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Abstract
The ecological environment and economic development are double-edged swords. Nevertheless, we can still achieve green and
coordinated development through environmental regulations and industrial agglomeration. Based on the panel data from 269
cities in China from 2008 to 2017, using the SBM-DEA model, the Malmquist-Luenberger (ML) index, and the spatial Durbin
model (SDM) under different weight matrices, this paper explored the spatial pattern of ecological efficiency, the internal
evolution mechanism, and the spillover effects of industrial agglomeration and environmental regulation on ecological efficien-
cy. The results demonstrated that China’s urban ecological efficiency had an obvious spatial pattern of “high in the east and low
in the west.” Due to the different life cycles of cities, the internal evolution mechanism of urban ecological efficiency had
significant differences. Pure technological efficiency (PEFFCH), technological progress (TECH), and scale efficiency (SECH)
have contributed the most to the ecological efficiency of the eastern, central, and western regions, respectively. Furthermore, a
significant U-shaped relationship existed between industrial agglomeration and ecological efficiency. In particular, urban eco-
logical efficiency will be improvedwhen the industrial agglomeration level exceeds a certain scale. However, the spillover effects
of industrial agglomeration were more sensitive to distance factors, leading to failure of the significance test under the economic
distance and asymmetric economic distance matrix. The “innovation compensation effect” of environmental regulation was
greater than the “compliance cost,”which verified the applicability of the “Porter Hypothesis” in urban ecological efficiency to a
certain extent. Finally, the geographical detector showed that each variable had a certain impact on the urban ecological
efficiency, and the impact of the interaction term was greater than that of a single variable.
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Geographical detectors

Introduction

Economic development and the ecological environment are
double-edged swords that are more prominent in resource-
based cities and developing countries. Since its reform and
opening up, China’s economy has achieved rapid growth,
but the driving force of economic development mainly de-
pends on a large amount of resource input (Li and Lin

2017). Relevant data show that for every 100 million US
dollars of GDP created by China, it needs to consume approx-
imately 29 thousand tons of oil equivalent, which is 2.1 times
that of the USA, 3 times that of Germany, and 3.1 times that of
Japan (Bai and Nie 2018). According to theWorld Air Quality
Report (2018), China accounts for 57 of the 100 most polluted
cities in the world. This development model at the expense of
the natural environment not only severely damages the eco-
logical environment but is also not conducive to regional
high-quality development. With the depletion of natural re-
sources and the deterioration of the ecological environment,
the Chinese government is aware that the extensive develop-
ment model that relies on resource input to achieve economic
growth is unsustainable. Therefore, how to reduce environ-
mental pollution and improve ecological efficiency while also
achieving economic development has become the focus of
attention of scholars.
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Ecological efficiency mainly examines the impact of hu-
man economic production activities on the ecological environ-
ment, and its connotation is to create higher economic effi-
ciency with a smaller investment of resources while reducing
environmental pollution (Zhang et al. 2017b; Becker 2011).
Wi th the deve lopment of indus t r i a l i za t ion and
informatization, the factors affecting urban ecological effi-
ciency have gradually increased but mainly include industrial
agglomeration and environmental regulation.

Existing research has explored the impact of industrial ag-
glomeration on urban ecological efficiency from the following
three aspects. First, proper industrial agglomeration can break
through the “Solo Paradox” and improve urban ecological
efficiency. According to competitive effects, the aggregation
of enterprises of the same type in a region will form a com-
petitive relationship. To achieve long-term development, new
technologies must be continuously developed to enhance
product competitiveness and seize market share (Liu et al.
2016). Porter’s innovation-driven development theory be-
lieves that innovation comes from corporate competition,
and healthy competition is conducive to corporate growth
and regional economic development (Ambec et al. 2013).
Marshall (2009) and Krugman (1990) believed that industrial
agglomeration had strong economic and technological
externalities and was an important engine to promote
economic development and increase production efficiency.
Zhang et al. (2021) believed that industrial agglomeration
could form a vertical industrial chain, reduce information
costs, optimize resource allocation, coordinate industrial de-
velopment, and improve urban ecological efficiency.

Second, industrial agglomeration hinders the improvement
of ecological efficiency. On the one hand, due to the nature of
manufacturing input and output, a large number of pollutants
will inevitably be emitted during the process of industrial ag-
glomeration, which will destroy the ecological environments
of the local and neighboring cities; On the other hand, accord-
ing to the law of diminishing marginal effects, industrial ag-
glomeration exceeding a certain threshold may produce a
“crowding effect,” leading to chaotic economic order, vicious
competition, and uneven resource allocation (Chen et al.
2020). In fact, the current industrial development in China is
still in the middle and low end of the global industrial chain,
the quality of industrial agglomeration is low, and the struc-
ture is unreasonable (Wu et al. 2021). In particular, a large
number of high-pollution and high-energy-consuming enter-
prises have gathered in the central and western regions, which
not only accelerates resource consumption and environmental
pollution, but also inhibits the improvement of ecological
efficiency.

Third, there is a nonlinear relationship between industrial
agglomeration and ecological efficiency. With the application
of statistical modeling and multivariate data, scholars have
found that the relationship between industrial agglomeration

and ecological efficiency is actually more complicated. Zhang
and Dou (2016) combined the environmental pollution index
and the spatial measurement model to prove that industrial
agglomeration and pollution discharge have an inverted U-
shaped relationship, which is more obvious in eastern China.
However, Pei et al. (2021) used the Copeland-Taylor model
combinedwith data from prefecture-level cities in the Yangtze
River Delta from 2006 to 2016 to prove that the industrial
agglomeration of subsectors had a significant U-shaped rela-
tionship with environmental pollution. Chen et al. (2020) si-
multaneously explored the impact of industrial agglomeration
on environmental pollution and ecological efficiency through
the spatial Durbin model and believed that industrial agglom-
eration and environmental pollution had a significant inverted
U-shaped relationship but a significant U-shaped relationship
with ecological efficiency.

