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Abstract
Landslides and other disastrous natural catastrophes jeopardise natural resources, assets, and people’s lives. As a result, future
resource management will necessitate landslide susceptibility mapping (LSM) using the best conditioning factors. In Aqabat Al-
Sulbat, Asir province, Saudi Arabia, the goal of this study was to find optimal conditioning parameters dependent hybrid LSM.
LSM was created using machine learning methods such as random forest (RF), logistic regression (LR), and artificial neural
network (ANN). To build ensemble models, the LR was combined with RF and ANN models. The receiver operating charac-
teristic (ROC) curve was used to validate the LSMs and determine which models were the best. Then, utilising random forest
(RF), classification and regression tree (CART), and correlation feature selection, sensitivity analysis was carried out. Through
sensitivity analysis, the most relevant conditioning factors were determined, and the best model was applied to the important
parameters to build a highly robust LSM with fewer variables. The ROC curve was also used to evaluate the final model. The
results show that two hybrid models (LR-ANN and LR-RF) were predicted the very high as 29.67–32.73 km2 and high LS
regions as 21.84–33.38 km2, with LR predicting 22.34km2 as very high and 45.15km2 as high LS zones. The LR-RF appeared as
best model (AUC: 0.941), followed by LR-ANN (AUC: 0.915) and LR (AUC: 0.872). Sensitivity analysis, on the other hand,
allows for the exclusion of aspects, hillshade, drainage density, curvature, and TWI from LSM. The LSM was then predicted
using the LR-RF model based on the remaining nine conditioning factors. With fewer variables, this model has achieved greater
accuracy (AUC: 0.927). This comes very close to being the best hybrid model. As a result, it is strongly advised to choose
conditioning parameters with caution, as redundant parameters would result in less resilient LSM. As a consequence, both time
and resources would be saved, and precise LSM would indeed be possible.
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Introduction

Large-scale movements of rocks, gravel, and dirt from the top
to the surface of a mountain are recognized as landslides
(Cruden 1991). Landslides accounted for 5% of all natural
disasters worldwide between 1994 and 2013 (CRED 2016).
Landslide responsible for 4914 deaths, 27 110 people were
homeless and 2.1 billion losses from 2014 to 2018 (EM-DAT
2013). Landslides are dangerous to people’s lives, the envi-
ronment, property, and resources. Therefore, the assessment
of landslide susceptibility becomes an emerging topic in order
to reduce the risk posed by landslides (Li and Chen 2020).

Landslides are triggered by a variety of factors, for instance
geological evolution (Agostini et al. 2014), landform (Kim
et al. 2015; Liucci et al. 2017), land use type, groundwater
(Peng et al. 2018), irrigation (Alvioli et al. 2018; Peres and
Cancelliere 2018), precipitation (Chang et al. 2017; Segoni
et al. 2018). It is important to establish a landslide manage-
ment and prevention scheme for a country in order to avoid
accidents caused by landslides and to ensure the safe growth
of mountainous regions. Regional landslide vulnerability
maps are generally useful for reducing the impact of landslide
hazards (Chen et al. 2019). According to Guzzetti et al.
(2005), landslide susceptibility mapping helps to communi-
cate the expected outcomes of landslides on the basis of local
geographical conditions and managers agree that they can be
used for successful land-like assessment and response (Hong
et al. 2016a, 2016b). LSM findings are dependent on accurate
data and models that are applicable (Bui et al. 2011). There
has been a variety of landslide models developed, including
mechanically, heuristically, and statistically dependent ap-
proaches (Luo and Liu 2018). Physically-based methods as-
sess landslide susceptibility by analysing slope stability using
the laws of mechanics (Crosta et al. 2003; Stamatopoulos and
Di 2015). Since they require very precise topography details,
these methods are typically used for a small area. Depending
on the experts, heuristic-based approaches determine the prob-
ability of landslide events. According to Regmi et al. (2014)
such methods are strongly based on professional knowledge
and in general achieve moderate precision. Statistically based
models, such as the probability-frequency ratio (FR) (Lee and
Dan 2005; Chen et al. 2017b), statistical index (SI) (Regmi
et al. 2014; Mandal and Mandal 2018), weight of evidence
(WoE) (Xu et al. 2012; Xie et al. 2017), certainty factors (CF)
(Chen et al. 2016; Hong et al. 2018), index of entropy (IoE)
(Jaafari et al. 2014; Bui et al. 2018), logistic regression (LR)
(Mandal and Mandal 2018; Zhang et al. 2019) and evidential
belief function (EBF) (Ding et al. 2017; Pradhan and Kim
2017; Chen et al. 2018b), have been used more extensively
in landslide susceptibility assessment than the two categories
listed above. These approaches are more objective and quan-
titative, since they are focused on previous landslides and
contributing factors. Standard statistical methods, on the other

hand, have a limited capacity to predict the dynamic and non-
linear interactions between landslides and the conditioning
variables (He et al. 2012). However, since no one approach
or methodology is best for all areas, machine learning is taken
into consideration.

With the accelerating development in remote sensing tech-
nologies, a massive amount of landslide-related data is be-
coming more easily accessible. Most studies have used big
data to model landslide susceptibility using machine learning
techniques, as these methods can analyse the dynamic rela-
tionship between landslide susceptibility and influencing fac-
tors (Zhu et al. 2018). According to Jordan and Mitchell
(2015) machine learning is an artificial intelligence branch
that employs computational algorithms to analyse and predict
data through learning from training data. As per a review of
the literature, different machine learning algorithms were used
to assess landslide susceptibility, like artificial neural network
(Chen et al. 2017c), neuro-fuzzy (Tien Bui et al. 2012), deci-
sion trees (Tien Bui et al. 2014; Hong et al. 2015), support
vector machines (Chen et al. 2018a).Tsangaratos and Ilia
(2016a, 2016b), for example, updated a DT model to measure
the landslide vulnerability of a specific study area in Greece
and achieved good results (AUC = 0.803). Marjanović et al.
(2011) assessed landslide susceptibility using three machine
learning approaches (SVM, DT, and logistic regression (LR));
the results showed that the SVM (AUC = 0.71) outperformed
the other models. Pourghasemi and Rahmati (2018) examined
ten sophisticated machine learning approaches for landslide
susceptibility modelling, such as SVM, ANN, and RF, and
discovered that the RF approach generated the best model
(AUC = 0.837). While it is obvious that machine learning
algorithms enhance prediction accuracy of regional landslide
occurrence, the generalisation efficiency of single classifiers
also needs to be improved (Truong et al. 2018). However,
until now, landslide researchers have been unable to agree
on an appropriate model for assessing landslide susceptibility
(Chen et al. 2018a). As a result, a number of ensemble
methods have recently gained popularity in geohazard suscep-
tibility mapping (Chen et al. 2017c; Hong et al. 2018; Mahato
et al. 2021).

