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Abstract

One of the most significant parameters in concrete design is compressive strength. Time and money could be saved if the
compressive strength of concrete is accurately measured. In this study, two machine learning models, namely, boosted decision
tree regression (BDTR) and support vector machine (SVM), were developed to predict concrete compressive strength (CCS)
using a complete dataset through the previous scientific studies. Eight concrete mixture parameters were used as the input dataset.
Four statistical indices, namely the coefficient of determination (R?) and root mean square error (RMSE), mean absolute error
(MAE), and RMSE-Standard Deviation Ratio (RSR), were used to illustrate the efficiency of the proposed models. The results
show that the BDTR model outperformed SVM model with the overall result of R>=0.86 and RMSE=6.19 and MAE=4.91 and
RSR=0.37, respectively. The results of this study suggest that the compressive strength of high-performance concrete (HPC) can

be accurately calculated using the proposed BDTR model.
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Introduction

In the construction industry, the sustainability of con-
struction materials is now a critical issue. There has
been a remarkable momentum in the last decade to
use industrial by-products in the construction sector to
achieve sustainability. Time and cost are the most crit-
ical considerations to be included in the preparation of
each project during the construction project (Aprianti
et al. 2015; Zhong and Wu 2015; Kylili and Fokaides
2017; Mirzahosseini et al. 2019; Latif et al. 2020c). In
traditional and industrial constructions, conventional
concrete and high-performance concrete (HPC) have
been commonly used, respectively. The HPC is a com-
posite material that has been used to withstand environ-
mental conditions in the manufacture of high-strength
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concrete used in bridges, tall buildings, tunnels, and
pavement structures. In addition, in structural applica-
tions, the durability and workability of the HPC are
essential considerations. A complex method has been
used to develop the technological characteristics of con-
crete to achieve the necessary characteristics of the HPC
(Kasperkiewicz et al. 1995; Chou et al. 2011; Zhong
and Wille 2015; Gonzalez-Corominas and Etxeberria
2016; Hoang et al. 2016; Wang et al. 2019; Kaloop
et al. 2020).

Nowadays, artificial intelligence has been widely
used for prediction and other purposes in engineering
fields (Borhana et al. 2020; Ehteram et al. 2020a;
Latif et al. 2021b, c¢; Ehteram et al. 2020b, c; Lai
et al. 2020; Latif et al. 2020a, b, 2021a; Najah et al.
2021; Parsaie et al. 2021; Jumin et al. 2021; Latif and
Ahmed 2021). To measure the HPC and CCS and test
the input variables, many of the previous studies used
soft computing techniques (Gupta et al. 2006; Chopra
et al. 2018; Dutta et al. 2018; Yaseen et al. 2018; Al-
Shamiri et al. 2019, 2020; Vakharia and Gujar 2019;
Young et al. 2019; Feng et al. 2020; Latif 2021). For
instance, Abuodeh et al. (2020) employed two deep ma-
chine learning techniques, namely sequential feature

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-15662-z&domain=pdf
http://orcid.org/0000-0002-0417-3545
mailto:sarmad.latif@komar.edu.iq

65936

Environ Sci Pollut Res (2021) 28:65935-65944

selection (SFS) and neural interpretation diagram (NID),
to classify the essential material constituents that affect
the artificial neural network (ANN). Based on the ma-
terial quantities, they used 110 ultra-high performance
concrete (UHPC) compressive strength tests to train
the ANN. As a result, four material components were
chosen, primarily cement, fly ash, silica fume, and wa-
ter, and then used in the ANN to determine more pre-
cise predictions than the model with all eight material
components. Finally, based on the four chosen material
constituents, they have developed a nonlinear regression
model. Their findings show that the use of ANN with
SFS and NID greatly enhanced the model’s accuracy
and offered useful insights into the predictions of
ANN compressive intensity for various UHPC mixes.

Ling et al. (2019) optimized support vector machine
(SVM) model by K-Fold cross validation for predicting and
evaluating the degradation of CCS in a complicated marine
environment. They also built ANN and decision tree (DT) to
compare the prediction precision with the SVM model. Their
results showed that the SVM model had the best prediction
performance.

Furthermore, Shaqadan (2020) developed SVM and neural
network models to predict the CCS using five input variables,
including silica additive fraction. He used a 90 samples data
set and measured compressive strength after 3 and 28 days for
different levels of milling time. According to his result, both
SVM and ANN showed a good correlation coefficient of
0.929 and 0.986, respectively.

