed, and the total amount
of fuel consumed, followed by the total amount of carbon
dioxide emissions, are calculated (Fig. 11).

FR
�!

represents the forces that are opposed to the movement

of the vehicle, FM
�!

represents the forces created by the engine
and transmitted to the tire of the vehicle, mg is the weight of

the vehicle, and N
!

is the surface force on the vehicle.

∑Fx ¼ max ax ¼ 0 FM−FR−mgsinβij ¼ 0 ð63Þ

∑Fy ¼ may ay ¼ 0 N−mgcosβij ¼ 0 ð64Þ

FR;tires
���!

represents the force created between the wheels
without traction and the ground, which is opposite to the

movement of the vehicle. FR;wind
����!

is the force exerted by the

wind against the motion of the vehicle. FR;internal
�����!

represents
the equivalent force of internal forces opposing the motion of

the vehicle, and m v2
2dij

is the force required by the vehicle to

achieve steady state dynamic energy. The mass of the loaded
vehicle is the sum of the unloaded vehicle's mass (the mass of
the vehicle itself) m0 and the load carried between nodes i and
j.

FR
�! ¼ FR;tires

���!þ FR;wind
����!þ FR;internal

�����!þ m v2

2dij
ð65Þ

m ¼ m0 þ tij ð66Þ

FR;tires ¼ Nb ð67Þ

FM
�! ¼ mgcosβij

� �
bþ FR;wind

����!þ FR;internal
�����!þ m v2

2dij

þ mgsinβij ð68Þ

In this step, we calculate the work function (Uij) done by
the truck, which is the same force in the displacement amount.
Next, the total amount of gas emissions will be obtained.

Fig. 11. Forces act on the truck
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Uij ¼ m0 þ tij
� �

gbcosβij þ FR;wind
����!þ FR;internal

�����!þ m0 þ tij
� �

v2

2dij
þ m0 þ tij
� �

g sin βij

i
 �
dij

ð69Þ

Uij ¼ m0g bcosβij þ sinβij

v2ij
2gdij

 !
þ FR;wind þ FR;internal

" #
dij

þ g bcosβij þ sinβij

v2ij
2gdij

 !" #
tijdij

ð70Þ

The amount of fuel (diesel) required to do the whole work
function, i.e., ∑i, j ∈ VUij, is obtained by the conversion factor
E1 (gallon diesel/joule). Another conversion factor obtains
each fuel unit’s emission rate, E2 (grams of CO2/gallon die-
sel). Therefore, the amount of carbon dioxide emissions is
calculated as follows:

E1 � E2 � ∑i; j∈VUij ¼ E � ∑i; j∈VUij ð71Þ

Another part of the second objective function that needs to
be addressed is the amount of carbon dioxide emitted in terms
of the amount of time the vehicle is in traffic congestion. We
can calculate this by the following equation of carbon dioxide
emissions.

E2 � E3 � ∑
i; j∈V ;l∈L

σl LTið Þ*timeijxij

¼ EPM ∑
i; j∈V ;l∈L

σl LTið Þ*timeijxij ð72Þ

In this regard, the EPM, which is the conversion factor of
the idle hours of truck operation to the amount of carbon
dioxide produced, is obtained using two conversion factors.
The first conversion factor, E3, is for gallons of diesel and the
second conversion factor is equal to the same factor E2.

Section b) GA parent selection and operators

1. Parent selection

In the proposed GA, two types of parent selection proce-
dures, including random selection and roulette wheel selec-
tion, are involved in the model. However, based on the results
of the genetic algorithm’s implementation in several identical
examples, the roulette wheel selection method has performed
better than another method (Yu et al. 2019). According to
(Amal and Chabchoub 2018), half of the chromosomes with
the highest fitness function will be selected for the next
generation.

2. Crossover

Two different types of crossover are used randomly with
the same probability to produce offspring from two selected
parents: single-point crossover and two-point crossover (See

(Asefi et al. 2014) for more details). The two types of cross-
over are depicted in Figs. 12 and 13.

3. Mutation

Three mutation operators will be used for location
variables, and two mutation operators will be used for
routing variables in the proposed GA. Mutation opera-
tors for location variables are change, swap, and
insertion, and routing variables are swap and insertion.

In the change mutation operator, two random points
are selected from each chromosome. Two points are
chosen randomly along the chromosome. Then, as
depicted in Fig. 14, if the chosen point is 0, it will be
converted to 1, and vice versa. Other mutation operators
are illustrated in (Asefi et al. 2014). Figs. 15 and 16
clearly show how such operators perform.

Fig. 12 An example of single-point crossover on location variable

Fig. 13 An example of two-point crossover on location variable

Fig. 14. An example of change mutation for location variables
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Section c) NSGA-II

Rankingmeans that wewant to rank the solutions according to
the concept of quality. To rank the initial population solutions,
we put the solutions that never dominated in the first place.
Then, we remove non-dominated solutions from the solution
set and again compare the rest of the solutions. Once again, we
put non-dominated solutions on the second frontier. In this
way, all the solutions will be categorized into different
boundaries.

If the solutions are ranked only by the rank criterion, there
is no need for the crowding distance defined by the neighbors
of a solution and the first (best) and last (worst) chromosome
of the population (Van Veldhuizen and Lamont 1999).
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