In recent years, experimental hybrid approaches for land-
slide studies have been considered due to the need for explo-
rations of new landslide methods and techniques in order to
gain additional research background for drawing fair conclu-
sions (Tien Bui et al. 2016; Chen et al. 2017a). So many
hybrid methods for landslide modelling have been successful-
ly used, which were created by integrating statistical tech-
niques with machine learning approaches, such as the step-
wise weight assessment ratio analysis (SWARA) technique,
adaptive neuro-fuzzy inference system (ANFIS) (Dehnavi
et al. 2015), ANN-fuzzy logic (Kanungo et al. 2006), EBF-
fuzzy logic (Bui et al. 2015), ANFIS combined with the fre-
quency ratio (Chen et al. 2017b), and rough set-SVM (Peng
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et al. 2014). (Pham et al. 2019) for example, used Reduced
Error Pruning Trees (REPT) and various ensemble strategies
to build four hybrid landslide susceptibility models, with the
best one achieving an AUC of 0.872. The detailed evaluation
of landslide-related independent variables in each class of in-
dependent layers is an essential capability of hybrid methods
in landslide studies. This capability may increase the popular-
ity of this technique and aid researchers in future landslide
studies. Prediction of landslide-prone areas using modern hy-
brid approaches, on the other hand, is essential for landslide
research due to the method's better accuracy in identifying and
greater prediction in relation to machine learning models.

Furthermore, previous comparable research paid little
attention to the sensitivity study of thematic layers.
After constructing hybrid models, thematic layers in this
analysis were subjected to sensitivity tests. To improve
the model’s prediction accuracy, the most influential
thematic layers were calculated using multiple machine
learning-based sensitivity analyses and those that were
redundant were excluded. Following that, best hybrid
models integrated influential thematic layers to obtain
high precision models. This technique was also used
by other RS/GIS-based models, such as soil erosion
susceptibility (Abdulkadir et al. 2019), Flood suscepti-
bility (Islam et al. 2021), landslide susceptibility (Chen
et al. 2018b; Mind’je et al. 2020), and soil properties
prediction (Forkuor et al. 2017; Pham et al. 2019), in
order to decrease uncertainties. The CART, RF, and
correlation sensitivity analyses have been used in the
research to classify the significant thematic layers in
the model production. Furthermore, the model output
was tested using the receiver operating characteristic
(ROC) cross-validation process (Hanley and McNeil
1982) and by comparing the proposed model with the
real landslide positions determined by in situ measure-
ments. In view of all this, this research will play an
important role in the sustainable management of land-
slides in the field of study by correctly forecasting the
vulnerability to landslides and determining the level of
association between the vulnerable landslide zones and
their corresponding sensitive parameters, making this
study special and novel for the field of study.

The principal objectives of the present study are to
(1) develop hybrid machine learning based LS models
by integrating LR as statistical technique and the ma-
chine learning algorithms like RF and ANN; (2) per-
form sensitivity analysis using CART, RF, and correla-
tion feature selection; and (3) generate LSM using most
sensitive parameters with best representative model.
This research would assist planners, regulators, law-
makers, and municipal governments in reducing land-
slide incident in this region by better use and manage-
ment practices.

Materials and methodology

Materials

A variety of materials were gathered for the current analysis in
order to produce landslide causing variables from different
sources. The “ALOS PALSAR DEM” was given by the
National Aeronautics and Space Administration's Earth
Science Data Systems. The sentinel-2 satellite image was ob-
tained from the US Geological Survey’s earth explorer repos-
itory (https://earthexplorer.usgs.gov/).The geological map
was constructed using a Saudi Geological Survey map at a
scale of 1:100000. Soil texture data was obtained during the
field survey. Google Earth imagery and ArcGIS tools were
used to digitise and plan the drainage chart and path (version
10.5).

Study area

Aqabat Al-Sulbat is a 199km2 area in Saudi Arabia's Asir
Region, located along the Abha-Bahah Road in the northern
part of the Balqarn Area (Fig. 1). Between 19°45'4.407"N and
19°54'42.055"N, and 41°40'52.31"E and 41°53'6.169"E, re-
spectively, is the study region. After a rainy storm swept over
the Al-Baha Region in the winter season of January and
February 2020, a landslide (lateral spreading) occurred in the
Aqabat Al-Sulbat region of road 15, station 907+00. Rainfall
and damp weather had a key part in the huge landslide's de-
velopment (lateral spreading). The lateral spreading from Al-
Baha City is projected to spread out across a 50-km area.
Major A 400-500 m stretch of the current old/new road is
undergoing unfavourable lateral motions towards the Wadi
side, as shown by fractures in the pavement. The heavy down-
pour soaked the upper few metres of the earth on the road
embankment, resulting in shallow rotational slides. The infil-
tration and flowdown began on the mountain side (toe of hills)
and moved down the wadi side's south facing slope. There
were heaps of debris/rock avalanches along the failing slope
(deep Wadi deep to 100 m, roughly).

The height of the study area ranges from 989 to 2404 m
above sea level, with an average elevation of 1768 m. The site
is part of the Ablah Group, which is structurally shielded by
the Farwah Shear Zone between the Shwas-Tayyah and Al
Lith-Bidah structural belts, as seen on the geological map.
This group includes the Jerub, Rafa, and Thurat formations,
which contain a sequence of volcanic and epiclastic rocks.
Fractures may be in various shapes and sizes, but they all
divide the rock into cubic or quadrangular blocks. Both joints
show signs of weathering and potential corrosion seats. Plane
collapse is a form of slope failure caused by the movement of
a volume of rocks over a single discontinuity. Slipping col-
lapse of a long continuous rock slope often entails the forma-
tion of releasing surfaces that allow the mass to descend dip
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over the basal plane. In the Aqabat Al-Sulbat area, wedge
failure of a rock slope seems to be a very simple pattern of
failure. The climatic conditions in the research area are cold
and semi-arid. The long-term average rainfall is 218 mm, with
February and June accounting for 75% of total rainfall. The
annual high and low temperatures in the study area are 29.5 °C
and 16.8 °C, respectively.