The environment, as a “product” of public nature, has a
strong “negative externality” (Yang et al. 2021). Relying on
the unilateral market system and public environmental literacy
makes it difficult to correct “market failures,” and appropriate
environmental regulatory policies must be formulated in ac-
cordance with the development of the regional economic
environment and ecological quality. Existing research shows
that environmental regulations have a dual impact on
ecological efficiency (Li and Wu 2017). On the one hand,
reasonable environmental regulations can strengthen the
technology and innovation compensation effects of
enterprises, thereby increasing the production efficiency and
improving the ecological environment. Rubashkina et al.
(2015) proved that appropriate environmental regulations
could encourage European companies to pay greater attention
to green innovative technologies and increase the number of
patent applications. Through air pollutant emission data and
the slack-based measure model (SBM), Zhang et al. (2020)
believed that appropriate environmental regulations improved
the ecological efficiency of the Yangtze River Delta in China.
On the other hand, the “compliance cost effect” produced by
environmental regulations may increase the additional envi-
ronmental costs of enterprises and weaken product competi-
tiveness. Chakraborty and Chatterjee (2017) found that envi-
ronmental regulations have significantly increased the cost of
Indian dye manufacturers and reduced their product competi-
tiveness. Li and Lin (2017) believed that excessive environ-
mental regulations would hinder the original innovation of
enterprises, and the local government should reduce policy
intervention and strengthen the flexibility of enterprises to
market changes. In fact, due to the dual pressure of economic
development and job promotion, local governments often de-
liberately lower environmental standards and promote eco-
nomic growth at the expense of the ecological environment,
which is more obvious in developing countries. How to effec-
tively use market mechanisms and environmental regulatory
systems, combine fiscal, financial, and industrial policies, and
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form a multiparty joint effort to improve ecological efficiency
is the key to China’s transition from industrial civilization to
ecological civilization.

Existing studies have achieved rich conclusions in related
fields. Nevertheless, certain problems are worthy of further
discussion. First, urban ecological efficiency is not only relat-
ed to external driving factors such as economy and industry,
but also depends on internal evolutionary mechanisms such as
technological progress and scale efficiency. However, most of
the previous studies only used the DEA model to measure the
urban ecological efficiency, and seldom combined the ML
index to explore its internal evolution mechanism from pure
technological efficiency (PEFFCH), technological progress
(TECH), and scale efficiency (SECH). Second, the first law
of geography claims that geographical proximity or economic
complementarity has a significant impact on urban ecological
efficiency, but some studies only use non-spatial econometric
models or construct distance matrices to explore its influenc-
ing factors. In fact, non-spatial models and distance matrices
cannot fully reflect the complexity and spillover effects be-
tween research units, so it is necessary to adopt asymmetric
economic distance matrices and spatial econometrics models.
Third, most previous studies have investigated the impact of
industrial agglomeration and environmental regulations on
ecological efficiency at the provincial level (Zhang et al.
2017a), while urban studies are relatively rare. Finally, with
the development and popularization of positioning and obser-
vation technologies, the phenomenon of spatial stratified het-
erogeneity has become more prominent (Wang et al. 2010),
while existing studies have neglected the impact of spatial
stratified heterogeneity on urban ecological efficiency.

The possible contributions of this study are as follows:
First, we use the super-efficiency SBM model and ArcGis to
measure the temporal and spatial evolution characteristics of
urban ecological efficiency, and combine the ML index to
explore its internal evolution mechanism from TECH,
PEFFCH, and SECH. Second, we use a big panel dataset of
269 Chinese cities to extend the research unit from the pro-
vincial and departmental levels to prefecture-level cities, thus
producing more accurate and robust empirical results. Third,
we incorporate industrial agglomeration, environmental regu-
lation, and ecological efficiency into a unified analysis frame-
work, and construct a spatial Durbin model under three weight
matrices (distance matrix, economic distance matrix, and
asymmetric economic distance matrix) to examine the impact
of industrial agglomeration and environmental regulation on
ecological efficiency and its spatial spillover effects. Finally,
we use the geographic detector model to prove the heteroge-
neous impact of single and interactive variables on urban eco-
logical efficiency from the perspective of spatial stratified het-
erogeneity. The significance of this study is that we not only
reveal the temporal and spatial evolution characteristics and
internal driving mechanisms of urban ecological efficiency,

but also provide a policy basis for improving urban ecological
efficiency. In addition, we also provide empirical evidence for
studying the relationship between environmental regulation,
industrial agglomeration and ecological efficiency, and pro-
vide a reference for other developing countries to promote
industrial agglomeration and strengthen environmental
regulations.

Methods and procedures

Analytical framework

Exploring the spatial and temporal distribution pattern of ur-
ban ecological efficiency, internal driving mechanisms and
external influencing factors are conducive to the optimal allo-
cation of resources, the adjustment of economic and industrial
development methods, and the improvement of urban ecolog-
ical efficiency. Based on the panel data of 269 cities in China
from 2008 to 2017, using the super-efficiency SBM model,
ML index, and SDM under different weight matrices, we ex-
plored the temporal and spatial pattern of ecological efficien-
cy, the internal evolution mechanism, and the direct and spill-
over effects of industrial agglomeration and environmental
regulation on ecological efficiency. In addition, considering
the spatial stratified heterogeneity of ecological efficiency, we
use geographic detector to measure it and explain its reasons
(Fig.1).