Another study were proposed by Naderpour et al. (2018) to
predict recycled aggregate concrete compressive strength
using ANN. In their analysis, they used 139 existing sets of
data derived from 14 published literature sources to create
training and testing data for ANN model creation. Their
findings suggest that the ANN is a useful method for
predicting the compressive strength of recycled aggregate
concrete, which is made up of various forms and sources of
recycled aggregates.

Moreover, Deng et al. (2018) proposed a study using a
deep learning model to predict the compressive strength of
recycled concrete. In their study, softmax regression was used
to construct their proposed model. Their findings revealed that
the prediction model based on deep learning outperforms the
conventional neural network model in terms of precision, per-
formance, and generalization ability, and could be considered
a new approach for calculating the strength of recycled
concrete.

Furthermore, Latif (2021) conducted a research on de-
veloping deep learning model for predicting CCS. He de-
veloped long short-term memory (LSTM) model and ap-
plied SVM as a conventional machine learning model in
order to compare the accuracy of both models. According
to his finding, LSTM outperformed SVM with R?=0.98,
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R’= 0.78, MAE=1.861, MAE=6.152, and RMSE=2.36,
RMSE=7.93, respectively.

In addition, Van Dao et al. (2019) applied an adap-
tive neuro-fuzzy inference system (ANFIS) and ANN
for compressive strength prediction of geopolymer con-
crete (GPC). They have prepared concrete mixtures as
input parameters. Their findings revealed that ANN and
ANFIS models were successfull, but ANFIS was better
than ANN.

In this paper, BDTR and SVM have been developed for
predicting CCS.

Materials and methods
Data set

Nine multivariate variables already reported have been used as
input parameters in order to predict the concrete compressive
strength. The basic compressive intensity of the output vari-
able is (megapascal-MPa). The number of instances is 1030,
and no missing data is available. The selection of dataset com-
ponents is represented in Table 1.

BDTR model

Boosted tree regression is a hybrid model combining
statistical and soft computing techniques. Unlike tradi-
tional approaches, whether regression or non-regression,
BRT combines regression prediction at various trees for
regression to build the best regression tree. Furthermore,
when input parameters do not need to be removed from
the output, boosted tree regression can help to highlight
the nonlinear relationship between the input and output
parameters. In boosted tree regression, two techniques
are used: regression tree and boosting. The usage of
decision tree consequences is one of the key advantages
of the regression tree approach. In terms of predictor
parameters, the regression trees’ technique is unforgiv-
ing on outliers and harsh on missing data. To improve
model accuracy, numerous decision trees are incorporat-
ed into the boosting method (Jumin et al. 2020). The
BDTR algorithm is as follow:

$(x) = Zowihi(x) (1)
0x) = Tl (Fuori + 2/ 2)

where A(x) is the tree’s output, w is the weight, /(y; , ;) is the
loss function, distance between the truth and the prediction in
ith sample, and Q(f;) is the regularization function. Fig. 1
shows the structure of the BDTR model.
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Table 1 Statistical components of
the utilized datasets Component Minimum (kg/m3) Maximum (kg/m3) Average (kg/m3) Standard deviation (SD)
Cement 102.0 540.0 281.20 104.50
Blast furnace slag 0.0 359.4 73.90 86.28
Fly ash 0.0 200.1 54.20 63.99
Water 121.8 247.0 181.60 21.35
Superplasticizer 0.0 32.30 6.20 5.97
Coarse aggregate ~ 801.0 1145.0 972.90 77.75
Fine aggregate 594.0 992.60 773.60 80.17
Age 1.0 365.0 45.70 63.17
CCS 23 82.60 35.80 16.71

Support vector machine

SVM is a progressive type of machine learning that highlights
statistical learning rules under minor trials in statistical learn-
ing theory. Using the standard of structural risk minimization,
SVM solves many functional troubles to increase simplified
proficiencies, for instance, a limited sample, non-linear, high
dimensional number, and global minimum points (Ben-Hur
and Weston 2010). Fig. 2 shows the general structure of SVM.