Landslide inventories

For training and evaluating the LS model, the method of de-
veloping landslide inventories is important. This study inves-
tigated and identified the locations of landslide events using
data from a field survey and a government report. 50 landslide
sites were gathered using the global positioning system (GPS)
and Google Earth. Eighty percent (40 points) of the total data
points were chosen at random to create the training datasets,
while the remaining 20% (10 points) were chosen to create the
research databases. The current study makes use of
classification-dependent LS mapping, which incorporates bi-
nary data. As a result, we needed areas that were not vulner-
able to landslides. Tang et al. (2020) suggest that with an
excellent result, the same number of negative points be used.
However, no specific literature on the set of negative point
numbers has been discovered. As a result, 50 non-landslide
sites were selected at random based on past landslide history,
local people's views, and Google Earth. Non-landslide points
or locations were those where a landslide had yet to be ob-
served. Non-landslide data, including landslide data, is
partitioned by an 80-20 ratio for teaching and processing
datasets. A total of 80% of both landslide and non-landslide

regions is used to create the training dataset. By assigning a
value of 0 to landslide sites and a value of 1 to non-landslide
sites, we were able to generate binary training datasets. The
research database has also been developed in binary format.
The data was retrieved from the landslide-causing variables
using the training dataset in the ArcGIS 10.5 software's'spatial
analyst' toolbox.

Landslide conditioning parameters

The complex relationship between landslide triggering factors
and past landslides is the subject of the landslide susceptibility
modelling (Jebur et al. 2015). The selection of suitable param-
eters is a difficult process. Expert experience of the research
area and previous literature can help in the selection of land-
slide triggering factors (Wang et al. 2018). For modelling
landslide vulnerability, elevation, aspect, slope, geology, to-
pographic wetness index, curvature, soil texture, lineament,
drainage density, distance to road, land use/ land cover, and
NDVI were chosen as landslide triggering factors.

Elevation

Various geological, geomorphological, and climatic variables,
such as lithological units, weathering, precipitation and wind
action, influence altitude (Youssef and Pourghasemi 2021;
Mallick et al. 2021). Altitude is one of the topographic vari-
ables that influences slope instability, according to Mallick
et al. (2021). It’s been utilised in nearly every landslide sus-
ceptibility analysis. A DEM was used to construct the

Fig. 1 Showing the study area, landslide locations and highlighted one of the prone landslide area with 3D model with “visual shadowing” of nadir-
viewing UAV photos caused by overhanging rocks
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elevation map. The height of the study area varies from 2404
to 989 m (Fig. 2a).

Slope

The number of landslides increases as the slope angle be-
comes higher. The connection between shear forces and resis-
tance to shear (safety factor) may be used to determine the
slope's stability against failure, where the driving force of
mass movement rises as the slope angle increases. Slope
steepness is connected to both the shear forces acting on the
hill slope and the displacement of the landslide mass, accord-
ing to Pham et al. (2019). According to Nhu et al. (2020),
slope gradient is important in subsurface flow and has an
influence on soil moisture content which are closely linked
to the incidence of landslides The elevation map was obtained
using a DEM. The research area's altitudes ranging from 2404
to 989 m (see Fig. 2a.)

Curvature

For landslide conditioning, curvature is one of the most criti-
cal topographical parameters. The primary function of curva-
ture is to induce surface run-off. It has an effect on infiltration
as well. Concave (negative curvature), flat (zero curvature),
and convex (positive curvature) are the three forms of curva-
ture (positive curvature). Convex slopes are much more capa-
ble of producing run-off than concave slopes (Lee and Min
2001). Drainage is also determined by the modes of curvature
in mountainous areas (Fig. 2e).

Aspect

Wind directions, precipitation patterns, sunshine influence,
discontinuity orientations, hydrological processes, evapo-
transpiration, soil moisture concentration, vegetation, and root
growth are all factors that have direct and indirect effects on
landslides (Nhu et al. 2020). Several research have revealed
that there is a link between the aspect and other geo-
environmental variables (landslide-related factors) (Youssef
and Pourghasemi 2021). Flat (1), North (0–22.5°; 337.5°–
360°), Northeast (22.5°–67.5°), East (67.5°–112.5°),
Southeast (112.5°–157.5°), South (157.5°–202.5°),
Southeast (202.5°–247.5°), West (247.5°–292.5°), and
Northeast (292.5°–337.5°) were the nine categories used to
classify the slope aspect in the research region (Fig. 2c).

Geology

The physical features of rocks and their types specifically
control pitch instability or failure. The Saudi Geological
Survey digitised the geology map of the sample area at a scale
of 1:100000. The toolbox of ArcGIS “Space Analytics” has

been converted into raster format. The geological map of the
study region, on the other hand, shows ten geological types,
including “(1) QuarzSyeniteStock, Blades, and Dikes (GA),
(2) Hornblende diorite, Mafic diorite, and Mafic tonalite, and
3) QuarzSyeniteStock, Blades, and Dikes (GA), (4) Andesitic
and dacitic pyroclastic rocks with small flows (AJ), (5)
Feldspathic and lithic greywacke (BHK), and (6) Andesitic,
dacitic, and basaltic flood mud, lithic and crystal tuff, and
volcanic breccia (JQ), (7) Monzogranite (GR), olivine gabbro,
metagabbro, metadiorite, and anortho (GB), (8) amphibole
and biotite schist (BA), (9) feldspathic greywacke, carbona-
ceous chert, argillite, and slate (BHR)”.

Soil texture

Soil samples were taken from a variety of sites within the test
site. The research field yielded 32 soil samples, each contain-
ing approximately 1 kg of accumulated stability (0–30 cm
deep). The GPS coordinates of the sampling sites were regis-
tered. It was decided to use a stratified composite sampling
method. Elevation areas, LULC zones, and soil moisture
zones were used to divide the study region. The site was then
examined independently, with two replicates gathered two to
three metres apart at each survey site. The soil texture and
organic matter were isolated using a normal procedure, with
each sample being carefully weighed and sieved at a depth of
2 mm. The hydrometer method was used to measure the vol-
ume of the soil grains (texture analysis) (Stokes’ law).
Figure 2f shows the distribution of soil types in the sample
area. Soil texture is divided into four categories: loamy sand,
sandy loam, loam, and sandy loam.

Lineament density

The lineament refers to any area where there are longitudinal
tectonic faults, resulting in a lessening of rock potency. The
lineament will take many different types, including fault, frac-
turing, and shearing. A lineament is a kind of discontinuity
and weaker section in geological formations. Long considered
to be the most important factor in landslides is the poorer
component of the geology, or lineament (Nhu et al. 2020).
Using ENVI software, the sentinel-2 satellite image was used
to extract lineament. The line density function was used to
generate the map of lineament density (Fig. 2h). Landslides
are more likely to occur in areas with a higher density of
lineaments.

TWI

The TWI is a significant hydrologic parameter that has an
effect on landslide prevention. The TWI is determined to be
a significant landslide-controlled hydrological parameter. It
measures the amount of water that has accumulated in the tank
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Fig. 2 Landslide conditioning factors: a. elevation, b. slope, c. aspect, d. Hill shade, e. Curvature, f. Soil texture, g. Geology, h. Lineament density, i.
TWI, j. Drainage density, k. Distance to road, l. LULC, m. NDVI, n. Rainfall
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or on the site. Its impact on soil moisture causes porous water
pressure and lowers soil resistance, which controls slope fail-
ure in particular. The higher the TWI value, the more likely it
is that landslides will occur. In the studied area, TWI ranges
from 0–10.03 (Fig. 2i).