Input and output indexes

Before measuring the urban ecological efficiency and ML
index, we needed to construct corresponding input and output
indexes. With reference to relevant literature, the input index-
es of this study included labor, land resources, and capital
input (Zhou et al. 2018). Labor input was expressed by the
number of urban employees (unit: 10,000 persons); land re-
source input was expressed by the area of urban construction
land (unit: square kilometers); and capital input was represent-
ed by the capital stock. Goldsmith’s perpetual inventory meth-
od (PIM) is the commonly used method for measuring capital
stock: Kit=Iit+(1-δ)Kit−1 (Goldsmith 1951), where K repre-
sents the capital stock; I, δ, and t represent the total fixed
capital investment, depreciation rate, and year, respectively.
With reference to the relevant literature (Zhang et al. 2004; Li
et al. 2019), the total fixed capital investment in the base
period was divided by 10% as the base period capital stock,
and the annual depreciation rate was set to 9.6%.

Output indexes are mainly divided into desirable output
and undesired output. We referred to the relevant literature
and selected GDP as the desirable output (Zhang et al.
2011). To enhance the comparability of the data, 2008 was
taken as the base period, and the GDP index was used to

66391Environ Sci Pollut Res (2021) 28:66389–66408



convert the nominal GDP into the real GDP at comparable
prices to eliminate the impact of inflation. Moreover, industri-
al wastewater emissions (unit: 10,000 tons), industrial sulfur
dioxide emissions (t), and industrial waste gas emissions (t)
were selected as the undesirable output indexes.

Explanatory variables

Core explanatory variables

Industrial agglomeration (IND) On the one hand, existing re-
search believes that industrial agglomeration can form an in-
terconnected industrial network, thereby achieving comple-
mentary production, sharing resources, reducing production

costs, and achieving externality benefits; On the other hand,
industrial agglomeration can also cause the concentrated emis-
sions of pollutants and the excessive use of natural resources,
thereby destroying the ecological environment. With refer-
ence to relevant literature, this paper used the location quotient
of the number of industrial employees to indicate the level of
industrial agglomeration (Morrissey 2016). In addition, we
used IND2 to test the impact of further expansion of the level
of industrial agglomeration on urban ecological efficiency.

Environmental regulation (ER) ER is an important measure for
the government to formulate environmental standards to limit
the emission of pollutants by enterprises. Appropriate envi-
ronmental regulations can promote technological upgrading

Fig. 1 Analytical framework
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of enterprises to improve urban ecological efficiency. This
study used a comprehensive index of various pollutant emis-
sions to express the intensity of environmental regulations
(Chen et al. 2010). The calculation steps are as follows:
First, standardize industrial wastewater, industrial sulfur diox-
ide, and industrial waste gas emissions.

UEs
ij¼ UEij−min UEj

� �� �
= maxUEj
� �

−min UE j
� �� � ð1� 1Þ

where UEij is the emission amount of pollutant j in city i;
max(UEj) and min(UEj) refer to the maximum and minimum
pollutant emission amounts, respectively; and UEij

s is the
standardized value. Second, the proportion and intensity of
pollutant emissions in different cities greatly vary, and the
adjustment coefficient is used to reflect the difference in pol-
lutant emissions:

W j ¼ UEij=UEij ð1� 2Þ

where is the average value of pollutant emission of j,
andWj represents the weight of pollutant j. Finally, we calcu-
late the strength of environmental regulations (ERi):

ERi ¼ 1

3
∑3

j¼1W jUES
ij ð1� 3Þ

Control variables

We selected transportation development (TRA), population
density (POP), foreign direct investment (FDI), and techno-
logical innovation (TEC) as the four control variables of this
study.

TRA Transportation development can reduce transportation
costs and improve resource circulation efficiency, but it can
also accelerate resource consumption and environmental pol-
lution. Based on the availability of data, we use the area of
urban roads to indicate the level of transportation
development.

POP High population agglomeration is a sign of urban eco-
nomic prosperity and social development; however, popula-
tion agglomeration can also bring environmental pollution,
traffic congestion and other problems, leading to conflicts
between economic development and the ecological environ-
ment. We used the ratio of the permanent resident population
to the urban administrative area to express the population
density.

FDI The introduction of foreign direct investment can bring
advanced management experience and technology to improve
the production efficiency of enterprises.We obtainedFDI data
from the China City Statistical Yearbook.

TEC The impact of technological innovation on urban ecolog-
ical efficiency is a long-term process. Considering the cumu-
lative and lag effects of technological innovation, this study
used the R&D capital stock to measure technological
innovation.

Methodology

Super-efficient SBM model considering undesirable output

Ecological efficiency can be measured in many ways, includ-
ing material flow analysis (Hawkins et al. 2007), ecological
footprint (Yang and Yang 2019), and DEA (Chen and Wu
2018; Yang et al. 2015). Among these approaches, DEA,
which is an important method of efficiency research, was pro-
posed by famous American operations researchers Charnes
et al. (1978). This model can determine the frontier of non-
parametric effective production and evaluate the effectiveness
of decision-making units (DMUs) with multiple input and
output indicators, and it is widely used in many aspects, such
as resource utilization and technological innovation (Li and
Lin 2017; Wu et al. 2019). The traditional DEA model is
based on the proportional reduction of input or the proportion-
al expansion of output and does not fully consider the slack-
ness of input or output variables, which may lead to inaccurate
estimation results (Yang et al. 2015). Therefore, Tone and
Tsutsui (2010) further modified the model to effectively solve
this problem. This study constructs an urban ecological effi-
ciency measurement model on the basis of the Super-SBM-
DEA model proposed by Tone.