Many typical neural network models can be shown to de-
crease the error in the training by using the empirical risk
minimization principle. SVM, on the other hand, uses the
structural risk minimization principle to decrease the upper
limit of the simplification error by finding the right balance
between the error of the training part and the system’s capa-
bility (Latif 2021).

In this study, a sigmoid kernel was used for SVM method.

Sigmoid Kernel : K (xi,xj) = tanh(xiT X Xj + r) 3)

Fig. 1 The structure of a typical
BDTR (Lai et al. 2019)

Prediction 1

S &

where K(x;, x;) is defined as the kernel function. v, 7, and d are
kernel parameters.

There are two forms of SVM regression. Form 1 or Epsilon
is regarded as the first phase of SVM regression which was
used in this study.

Performance indices
Generally, it is important to evaluate the achievement of the
model when evaluating the fulfillment of predictive models,

using a wide range of measurement indices to decide the best
model. This study suggests unique statistical indices.

R
R? is the primary regression analysis performance.
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RMSE

RMSE is a typical variance of residuals (predictive errors).

RMSE = /151 (Co-Cp)? (5)

where Co and Cp are observed and predicted CCS values.

MAE

MAE is a metric for comparing errors between paired obser-
vations that express the same concept. A disparity between the
true value and the expected value from the example is an
increasing prediction error.

v

Fig. 2 The architecture of SVM (Latif 2021)

Table 2 RSR range and the
corresponding performance rate Performance rating Unsatisfactory Satisfactory Good Very good

RSR value RSR>0.7 0.6<RSR<0.7 0.5<RSR<0.6 0.00<RSR<0.5

Fig. 3 The presentation of BDTR
model a actual versus prediction;
b scatterplot for the overall data
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Fig. 4 The presentation of BDTR
model a actual versus prediction;
b scatterplot for the tested data
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RMSE-standard deviation ratio (RSR) is used in this research
to compare the best model that can be implemented to predict
sediment from rivers. RSR is a valuable index for testing the
computational models:
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where Y is the average of the actual data throughout the
monitoring process (Ehteram et al. 2020b). In Table 2, the
presentation of RSR index ranges regarding performance rate
and class.

Results and discussion

Using a machine learning algorithm, 80% of the randomly
selected independent variable data can go through intense
training. The remaining untrained data would then be used
to assess the output of the model by using a qualified dataset.

RSR = (7)  Forthe second data partition, the same procedure is applied. In
\/ZN (Yabs_Ymean) 2
i=1\1i i
Table 3  Performance of BDTR model for overall and testing dataset Table 4 Performance of SVM model for overall and testing dataset
Dataset R’ RMSE MAE RSR  Dataset R’ RMSE MAE RSR
Overall 0.86 6.19 491 0.37 Overall 0.48 12.70 9.53 0.76
Testing 0.81 6.71 5.38 0.44 Testing 0.45 13.24 9.52 0.81
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this research, two machine learning algorithms were devel-
oped and compared, namely, BDTR and SVM, in order to
check their accuracy in predicting compressive strength of
concrete.

Two different approaches apply to these training datasets.
The first approach is a traditional method by which the model
is configured by changing the learning rate or a number of
algorithm trees manually. The second solution is to add the
hyperparameter module of the tuning model to the model.

For the BDTR model, a mixture of two techniques, which
are decision tree algorithms and boosting techniques, are
Boosted Regression Tree (BRT) models. BRTs match several
decision trees repeatedly to improve the model’s accuracy
since the BDTR is an algorithm used by the multiple additive
regression trees (MART) gradient boosting algorithm to train
the model. In a stage-wise manner, boosting constructs a set of
trees, and each tree depends on prior trees. Therefore, the error
in the previous tree is calculated and corrected in the next tree
using a predefined loss function. This implies that the predic-
tion is a composite of several weaker prediction models that
has resulted in a reliable prediction model.

Fig. 5 The presentation of SVM
model a actual versus prediction;
b scatterplot for the overall data
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For the SVM model, sigmoid kernel was used with two
kernel parameters, namely, gamma=0.10 and coeffi-
cient=0.00. The cross validation was applied in order to en-
hance the accuracy of the proposed model. The SVM regres-
sion type 1 was used with the training and testing partition of
80 and 20%, respectively.