NDVI

The NDVI or woodland cover has a major impact on the
occurrence of landslides. The increasing interception of drain-
age, evapotranspiration, and infiltration by the canopy of veg-
etation has a significant impact on soil hydrology. This may
be critical for long-term rain. The stability of the soil improves
as the root becomes stronger. A collapse is more likely to
occur if there is more timber, and vice versa. This analysis
used Sentinel 2 data from bands 8 and 4 to exclude vegetation.
The NDVI is in the region of 0.67 to -0.17. In the western half
of the sample area, there is more vegetation.

LULC mapping

By altering the LULC and disrupting the slope's longevity,
LULC has an effect on the slope’s resistance (Sidle and
Ochiai 2000). In this paper, the sentinel-2 image was used to
build a LULC map using a maximum likelihood classifier.
Built-up areas, water sources, thick forest, sparse vegetation,
cropland, scrubland, barren rocky, bare earth, and wadi debris
are all examples of LULC (Fig. 2l).

Drainage density (Dd)

The Dd is the total length of all streams in a river system split
by the basin’s total surface area (Pal and Saha 2017). The
landslide is inversely related to drainage density. The risk of
landslide vulnerability increases as drainage density increases,
and vice versa. The maps of drainage network were created
using DEM data. The drainage density was then determined
by integrating the digitised drainage map into ArcGIS soft-
ware. The line density function in ArcGIS software was used
to map drainage density. The drainage density was higher in
the eastern half of the test area than in the western half (Fig.
2j).

Distance to road

Building highways in mountainous areas disturbs the existing
ground cover and disrupts the slope balance by destroying the
slope. As a result, transportation infrastructure contributes to
slope failure. The stability of the slope transitions from
smooth to unstable during road construction and vehicle trav-
el, which can result in cracks. These cracks absorb a lot of
water, causing slopes to loosen. As a result, a landslide is
caused. Intense snow can accelerate the process of slope

collapse, resulting in landslides. The lower the distance or
the closer the road is in a mountainous environment, the
higher the risk of landslides. The roadmap was digitised using
Google Earth, and the distance from the roadmap was derived
using the Euclidean Distance Method in ArcGIS. The south-
east portion of the sample area has a heavy concentration of
roads (Fig. 2k).

Rainfall

However, one of the primary factors for LSM is landslide
conditioning variables such as flooding, snowfall, and earth-
quake (Baeza et al. 2016). Since landslides in the current study
area are caused by both serious and average rainfall, irregular
or heavy rainfall is regarded as a major landslide triggering
factor. The research district has four rain gauge stations that
are evenly distributed. Both gauge stations in the study region
receive almost the same amount of rainfall. As a result, in
these cases, the inverse distance weighting (IDW) technique,
which is similar to kriging, will provide reasonable results. As
a result, in this analysis, the IDW was used to generate inter-
polated rainfall layers.

Multicollinearity statistic

To evaluate landslide vulnerability and risk, fourteen
landslide-causing variables were selected for this study.
Since mathematical and machine learning algorithms are sus-
ceptible to collinearities, it is important to carefully optimise
and check the collinearity of the chosen variables when fore-
casting landslide susceptibility. Furthermore, collinearity will
interrupt the modelling process, lowering the accuracy of
landslide susceptibility prediction (Mukherjee and Singh
2020). In order to obtain adequate results, this analysis helps
in the collection of appropriate parameters by excluding re-
dundancy parameters (Talukdar et al. 2020). Methods for
quantifying multicollinearity include variance inflation factors
(VIF), resistance (TOL), linear support vector machine, and
chi-square (Talukdar et al. 2021). The resistance and VIF were
used in this study to quantify multicollinearity among the
selected variables. Several previous studies using TOL and
VIF obtained excellent results. It should be noted that, in order
to achieve high precision results, the variables with collinear-
ity problems should be removed at the end of the analysis. The
higher the collinearity, the bigger the VIF. The coefficient of
certainty was determined using a linear regression analysis
with the landslide data as the response variables and the land-
slide causing measures as predictor factors to measure
multicollinearity. Equations 1 and 2 were used to measure
the VIF and TOL of the input variable using this value
(Talukdar et al. 2021).

T ¼ 1−R2 ð1Þ
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VIF ¼ 1

T
ð2Þ

Methods adopted for LSMs

In the realm of natural hazards, machine learning methods
(MLTs) have recently become a cornerstone in solving spatial
modelling issues (e.g., landslide susceptibility assessment)
(Mallick et al. 2021; Zhang et al. 2017; Zhu et al. 2018;
Youssef et al. 2016; Xie et al. 2017; Xi et al. 2019; Wang
et al. 2018; Xu et al. 2012). MLTs, according to Youssef
and Pourghasemi (2021), should be used as a supplement to
human knowledge rather than as a replacement. MLTs should
be combined with the processing capabilities of GIS and field
datasets, according to Tang et al. (2020), in order to generate
new accurate models that can be used by decision makers,
Earth scientists, and planners (e.g., historical landslide inven-
tory and geo-environmental factors). The advantages of ma-
chine learning approaches are (a) their capacity tomodify their
internal structure to the available landslide data, (b) their abil-
ity to retrieve information from large datasets in an automated
manner, (c) They can build classification (predicting categor-
ical predictor factors) and regression (predicting continuous
dependent factors) models to furnish a precise landslide mod-
el; their models are quite cost effective and fast than traditional
models, and they could even be widened to large area assess-
ment (Felicsimo et al. 2013). In this work, a variety of sophis-
ticated machine learning algorithms with varying degrees of
complexity were used to assess their usefulness in landslide
susceptibility mapping. LR, ANN, RF, and their ensembles
are among them.