Assuming that n DMUs are present in the production input
process, each DMU contains m production input elements, q1
desirable output elements, and q2 undesirable output elements.
The Super-SBM-DEA model, including the undesirable out-
put, is as follows:

minp ¼
1þ 1

m
∑
m

i¼l
S−i =xik

1−
1

q1 þ q2
∑
r¼1

q1

S−r =yrk þ ∑
t¼1

q2

Sb−t =ybik

� �

s:t:

∑
n

j¼1; j≠k
xijλ j−s−i ≤xik

∑
n

j¼1;≠k
ybijλ j−sb−r ≤yrk

1−
1

q1 þ q2
∑q1

r¼1s
−
r =yrk þ ∑q2

t¼1s
b−
t =ybik

� �
> 0

λ; s−; s− ≥0; i ¼ 1; 2;⋯;m; t ¼ 1; 2;⋯; n

8>>>>>>>><
>>>>>>>>:

ð2Þ

where p is the urban ecological efficiency; xik, yik, and ybik
represent the ith input element, bth desirable output, and tth
undesirable output of the kth city, respectively; si

−, sr
+, and st

b

− represent the slack variables of the input factors, desirable
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output, and undesirable output, respectively; and λ is the
weight vector.

Malmquist–Luenberger (ML)

The Malmquist index was firstly proposed by Caves et al.
(1982). However, the traditional Malmquist index did not in-
clude environmental constraints, such as energy consumption
and pollutant emissions. Chung et al. (1997) proposed theML
index, which can measure undesired output, such as pollutant
emissions, based on the directional distance function. TheML
index is currently widely used in various fields, such as ecol-
ogy, energy, and economy (Emrouznejad and Yang 2016;
Arabi et al. 2014; Li and Liu 2019). This paper refers to
Chung et al. (1997) and Chang et al. (2016) to calculate the
urbanML index between period t and period t+1. The specific
model is as follows:

MLtþ1
t ¼

1þ D
!t

0 xt; yt; bt; gtð Þ
� 	

1þ D
!t

0 xtþ1; ytþ1; btþ1; gtþ1
� �� 	� 1þ D

!t

0 xt; yt; bt; gtð Þ
� 	

1þ D
!t

0 xtþ1; ytþ1; btþ1; gtþ1
� �� 	

8>><
>>:

9>>=
>>;

1
2

ð3Þ

MLtþ1
t ¼ TECHtþ1

t � PEFFCHtþ1
t � SECHtþ1

1 ð4Þ

where D represents the production unit DMUs; and x, y, d,
and g represent the production input, desirable output, unde-
sirable output, and direction vector, respectively. MLt

t+1 rep-
resents the change of TFP from period t to t+1. If MLt

t+1>1,
then the TFP has been improved, and vice versa. MLt

t+1 can
be further decomposed into efficiency change (EFFCH) and
technical progress (TECH). In the case of variable returns to
scale (VRS), EFFCH can be decomposed into pure technical
efficiency (PEFFCH) and scale efficiency (SECH) (Chung
et al. 1997). By analyzing the TECH, PEFFCH, and SECH
indexes, we can explore the internal evolutionary mechanism
of ecological efficiency (Zhang et al. 2011; Choi et al. 2015).

TECHtþ1
t ¼

1þ D
!tþ1

c xt; yt; bt; gtð Þ
� 	

1þ D
!t

c xt; yt; bt; gtð Þ
� 	 �

1þ D
!tþ1

c xtþ1; ytþ1; btþ1; gtþ1
� �� 	

1þ D
!t

c xtþ1; ytþ1; btþ1; gtþ1
� �� 	

8>><
>>:

9>>=
>>;

1
2

ð5� 1Þ

PEFFCHtþ1
t ¼ 1þ D

!t

v xt; yt; bt; gtð Þ
1þ D

!tþ1

v xtþ1; ytþ1; btþ1; gtþ1
� � ð5� 2Þ

SECHtþ1
t ¼

1þ D
!t

c xt; yt; bt; gtð Þ
� 	

= 1þ D
!t

c xt; yt; bt; gtð Þ
� 	

1þ D
!tþ1

c xtþ1; ytþ1; btþ1; gtþ1
� �� 	

= 1þ D
!tþ1

c xtþ1; ytþ1; btþ1; gtþ1
� �� 	 ð5� 3Þ

where and represent the directional distance function
based on VRS and constant return to scale (CRS), respectively.
PEFFCH represents the impact of production management
level on ecological efficiency. PEFFCH>1 means efficiency
improvement; otherwise, it indicates a decrease in efficiency.
SECH represents the impact of production scale on ecological
efficiency. SECH>1 means close to the optimal production
scale; otherwise, it means far from the optimal scale. TECH
represents the production technology change of the DMUs

from period t to t+1. If TECH>1, then the production technol-
ogy has improved; otherwise, it means the production tech-
nology has declined.