The purpose of this study is to test and compare the ability
to predict the CCS of the BDTR and SVM model. Therefore,
to ease the performance review, the real and expected outputs
were tabulated and plotted. Based on statistical indices such as
R?, RMSE, MAE, and RSR, the extracted outputs were eval-
uated as the performance parameters for evaluating the pro-
posed models.

BDTR model successfully applied on CCS, where R* =
0.86, RMSE = 6.19, MAE=4.91, and RSR=0.37 for overall
dataset. Fig. 3 shows the attained prediction value for the
desired output CCS by BDTR versus actual data and scatter
plot for the overall dataset.

For the testing part, the model performed the lowest accu-
racy, where R?=0.81, RMSE=6.71, MAE=5.38, and
RSR=0.44. Fig. 4 shows the attained prediction value for the
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Fig. 6 The presentation of SVM
model a actual versus prediction;
b scatterplot for the tested data
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desired output CCS by BDTR versus actual data and scatter
plot for the tested dataset.

Table 3 shows the performance of BDTR model for the
overall and tested dataset.

Regarding the SVM model, the results showed the lower
accuracy than BDTR model. For the overall SVM dataset
result, R°=0.48, RMSE=12.70, MAE=9.53, and RSR=0.76.
For the tested dataset, R?>=0.45, RMSE=13.24, MAE=9.52,
and RSR=0.81. Table 4 shows the performance of the pro-
posed SVM model for the overall and tested dataset.

Table5 Comparison of BDTR and SVM results for overall and testing

dataset

Models Dataset R RMSE MAE RSR

BDTR Overall 0.86 6.19 491 0.37
Testing 0.81 6.71 5.38 0.44

SVM Overall 0.48 12.70 9.53 0.76
Testing 0.45 13.24 9.52 0.81

Tested SVM
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Figs. 5 and 6 show the attained prediction value for the
desired output CCS by SVM versus actual data and scatter
plot for the overall and tested dataset, respectively.

According to the results, BDTR outperformed SVM mod-
el. Table 5 shows the comparison of both BDTR and SVM
model for the testing and overall dataset.

The RSR value for the BDTR model is in the range of very
good, while it is in the range of unsatisfactory for the SVM
model. Fig. 7 shows the RSR of BDTR and SVM for the
overall dataset.

According to the results, BDTR outperformed SVM with a
significant different. The results of the current study were
similar to the previous studies in literature. Ling et al. (2019)
optimized SVM and built ANN and DT models to compare
the prediction precision with the SVM model. According to
their results, SVM outperformed ANN and DT models. On
the other hand, Shaqadan (2020) developed SVM and ANN
models to predict the CCS. According to his result, both SVM
and ANN showed a good correlation coefficient of 0.929 and
0.986, respectively. Furthermore, Latif (2021) developed
LSTM and SVM models for predicting CCS. According to

@ Springer



65942

Environ Sci Pollut Res (2021) 28:65935-65944

Fig. 7 RSR value for the
computed models
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his finding, LSTM outperformed SVM with R?=0.98 and R*=
0.78, MAE=1.861 and MAE=6.152, and RMSE=2.36 and
RMSE=7.93, respectively. Therefore, it can be concluded that
the results of the current study was similar to the other studies
in the field. BDTR can be a reliable model for predicting CCS.

Conclusion

In order to precisely build a suitable model, this study focuses
on predicting CCS using two machine learning models name-
ly, BDTR and SVM. As the input of the models, eight distinct
concrete components were used, and the observed CCS was
used as the model output. In predicting concrete compressive
strength, BDTR outperformed SVM. It can be assumed that
BDTR is an effective method to predict CCS, but it can de-
pend on the input appropriateness of the datasets. In determin-
ing the weakness of concrete compressive power, the outcome
of this study may be very significant. Future experiments can
be carried out using a different dataset to check the consisten-
cy of the proposed model.

Abbreviations BDTR, Boosted decision tree regression; R, Coefficient
of determination; RMSE, Root mean square error; HPC, High-perfor-
mance concrete; CCS, Concrete compressive strength; SFS, Sequential
feature selection; NID, Neural interpretation diagram; ANN, Artificial
neural network; UHPC, Ultra-high performance concrete; SVM,
Support vector machine; D7, Decision tree; ANFIS, Adaptive neuro-
fuzzy inference system; GPC, Geopolymer concrete; Al, Artificial intel-
ligence; BRT, Boosted regression trees; MART, Multiple additive
regression
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