LROne form of regression analysis is logistic regression (LR),
in which categorical outcomes can be predicted using a spe-
cific predictor (Saha and Pal 2019). Probabilities of potential
events can be modelled using logistic functions. For two-class
classification, the LR model is effective (Agarwal et al.
2016).“Considering n samples of the pairs, (xi, yi), i= 1,
2,..., n, yi∈ {−1, +1} is a binary category mark for each sample
i= 1, 2,..., n and weights (w, b)”The frequency likelihood of
the class has been modelled with the following equation in LR
for binary classification:

P y ¼ �1jx; vð Þ ¼ 1

1þ exp −y vzxþ ið Þð Þ ð3Þ

“where I denotes the intercept, z indicates matrix transposi-
tion, and v = (v1, v2, .…vk)

z is the k-dimensional coefficient
vector to be determined”

ANN Since it could address non-linear statistical environmen-
tal problems by optimising neurons from each hidden layer,
the multilayer percentron (MLP) model based on ANN has

been widely used for natural hazard modelling (Pradhan and
Lee 2010; Xi et al. 2019; Pourghasemi et al. 2020; Mehrabi
et al. 2020; Sun et al. 2020; Mahato et al. 2021). The MLP
algorithm is a subset of ANN that is characterised by a parallel
information system comprised of several neurons. These are
linked by input, secret, and output layers (Fakiola et al. 2010;
Pradhan and Lee 2010; Saha et al. 2021). During the training
cycle, it is capable of learning tasks without prior knowledge
of the problems and finding pattern similarities easily (Arnone
et al. 2014). The modelling method includes several stages,
including (a) transition function, which depicts a function ap-
plied to the weighted input of neurons to produce the output,
(b) qualified network architecture, which determines the net-
work conditions, and (c) common learning law, which re-
quires complex algorithms applied to the neural network's
relation weights on how to adjust correctly. In this study, the
MLP architecture was used. The backpropagation algorithm
was then used to practise the MLP architecture. The
backpropagation algorithm has the advantage of reducing
the global error between actual and forecasted data during
the training cycle. The sigmoid and linear activation functions
were used in the output and hidden layers. In a number of
previous experiments, landslide susceptibility simulation has
been frequently used (Fakiola et al. 2010; Pradhan and Lee
2010; Arnone et al. 2014; Zhang et al. 2019).

RFARF is an ensembleML algorithm that explores the spatial
relationship between real events and landslide causes and then
constructs a classification (Genuer et al. 2010). In order to
predict or approximate efficiency, a set of features was select-
ed and weighted based on the results of voting. Based on the
results of the assessed decision trees, the majority of votes
were pooled and a single decision tree was created for final
classification (Beven and Kirkby 1979). A single decision tree
is used to make highly precise predictions to minimize uncer-
tainty. The RF model rectifies the decision tree's over-fitting
dilemma during the training process. Obtaining high variance
from different decision trees is crucial in RF classification.
The establishment of most trees and factors used for sampling
phase and spilt search are both core elements of the RF algo-
rithm during analysis (Stumpf and Kerle 2011). In this analy-
sis, 500 trees were used to train the model.

Procedure for hybrid machine learning model To begin, data
on conditioning parameters was gathered using binary land-
slide inventory datasets. The LR model was implemented on
the basis of the data sets and weights have been obtained for
all conditioning parameters. Following that, the weights were
combined with the conditioning parameters. As a result, the
weighted conditioning parameters have been computed.
However, according to the collected weights, the weights
datasets is erratic and multi-directional (Some are positive
and negative, some has high value). As a result, in order to
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render the datasets unidirectional and standard, the weighted
datasets were normalised using a fuzzy membership function
with a scale of 0 to 1. A membership function that is close to
one implies a high membership function, and is associated
with high landslide cases, and vice versa. Again, landslide
inventory was used to gather data from normalised weighted
parameters. Then, machine learning algorithms such as ANN
and RF were used to build a hybrid machine learning model.

Validation of LSMs

Model confirmation is the most important factor in deter-
mining the precision of results. Both the simulation
datasets and the practice data can be used to monitor fore-
casting (Abedini et al. 2019; Khatun et al. 2021). The
field under the curve (AUC) of the receiver operating
characteristic (ROC) curve was used to compare the
model’s performance to fact. The ROC curve is a standard
method for analyzing landslide susceptibility maps all
over the world (Pradhan and Lee 2010; Xi et al. 2019;
Zhang et al. 2019; Mehrabi et al. 2020; Sun et al. 2020).
The X and Y axes in ROC reflect the false positive and
true positive rates, respectively (Singha et al. 2020;
Mallick et al. 2021). It compares the trade-offs between
two prices. In ROC, the area under the curve ranges from
0 to 1.0. The higher the AUC ranking, the more robust the
forecast or the closer the predicted models and realities
are to each other. An AUC value greater than 0.70, ac-
cording to Talukdar et al. (2021), implies that the
projected model and the ground reality are in strong
agreement.

Sensitivity analysis of the models

CART-based sensitivity analysis CART stands for classifica-
tion because regression trees, and it’s a supervised machine
learning method for classification and prediction that's non-
parametric (Nefeslioglu et al. 2010). The CART has become a
popular data mining technique due to its effectiveness and
ease of use in solving a wide variety of problems in agricul-
ture, economics, engineering, and remote sensing (Steinberg
1995; Choubin et al. 2018). Two types of CART have been
used for modelling: classification trees and regression trees.
To forecast a single component, classification trees were used,
while regression trees were used to estimate a continuous pa-
rameter. It uses a step-by-step tool to define splitting laws
(Steinberg 1995). A continuous parameter, such as a regres-
sion tree, that predicts the value of a dependent parameter
based on multiple independent parameters (Fakiola et al.
2010) and a space demarcated by independent parameters
depending on dependent parameters (Fakiola et al. 2010).
Unlike the classification tree, the regression tree does not yield
divisions with dependent parameters. The entire sample has

been partitioned into two or three homogeneous sets, focusing
on the most significant splitter in input variables. CART, a
decision tree algorithm key’s advantage (Breiman et al.
1984) is the existence of cross-validation, which helps to rec-
ognise over-fitting issues that will result in poor potential pre-
dictions. CART has the added benefit of producing more pre-
cise forecasts than other statistical models (Choubin et al.
2018). Regression trees, on the other hand, do not have pre-
defined categories; the end result is a return value for each of
the dependent parameter's original values. In the current study,
this method was used to measure the weight or force of influ-
ence of different parameters in explaining predicted landslide
susceptibility models. This is the first research, to the best of
the authors' knowledge, to use CART-based sensitivity anal-
ysis to classify the model's most sensitive parameters.

RF-based sensitivity analysisAswith classification and regres-
sion, RF-based sensitivity analysis has recently gained popu-
larity. Many scholars have used it to investigate the impact of
variables on the model (Salam et al. 2020). The details of the
RF algorithm have been discussed in the methods for LSMs
section.

Correlation feature selection-based sensitivity analysis
Feature selection is a machine learning preprocessing phase
that is useful in decreasing dimensionality, eliminating unnec-
essary results, increasing learning precision, and enhancing
outcome comprehension (Gopika and ME 2018). The central
idea is that an attribute of a subclass is fine if it is strongly
associated with the class but not with other class attributes.