Hot spot analysis

Hot spot analysis can identify significant high or low values to
analyze the spatial distribution characteristics of the observed
object (Xu et al. 2019; Ord 1995). This paper uses a hot spot
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analysis model to identify areas with high or low values of
ecological efficiency. The specific model is as follows:

G*
i ¼

∑
n

j¼1
wijx j−X ∑

n

j¼1
wij

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ∑

n

j¼1
w2
ij

s
− ∑

n

j¼1
wij

 !2 ð6� 1Þ

where wij represents the spatial weight matrix; xj is the

observation value of unit j; X is the sample mean; S is the
sample variance; n is the total number of samples. Other var-
iables in the model include:

X ¼
∑
n

j¼1
x j

n
and S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j¼1
x2j

n
− X
� �2

vuuut ð6� 2Þ

If the G∗
i value is high and significant, it indicates a signif-

icant hot spot (higher ecological efficiency value); If G∗
i is

negative and significant, it is a cold spot (Xu et al. 2021; ESRI
2016).

Spatial econometric model

Observed values of geographic samples usually have spatial
autocorrelation, and it is necessary to consider geographic
factors to establish an appropriate spatial measurement model.
Based on the theory of spatial econometrics, we have
established three models to explore the factors affecting urban
ecological efficiency.

The spatial lag model (SLM) mainly reveals whether eco-
logical efficiency has spread in space (Elhorst 2012). The
specific model is as follows:

EEit ¼ δ∑
n
wijEEit þ β1IDNit þ β2IDN

2
it þ β3ERit

þ β4TRAit þ β5POPit þ β6FDIit þ β7TECit

þ μi þ εit ð7Þ

where EEit is the explained variable, which refers to urban
ecological efficiency of city i in year t; β1, β2, …β7 are the
influencing coefficients of urban ecological efficiency, δ is the
spatial autoregressive coefficient, μi is the individual fixed
effect, and εit is the random error term.

The spatial error model (SEM) reflects the error through the
spatial covariance of different regions and mainly explains the
influence of neglected variables on the model (Han 2020). The
specific model is as follows:

EEit ¼ β1IDNit þ β2IDN
2
it þ β3ERit þ β4TRAit

þ β5POPit þ β6FDIit þ β7TECit þ μi þ γit ð8Þ

γit ¼ λ ∑
n

j¼1
witγit þ εit ð8� 1Þ

where γit is the autocorrelation term of the spatial error, and
λ is the autocorrelation coefficient.

The spatial Durbin model (SDM) considers the depen-
dent variable is affected by the independent variables and
dependent variables in this region and other regions.
LeSage and Pace (2009) pointed out that the SDM can
efficiently capture the direct and spillover effects produced
by the observed individual. The specific model is as fol-
lows:

EEit ¼ δ ∑
n

j¼1
wijEEit þ β1IDNit þ β2IDN

2
it þ β3ERit

þ β4TRAitβ5POPit þ β6FDIit þ β7TECit

þ θ1 ∑
n

j¼1
wijIDNit þ θ2 ∑

n

j¼1
wijIDN2

it

þ θ3 ∑
n

j¼1
wijERit þ θ4 ∑

n

j¼1
wijTRAit

þ θ5 ∑
n

j¼1
wijPOPit þ θ6 ∑

n

j¼1
FDIit þ θ7 ∑

n

j¼1
TECit

þ μi þ εit ð9Þ

where β1, β2…β7 represent the coefficients of explanatory
variables; θ1, θ2…θ7 represents the spatial autocorrelation co-
efficient of exogenous variables; other parameters are consis-
tent with the above model.

Spatial weight setting

Different types of spatial weight matrices reflect the complex
relationships between cities. To comprehensively reflect the
impact of distance, economy, and their interaction effects on
urban ecological efficiency, this paper constructs the follow-
ing three spatial weight matrices (Table 1).

(1) Geographic distance weight matrix (W1) The first law of
geography states that the smaller the distance between cities,
the greater the spatial interaction (Liu et al. 2020)

(2) Economic distance weight matrix (W2) With the continu-
ous development of modern transportation, economy has
gradually become the dominant factor affecting urban devel-
opment in addition to geographical factors. This paper con-
siders economic and geographic factors to construct an eco-
nomic distance matrix W2.

(3) Asymmetric economic distance weight matrix (W3)
Generally, cities with high economic levels will have a strong
influence on cities with low economic levels (Li et al. 2019).
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The asymmetric economic distance matrix organically com-
bines the economic and distancematrices, which can efficient-
ly describe the comprehensiveness and complexity of the spa-
tial effects.

where d2ij represents the straight-line distance between the
administrative center of city i and j;GDPi andGDPj represent
the GDP of cities i and j; diag(...) is a diagonal matrix, and
GDPa represents the average GDP of all cities.

Spatial stratified heterogeneity measure

Although the spatial econometric model includes spatial
and economic factors, the spatial stratified heterogeneity
of ecological efficiency has not been considered.
According to Wang et al.’s (2016) research, spatial

stratified heterogeneity refers to uneven distributions of
traits, events, or their relationship across a region or, sim-
ply, spatial variation of attributes. The geographical detec-
tor can explore the spatial stratified heterogeneity of the
explained variable Y and its influencing factors to a certain
extent, which is an important tool to measure the spatial
stratified heterogeneity (Wang et al. 2010; Polykretis and
Alexakis 2021). The model is as follows:

q ¼ 1−
∑
L

h¼1
Nhσ2

h

Nσ2 ¼ 1−
SSW
SST

ð10� 1Þ

SSW ¼ ∑
L

h¼1
Nhσ

2
h � SST ¼ Nσ2 ð10� 2Þ

Table 1 Three spatial weight matrices

Geographic distance weight matrix (W1) Economic distance weight matrix (W2) Asymmetric economic distance weight matrix (W3)

W1 ¼ 0 i ¼ jð Þ
1=dij i≠ jð Þ


W2 ¼

0 i ¼ jð Þ
GDP1 � GDPj

d2ij
i≠ jð Þ

8<
: W3 ¼ W1 � diag GDPi

�
GDPaÞ

Fig. 2 Map of China's administrative divisions
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Specifically, the study area is composed of N units
and is stratified into h=1, 2, . . ., L stratum; stratum h
is composed of Nh units; σ2 represents the variance of
ecological efficiency; SSW and SST are within sum of
squares and total sum of squares, respectively. The value
of the q-statistic is between 0 and 1. The higher the
value of q, the greater the spatial stratified heterogeneity
of the explained variable, and the stronger the explana-
tory power of the independent variable X to the ex-
plained variable Y.