Landslide susceptibility mapping using refined
parameters

Based on the sensitivity analysis, some of the least sensitive
parameters were omitted from the datasets, and the best rep-
resentative model with the same configuration was applied to
the remaining parameters. As a result, LS mapping based on
optimal conditioning parameters would be performed.
Similarly, validation of the proposed model would be con-
ducted to assess the accuracy of the chosen LS modelling
parameters. The whole work was summarized in the method-
ological flow chart (Fig. 3).

Results

Landslide susceptibility modelling

Several measures have been followed to develop and apply
the optimized and LR-based hybrid ensemble ML algorithms
for landslide susceptibility mapping, like multicollinearity
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analysis, LSM construction and validation, and finally sensi-
tivity analysis.

Multicollinearity analysis Before the modelling of LS,
multicolinaarity was tested with the use of TOL and VIF tech-
niques for the landslide causation variables. The LS model
performs poorly due to the collinearity of the variables.
Variables with TOL values of 0.677 and VIF values of
5.644 is considered to be used during landslide sensitivity
modelling processes in this research (Table 1). NDVI has
the lowest VIF (1.47), followed by Aspect (VIF=1.513), ge-
ology (VIF=1.534), and LULC (VIF=1. 682). Elevation re-
ceived the maximum VIF rating (5.644), led by rainfall
(2.708), slope (5.644), and soil texture (2.708) (Table 1).

Application of Logistic regression for making weighted pa-
rameters and normalization of parametersLogistic regression
model applied to the variables like slope, aspect, hillshade,
curvature, TWI, lineament density, etc (Fig. 4) to generate
ultimate landslide susceptibility mapping. Some of them have
an inverse correlation with landslide susceptibility like aspect,
hillshade, curvature and geology while others have a positive
relationship. As a result, operating the model swiftly would be
cumbersome. Fuzzy membership was used to render the var-
iables unidirectional. A degree of certainty of membership is
specified in Fuzzy set theory, withmembership values ranging
from 0 to 1. Values toward 1 in the fuzzy membership indi-
cates higher susceptible zone and vice versa. In the case of
LULC, slope, aspects, and geology, linear fuzzy logic was
used, while for the rest of the parameters, Gaussian fuzzy logic
was used. Figure 4 depicts very high and high vulnerability
zone in south and south-eastern portion while western portion

displays less susceptible zone. The zones are correspondent
with fuzzy membership values. The weights derived from LR
model as follows:

Elevation * 0.206, Slope * 0.263, Aspect * -0.059,
Hillshade * -0.292, Curvature * -1.24, Soil texture * 4.85,
Geology * -1.3, Lineament density * 5.13, TWI * 0.006,
Drainage density * 5.6, Distance to road * 0.14, LULC *
2.94, NDVI * 5.73, Rainfall * 6.5

Configuring machine learning algorithms The machine learn-
ing (ML) algorithms have been first configured by trial and
error process. We have tested the models at the 400, 500, 800,
and 1000 iterations, so only slight changes and updates were

Fig. 3 Methodological flow chart of the whole work

Table 1 Analysis of
collinearity between
landslide-causing factors
using the multicollinarity
test

Parameters Tolerance VIF

DEM 0.177 5.644

Slope 0.194 5.163

Aspect 0.661 1.513

Hill shade 0.513 1.948

Curvature 0.478 2.090

Soil texture 0.369 2.708

Geology 0.652 1.534

Lineament density 0.442 2.262

TWI 0.528 1.895

Distance to road 0.443 2.259

Drainage density 0.511 1.958

LULC 0.594 1.682

NDVI 0.677 1.476

Rainfall 0.179 5.583
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Fig. 4 Standardized landslide conditioning factors: a. elevation, b. slope, c. aspect, d. Hill shade, e. Curvature, f. Soil texture, g. Geology, h. Lineament
density, i. TWI, j. Drainage density, k. Distance to road, l. LULC, m. NDVI, n. Rainfall
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seen for 1000 iterations. On the other hand, best parameters by
trial and error process have been selected for LS modeling.
The details of best parameters for RF and ANN have been
presented in Table 2.

Hybrid model validation and comparisons LR based hybrid
machine learning model’s efficiency was tested by comparing
actual and expected outcomes of the landslide events. “The
correlation coefficient (R), mean absolute error (MAE), root
mean square error (RMSE), relative absolute error (RAE), and
root relative squared error (RRSE) were used to test two
models●”The findings also revealed that all models had
higher correlations and lower error values. The LR-RF model
was found to be the best (R: 0. 0.971, MAE:0.0195; RMSE:
0.081; RAE: 2.351), followed by the LR-MLP (R: 0.968,
MAE: 0.1034; RMSE: 0.1413; RAE: 4.2431) (Table 3).

Construction of the LSMs As seen in Fig. 5, LSMs were pro-
duced using twohybrid ML algorithms and individual LR-
based model. Because of the continuous dimension or
stretching format of the generated LS maps, these values
should be divided into different categories. A variety of clas-
sifier systems are available for converting continuous maps
into categorized maps, including natural break, equal interval,
quantile, and standard deviation. Researchers propose the nat-
ural break classifier as an indicator that is robust, accurate, and
consistent (Baeza et al. 2016). Jenks optimization is a data
clustering approach used to identify the optimum value struc-
ture for the various classes, and is often referred to as the
natural break classificatory. Landslide susceptibility maps
were graded into five subclasses using Jenks’ natural break
algorithm: very high, high, moderate, low, and very low. The
aim of this approach is to minimise the variance from the
average of the other classes while reducing the mean deviation
from the average class value. The method thus eliminates
variance in intra-class while maximising variance in inter-
classes. The LR-RF model calculated the very high and high
LS zones to be 32.73km2 and 21.84 km2, respectively, with
moderate (47.53km2), low (39.83 km2), and very low (55.15
km2) LS zones (Table 4).

Validation of LS maps Three landslide susceptibility models
were validated using the testing datasets. The efficiency of

three LS models was assessed using the ROC curve. The
AUC value of the ROC curve reflects the reliability or com-
patibility of the LS model with the real world. According to
the AUC value of the ROC curve, the LR-RF model
(AUC=0.941), led by LR-MLP (AUC=0.915), and LR
(AUC-0.872), are the most representative model. Effective
analysis of the landslide vulnerability was carried out by all
models. Depending on AUC, the LR-RF>LR-MLP>LR could
be reorganised in LS models.

Sensitivity analysis of LS model

The implementation of improved ensemble machine learning
algorithms for LS mapping will only demonstrate the proba-
bility of a landslide occurring in the future based on the dy-
namic statistical relationship between historical landslide pat-
terns and their triggering variables. Neither of these models,
however, addresses the role of some variables in the occur-
rence of a landslide. The concern arises as to how manage-
ment policies can be planned and implemented if the effect of
such factors on the occurrence of landslides cannot be deter-
mined. The discovery of landslide-influencing factors will aid
in reducing the occurrence and danger of landslides. Three
models, RF, CART and correlation feature selection were
used to assess the parameters that are most sensitive for land-
slides (Fig. 6).