Research area and data sources

Based on the availability of data, we used 269 prefecture-
level cities in China from 2008 to 2017 as the research
unit (Fig.2). According to the division of administrative
regions, this paper divided China into eastern, central,
western, and northeastern regions. Among them, the

eastern region includes 85 cities, such as Beijing,
Shanghai, and Guangzhou, and is the most economically
developed region in China. The central region includes 79
cities, such as Zhengzhou, Wuhan, and Hefei, and is the
second echelon of China’s economic and industrial devel-
opment. The western region includes 68 cities, such as
Chongqing, Xi’an, and Guiyang, and has relatively back-
ward economic and industrial development. The north-
eastern region includes 37 cities, such as Changchun,
Harbin, and Shenyang, and the economic and industrial
development is facing transformation and upgrading. The
labor force, land resources, capital stock, and pollutant
emissions data came from the “China City Statistical
Yearbook” and “China Environmental Statist ical
Yearbook.” The GDP per capita came from the website
of the prefecture-level city government. The numbers of
permanent residents came from the statistical bulletin of
prefecture-level cities.

Fig. 3 Hot spot analysis of urban ecological efficiency. Note: The hot
spot analysis tool in ArcGis 10.3 divides the city into hot spot cities and
cold spot cities according to the size of the city’s ecological efficiency.

The hot spot city has a value greater than 0 and is green, while the cold
spot city has a value less than 0 and is red
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Results

The temporal and spatial evolution characteristics of
urban ecological efficiency

We used the super-SBM model to measure the ecological
efficiency of 269 cities in China and combined hot spot anal-
ysis in ArcGIS to explore the temporal and spatial evolution
characteristics of urban ecological efficiency in 2008, 2011,
2014, and 2017. The results are shown in Fig. 3.

In general, China’s urban ecological efficiency had strong
temporal and spatial heterogeneity, and the spatial pattern of
“high in the east and low in the west”was the most prominent.
Specifically, in 2008, the ecological efficiency hotspot cities
were mainly concentrated in the eastern coastal areas such as
Shenzhen, Guangzhou, and Zhongshan, as well as the “Hubao
Eyu” and “Shandong Peninsula” urban agglomerations.
Ecological efficiency cold spot cities were mainly distributed
in Yichun and Hegang in the northeast and Anhui, Shaanxi,
Hunan, and Hubei in the central and western regions. In 2011,
the ecological efficiency hotspot cities were still concentrated
in the eastern coastal areas. For example, the ecological effi-
ciency of Beijing, Foshan, and Shenzhen was 1.434, 1.431,
and 1.005 respectively, and they were the most ecologically
efficient cities. Ecological efficiency cold spot cities were
mainly distributed in central and western regions such as
Baise, Guangxi, and Xuancheng, Anhui, and the number in-
creased from 156 in 2008 to 170 in 2011. This result may be
because the eastern coastal areas of China have a strong in-
dustrial foundation and advantages in technology, talent, and
capital, which enable them to improve urban ecological effi-
ciency through industrial structure optimization and techno-
logical progress while also developing the economy.
Comparedwith 2011, the spatial pattern of ecological efficien-
cy in 2014 did not change much, showing an obvious phe-
nomenon of “spatial solidification.” In 2017, the number of
cold spot cities in the central region decreased significantly,
while that in the western region increased rapidly. For exam-
ple, the ecological efficiency of Pingliang, Lanzhou, and
Shangluo were all less than 0.3, indicating they were

significant cold spot cities. This result is mainly because
China has adopted a gradient development strategy for a
long time, which has resulted in the ecological efficiency
pattern of east>central>west becoming more prominent over
time. In addition, the productivity of the western region is
relatively backward, which will consume many resources to
obtain the same economic benefits, resulting in overall low
ecological efficiency.

Referring to the research of Wen et al. (2021) and Taylor
(2000), cumulative sum plots and bootstrapping were com-
bined to detect the change point of ecological efficiency
(Fig.4). We found that approximately 2012 was the change
point of the ecological efficiency of China’s eastern, central,
western, and northeastern regions, and the confidence interval
was 95%. This result was mainly because the cumulative sum
plots tended to expand subtle changes, and the decline in urban
ecological efficiency in approximately 2012 was even greater,
making it easier to be detected by the cumulative sum plots.
After the 2008 global economic crisis, the Chinese government
vigorously promoted industrialization and urbanization to fully
restore economic development. On the one hand, the industrial
development demand for steel, cement, and land resources has
sharply increased, thus resulting in the massive emissions of
industrial wastewater and waste gas. On the other hand, rapid
urbanization has attracted many people into cities, leading to
the concentrated discharge of domestic sewage, garbage, and
automobile exhaust, causing serious damage to the ecological
environment. Due to the cumulative and lagging nature of
changes in the ecological environment, the environmental dam-
age caused by the development of industrialization and urban-
ization was not immediately reflected, which led to structural
changes in ecological efficiency in approximately 2012.