Rainfall, soil texture, and DEM are highly sensitive param-
eters, while aspect, curvature, and other low-sensitivity pa-
rameters as per RF model are designated (Fig. 6a). DEM
and lineament have been deemed the most sensitive parame-
ters in CART modelling, although aspect, and curvature have
been deemed less sensitive (Fig. 6b). DEM, rainfall, and

Table 2 Machine learning
algorithms by setting model
parameters

ML
algorithms

Optimized model parameters

ANN Batch size-100, Hidden Layer: 14, Learning rate: 0.5, Momentum: 0.3, Seed: 5, validation set
size: 10, Validation threshold: 30

RF Seed: 5, Number of features: 1, Number of iterations: 200, 2mtry(the number of variables tested
at each node), 300 trees

Table 3 Error measures for hybrid models

Error measures LR-MLP LR-RF

Correlation coefficient 0.968 0.971

Mean absolute error 0.1034 0.0195

Root mean squared error 0.1413 0.081

Relative absolute error 4.2431 2.351

Root relative squared error 5.2065 3.482
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lineament are considered more resilient than other variables
by using correlation feature selection method (Fig. 6c).

Landslide susceptibility mapping using optimum
conditioning parameters

The efficiency of the RF model is the best of the three models,
indicating that it is ideally fit for landslide susceptibility mea-
surement, as the AUC under this model is 0.941. The selected
model was used to determine landslide susceptibility zones

over the study region by excluding all less sensitive parame-
ters, such as aspect, hillshade, drainage density, curvature, and
TWI, as shown in Fig. 6. The generated LSM using LR-RF
and optimum conditioning factors has been classified into five
classes like previous models. The natural break algorithm was
used to classify the LSM model. The ROC curve was then
used to measure the model's accuracy and compare it to three
hybrid models to see how much the optimal parameters influ-
enced the model's performance. This model’s AUC is 0.927,
which is not higher than the best model (LR-RF) (0.941), but
it clearly produces reliable results and achieves a high degree
of similarity without such variables. As with the best model
(LR-RF), the most vulnerable zone was discovered in the
south and south-eastern portions of the study region, while
the least vulnerable zone was discovered in the western part
(Fig. 7). So, even though five factors are omitted, the outcome
does not alter dramatically. However, the optimum parameter
based model predicted very high LS zone as 20.46km2,
followed by high (41.87km2), moderate (72.17km2), low
(34.02km2), and very low (28.56km2)

However, the generated final LSM model showed very
precise landslide susceptibility zones in the study area (Fig.
7). It also shows the spatial distribution of the road over the
landslide susceptibility models. It indicates that past landslides

Table 4 Computation of areas under different landslide susceptible
zones

Landslide susceptible zone Area (km2)

LR-
MLP

LR-
RF

LR

Very Low 55.15 43.75 13.54

Low 39.83 41.21 48.53

Moderate 47.53 49.07 67.55

High 21.84 33.38 45.15

Very High 32.73 29.67 22.34

Fig. 5 Landslide susceptibility
modeling using two hybrid
models and one statistical models,
such as a) LR-MLP, b) LR-RF, c)
LR, and d) ROC
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have been observed along the road networks of study area’s
southern part. While, the model also shows that the very high
and high landslide susceptibility zones have been predicted

along the same regions, which indicates the construction of
road along the higher elevation and high slope areas hampered
the equilibrium conditions. As a result, the landslides have

Fig. 6 Sensitivity analysis for best LS model (LR-RF) using (a) RF, (b) CART, and (c) correlation feature selection

Fig. 7 Landslide susceptibility mapping based on optimum conditioning factors using LR-RF model with ROC curve for validation
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been occurred and in future, these regions would have the
higher chances to observe landslide. Therefore, it should be
necessary to examine the geological stability of any regions
before proceeding for construction, otherwise it will cause a
natural hazard.

Discussion

Landslide vulnerability is a term that describes the likelihood
of a landslide occurring in a given area, as well as the relation-
ship between past landslide locations and potential condition-
ing factors (Romer and Ferentinou 2016). Before proceed for
landslide susceptibility modelling, the preparation of the con-
ditioning variables and landslide inventory is an essential task.
A landslide inventory map is a first step toward evaluating
landslide susceptibility, danger, and probability (Rosi et al.
2018). Landslide inventories are divided into two main cate-
gories: landslide-event inventories linked to a cause and his-
torical landslide inventories (Rosi et al. 2018). We used the
latter formation in this analysis, which was the product of
several landslide events over a long period of time. Many
smaller landslides, on the other hand, could have been aban-
doned due to different degrees of alteration by subsequent
landslides, erosional cycles, vegetation formation, and human
impacts (Rosi et al. 2018). As a result, using multi-temporal
high-resolution satellite imagery to interpret smaller landslides
can be a useful complement to the existing landslide inventory
and efficient for enhancing the accuracies of landslide suscep-
tibility charts. Sixteen conditioning variables were chosen
based on current literature and multicollinearity analysis:
slope angle, slope aspect, height, plan curvature, profile cur-
vature, TWI, STI, SPI, distance to rivers, distance to bridges,
distance to faults, NDVI, climate, land use, lithology, and
rainfall. Furthermore, the relationships between landslide in-
cidence and these variables were examined using the sensitiv-
ity analysis.

However, many approaches have been used in connec-
tion with the advancement of GIS technologies to forecast
the spatial distributions of landslides in previous decades,
including sophisticated machine learning models
(Pourghasemi and Kerle 2016; Youssef et al. 2016) and
classical regression analysis (Ding et al. 2017; Zhang
et al. 2017). In general, statistical models take longer to
analyse inputs, outputs, and spatial analysis, but MLTs
have the benefit of automatically detecting connections
between dependent and independent variables (Mallick
et al. 2021). The choice of the optimal model among
several machine learning approaches, according to
Felicsimo et al. (2013), is the most significant element
that determines the accuracy of the landslide susceptibility
mapping. Many publications have used various machine
learning models for landslide susceptibility mapping