At the provincial level, the average ecological efficiency of
Beijing, Shanghai, and Hainan from 2008 to 2017 was 1.045,
0.863 and 0.833, respectively, and they were the regions with
the highest ecological efficiency (Table 2). Compared with
other cities, Beijing and Shanghai have significant talent, cap-
ital, and policy advantages, while Hainan has abundant tour-
ism resources. With the deepening of the division of urban
functions, the economic development models of Beijing,

Fig. 4 The cumulative sum charts
of urban ecological efficiency in
2008–2017
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Shanghai, and Hainan have gradually changed from the orig-
inal high-polluting and high-energy-consuming industries to
high-value-added, high-efficiency tertiary industries and mod-
ern service industries. For example, in 2017, the tertiary in-
dustry in Beijing and Shanghai accounted for more than 80%
of the GDP, becoming an important engine driving economic
development. Tourism accounts for 49% of Hainan’s GDP
and has become a pillar industry in Hainan Province.

The ecological efficiency of Gansu, Chongqing, Jiangxi,
Qinghai, and Ningxia in the central and western regions were
relatively low from 2008 to 2017 (0.415, 0.385, 0.377, 0.365,
and 0.288, respectively). On the one hand, the central and
western regions have a fragile ecological environment,
overexploited resources, and relatively backward environ-
mental awareness. On the other hand, the central and western
regions are the main undertaking areas for high-pollution and
high-energy-consuming industries in the eastern region.
However, we also noticed that the ecological efficiency of
the central and western regions showed a slow growth trend
after 2014. This phenomenon shows that the central and west-
ern regions are also strengthening ecological compensation
while developing the economy.

The internal evolutionmechanism of urban ecological
efficiency

Urban ecological efficiency is not only closely related to ex-
ternal factors such as the level of economic and industrial

development and business environment but also depends on
internal driving factors such as technological progress, pro-
duction management level, and technological catch-up speed.
To further explore the internal evolution mechanism of urban
ecological efficiency, we used the decomposed ML index to
analyze it from the perspectives of TECH, PEFFCH, and
SECH. The results are shown in Table 3 and Fig. 5.

The TECH index of the four main regions of China was
greater than 1, which indicated that TECH has improved the
ecological efficiency of the eastern, central, western, and
northeastern regions. Among them, the TECH index of the
eastern and northeastern regions represented by Shenzhen
and Changchun was significantly higher than that of the cen-
tral and western regions. This result is mainly because the
eastern region has an obvious location advantage, talent ad-
vantages, and a good innovation environment, which are con-
ducive to technology transfer and knowledge exchange
among enterprises, thereby expanding the “innovation com-
pensation effect” and improving urban ecological efficiency.
The PEFFCH index of the central and northeastern regions
represented by Wuhan and Harbin was relatively high, indi-
cating that the production management level and resource
allocation efficiency of enterprises in the central and north-
eastern regions have been rapidly improved. However, the
PEFFCH index of the western region was 0.990, which re-
stricts the improvement of ecological efficiency to a certain
extent. This situation may be because the development of the
western region is still dominated by an extensive economy,
the allocation of capital, energy, and other factors is unreason-
able, and the management level is relatively low. Moreover,
the western region has undertaken most of the eliminated in-
dustries in the eastern region, which may also be one of the
reasons for the decline in PEFFCH. From the perspective of
the SECH index, major cities such as Beijing, Guangzhou,
and Shenzhen in the eastern region have relatively low
SECH indexes. This situation shows that the resources in the
eastern region are overconcentrated and the marginal revenue
is gradually decreasing, which is also proven by its PEFFCH

Table 2 Average value of provincial ecological efficiency from 2008 to 2017

Regions Mean Rank Regions Mean Rank Regions Mean Rank

Beijing 1.045 1 Hunan 0.541 11 Shanxi (Western) 0.455 21

Shanghai 0.863 2 Hebei 0.534 12 Shanxi (Central) 0.440 22

Hainan 0.833 3 Jiangsu 0.528 13 Guizhou 0.437 23

Guangdong 0.695 4 Jilin 0.521 14 Anhui 0.418 24

Inner Mongolia 0.683 5 Sichuan 0.513 15 Guangxi 0.417 25

Xinjiang 0.665 6 Liaoning 0.501 16 Gansu 0.415 26

Tianjin 0.660 7 Hubei 0.497 17 Chongqing 0.385 27

Shandong 0.649 8 Yunnan 0.492 18 Jiangxi 0.377 28

Fujian 0.602 9 Henan 0.487 19 Qinghai 0.365 29

Zhejiang 0.569 10 Heilongjiang 0.465 20 Ningxia 0.288 30

Table 3 The average values of TECH, PEFFCH and SECH in different
regions from 2008 to 2017

Regions TECH PEFFCH SECH

Eastern China 1.085 0.997 0.997

Central China 1.008 1.010 1.007

Western China 1.083 0.990 1.005

Northeast of China 1.088 1.008 1.002
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value being less than 1. Therefore, the eastern region should
focus on improving resource utilization efficiency instead of
blindly increasing resource inputs and expanding the produc-
tion scale. However, the SECH in the central and western
regions was greater than 1, which indicated that the concen-
tration of resources in the central and western regions could
expand the production efficiency and enhance corporate
competitiveness.

Model testing and regression results of spatial
econometrics

Spatial autocorrelation test

The economic matrix, economic distance matrix, and asym-
metric economic distance matrix were selected to test the spa-
tial autocorrelation of ecological efficiency of 269 cities in
China from 2008 to 2017. The results show that the global
Moran index under different spatial matrices from 2008 to
2017 is significantly positive, indicating that the urban eco-
logical efficiency has a strong positive correlation (Table 4).