(Mallick et al. 2021; Zhang et al. 2017; Zhu et al. 2018;
Youssef et al. 2016; Xie et al. 2017; Xi et al. 2019; Wang
et al. 2018; Xu et al. 2012), however the accuracy of
some of these approaches is still dubious. In landslide
susceptibility evaluation, choosing the optimal model
among several MLTs is critical (Mallick et al. 2021;
Felicsimo et al. 2013). MLTs have a number of advan-
tages, including the fact that they are very simple to use
and that their prediction accuracy generally outperforms
some of the more traditional approaches, such as the an-
alytical hierarchy process (Tien Bui et al. 2012;
Pourghasemi and Rahmati 2018). Both bivariate and
machine learning methods, on the other hand, have
constraints that could be tackled by using ensemble
models. As a result, new ensemble approaches and
techniques in the context of landslide simulation must be
explored and compared. Shirzadi et al. (2017) used a
Naive Bayes trees (NBT) and random subspace (RS) en-
semble system for landslide susceptibility mapping in the
Bijar region of Kurdistan province (Iran), and their results
showed that NBT-RS greatly boosted the accuracy of the
NBT base classifier. Hong et al. (2018) discovered that
the J48 Decision Tree with the Rotation Forest model has
the best prediction capability (AUC =0.855), greatly im-
proving the accuracy of the J48 Decision Tree base clas-
sifier. Pham et al. (2019) combined the MultiBoost (MB)
ensemble and support vector machine (SVM) models to
model the vulnerability of landslides in Uttarakhand State,
Northern India, and found that the MBSVM outperforms
the LR and single SVM models. Despite the fact that
multiple ensemble methods have been used in landslide
susceptibility mapping, there is still no consensus on
which is the best ensemble approach. Furthermore, further
experiments are needed to compare different areas in or-
der to determine the difference between each system. In
this research, we used a cutting-edge advanced machine
learning hybrid technique called LR and its ensembles
(RF and ANN) to forecast landslides in the Asir Region
of Saudi Arabia.

Several authors stated that there are certain concerns about
landslide susceptibility assessments, which are described fol-
lows: (1) Lee et al. (2017) assumed that these models cannot
be utilised and were not valid for particular planning and as-
sessment purposes, thus utilising these models for specific site
characterization should be approached with caution and the
size of the study should be carefully evaluated; (2) The vari-
ables utilised to build the landslide susceptibility models are
important. It was discovered that some models, such as RF,
performed well in some regions but poorly in others (Catani
et al. 2013). (Hong et al. 2016a, 2016b).

Manual, specified interval, natural split, equivalent inter-
val, quantile, standard deviation, geometrical interval, and
landslide percentage are some of the classification techniques
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for a landslide susceptibility map in GIS software (Baeza et al.
2016). In general, the reader would find it more difficult to
understand and explain user-defined classification. As a result,
instead of using a user-defined classification, existing auto-
matic classification schemes can be used (Baeza et al. 2016).
Furthermore, since landslide vulnerability indices have posi-
tive or negative skewness, quantile or normal split are the
safest classification methods (Akgun et al. 2012). According
to the histogram of data distribution, the natural break process,
which is the most widely used form (Termeh et al. 2019), is
the most appropriate method for modelling landslide suscep-
tibility in the current research.

A comparative analysis of the LR, LR-ANN, and LR-RF
models was carried out in this article. LR is a popular classi-
fication model, especially for binary classification problems
(Kleinbaum and Klein 2010). As a result, we combined the
ANN and RF models with the LR model to create a better
classifier. The logistic regression and random forest ap-
proaches are combined in the LR-RF model. It has been
shown that RF is one of the most widely used classification
algorithms and that it can increase the efficiency of single
classifiers (Genuer and Poggi 2020). Furthermore, RF will
reduce the WoE model's reliance on freedom among the con-
ditioning variables. As a result, the findings revealed that both
the LR-RF model (AUC = 0.773 for training data) and the RF
model (AUC = 0.802 for training data) would improve the
efficiency of the standard LR model (AUC = 0.720 for train-
ing data), with the LR-RF model outscoring the others.

Landslide susceptibility maps can assist in the development
of a critical guide for general planning and evaluation (Lee
et al. 2017). For landslide control, hazard and risk assess-
ments, these approaches are extremely valuable and practical
(Zhu et al. 2018). As a result, understanding the distinctions
between various MLTs is critical for selecting the best model
for a certain study goal and/or location (Lee et al. 2017). Our
findings, for example, suggested that these MLTs models
might be critical as a preliminary approach for decision
makers to identify risky regions in existing projects and po-
tential new planning areas. So that potentially dangerous lo-
cations may be discovered and investigated further.
Furthermore, the findings of this study revealed that all
MLTs produce LSMs that perform considerably better.

However, optimum parameters selected by sensitivity
analysis have further been used to implement for landslide
susceptibility mapping using best model like LR-RF. The
performance of the model is also quite close the best
model (AUC: 0.927), indicating very high performance.
Many researchers have proposed using many parameters
for any type of potentiality mapping of natural hazards,
but our research indicates that using many parameters will
result in a less reliable model due to redundancy. As a
result, when modelling some kind of predictive algorithm,
it is important to examine the impact of the parameters.

Some critical parameters can produce a very accurate
model, while redundant parameters can produce a less
accurate model. When modeling, redundant parameters
should be tested to save time and resources.

Conclusion

The current study provides a comprehensive understand-
ing of the development of hybrid machine learning al-
gorithms for LS mapping. According to the two hybrid
and one statistical LS models, the very large LS zone
occupies an area of 20–32.62km2. The ROC curve was
used to measure the LS models. The best representation
model for LS modelling was LR-RF (AUC=0.958),
followed by LR-ANN and LR. Five least sensitive pa-
rameters were defined and omitted from datasets based
on sensitivity analysis. Again, the LR-RF model was
applied to the remaining parameters to produce optimum
conditioning parameter-based LS models with very high
accuracy (AUC: 0.927). It indicates that there is no
need for many parameters when modelling LSM, but
essential parameters are needed for modelling in order
to generate very high quality LSM maps. As a result,
identifying very important parameters should be neces-
sary and relevant.

The current study lays the comprehensive foundation for
the introduction of two hybrids ML and one LR model for
producing LSM, which could be used to predict various nat-
urally occurring hazards such as flooding, deforestation, and
fire susceptibility. Other preferred algorithms, such as the re-
current neural network, convolution neural network, recursive
neural network, and other future popular algorithms, can be
used to expand the applications of the ANNmethod. Over and
above the conditioning variables, deep neural networks can
provide extra insights. Though higher-level machine learning
techniques take longer to compute, the results obtained from
these new generation models are well worth the effort.

The current research has some drawbacks, such as the use
of moderate resolution satellite images rather than
hyperspectral images, the use of a semi-quantitative and con-
ventional approach, the use of less rainfall gauge stations in
the rainfall layer, and the use of fewer landslide sites for
modelling rather than more evidence.

Nonetheless, our research has shed new light on the devel-
opment of hybrid machine learning algorithms for LS map-
ping with selecting optimal conditioning variables. The find-
ings will be beneficial to decision-makers and policymakers in
the study area for the protection of natural ecosystems to re-
duce damage, live losses, and maintain habitat quality for
biodiversity conservation.
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