Therefore, the spatial econometric model should be used to
further analyze its influencing factors.

Spatial econometric model selection

With reference to the research of Wen et al. (2020), we use
LagrangeMultiplier (LM) tests (Anselin 1988) and robust LM
tests (Anselin et al. 1996) to select appropriate spatial econo-
metric models (Table 5). Both the LM and robust LM tests
show that the hypotheses of no spatially lagged dependent
variable and the hypotheses of no spatially auto-correlated
error term are rejected. This result shows that the non-spatial
model is rejected, and the spatial autocorrelation and spatial
error correlation coexist in the model (Pace and LeSage 2009).
In this case, LeSage and Pace (2009) recommend using Wald
and LR tests to determine whether SDM can be reduced to
SLM and SEM: (1) If θ=0, the SDM model can be reduced to
the SLMmodel; (2) If θ=−βδ, the SDMmodel can be reduced
to the SEM model. We found that the Wald and LR test
rejected the hypothesis at the 1% significance level, indicating
that SDM is more suitable for this study.

Finally, P<0.01 of the Hausman test under different matri-
ces rejected random effects (Table 5); thus, a fixed-effects
model should be used. However, the fixed effects model is
divided into three types (time fixed, space fixed, and double
fixed). To compare which fixed-effects model has the best
fitting effect, we tested its R2 and log-likelihood index. The
results show that the R2 and log-likelihood of the space fixed
effects and the double fixed effects model under different
matrices are significantly greater than the time fixed effects
model (Table 6). However, the R2 and log-likelihood index of
the space and double fixed effects models are similar. After
comprehensively comparing the performance of each
influencing factor, we finally choose the space fixed effects
model for fitting analysis. Overall, under the weight matrices
of W1, W2, and W3, the R

2 of the SDM was 0.8873, 0.8863,
and 0.8849, respectively, and the log-likelihood index was
2378.02, 2373.11, and 2364.31, respectively, indicating that

Fig. 5 Average values of TECH, PEFFCH and SECH in different cities from 2008 to 2017

Table 4 Spatial autocorrelation test under different weight matrices

Year W1 W2 W3

2008 0.024*** 0.322*** 0.063***

2009 0.027*** 0.299*** 0.070***

2010 0.029*** 0.305*** 0.057***

2011 0.020*** 0.336*** 0.043***

2012 0.017*** 0.338*** 0.043***

2013 0.031*** 0.414*** 0.068***

2014 0.020*** 0.323*** 0.051***

2015 0.021*** 0.347*** 0.049***

2016 0.021*** 0.285*** 0.052***

2017 0.026*** 0.339*** 0.070***

Notes: * P < 0.1, ** P < 0.05, *** P < 0.01. The significance of all the
tables below is consistent with this
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the model construction and index selection were relatively
reasonable.

Estimation results

To objectively and accurately evaluate the regression results,
this study compared and analyzed the traditional panel model
and the spatial Durbin model under three different weight
matrices (Table 7).

The IND coefficients under the traditional panel model and
the spatial Durbin model were both significantly negative, but
the coefficients of the traditional panel model were smaller
than those of the spatial Durbin model with different spatial
weight matrices. This finding showed that ignoring spatial and
economic factors would underestimate the impact of IND on
urban ecological efficiency. Moreover, the coefficients of
IND2 under the W1, W2, and W3 matrices were 0.0079,
0.0118, and 0.0119, respectively, and all passed the signifi-
cance test. This result showed that industrial agglomeration
has had a certain threshold effect on the improvement of urban
ecological efficiency. Only when industrial agglomeration ex-
ceeds a certain scale will it generate external benefits and
improve ecological efficiency. It is undeniable that industrial
agglomeration can generate more external benefits through
market effects, cost of living effects, and technology spillover
effects and is regarded as an engine driving economic growth.

We should also realize that as the largest manufacturing coun-
try in the world, China’s industrial agglomeration level is still
in a relatively low position. The industrial agglomeration areas
of most cities place the same or different types of enterprises
in a specific space. However, these companies have failed to
develop additional technical and economic ties, and some
companies may even maliciously compete for market share
and commercial interests. Moreover, most Chinese companies
are foundries in developed countries such as the USA and
Europe and are still at the middle and lower ends of the indus-
try chain. The large-scale agglomeration of these enterprises
not only seriously consumes natural resources but also dis-
charges a large amount of harmful substances, which aggra-
vates environmental pollution.

The coefficients of ER under W1, W2, and W3 matrices are
0.0609, 0.0551, and 0.0599, respectively, and all pass the
significance test. This finding shows that environmental reg-
ulation has a significant positive effect on urban ecological
efficiency, which is consistent with the study of Lanoie et al.
(2011). On the one hand, the “Porter Hypothesis” believed
that environmental regulations can promote enterprises to in-
crease investment in scientific research and upgrade techno-
logical equipment, thereby forming a certain “innovation
compensation effect” and improving urban ecological effi-
ciency. In addition, China’s rapid economic development
has increased the demand for energy and materials, resulting

Table 5 LM, Wald, LR, and Hausman tests under different weight matrices

Testing method W1 W2 W3

LM test: no spatial lag 194.4800*** 98.2592*** 96.8561***

Robust LM test: no spatial lag 2.7544** 8.1393*** 12.4345***

LM test: no spatial error 215.9721*** 90.6206*** 111.1018***

Robust LM test: no spatial error 24.2465*** 5.0087*** 14.2464***

Wald-spatial lag 69.1147*** 66.2035*** 71.8091***

LR-spatial lag 75.1154*** 72.2292*** 76.0285***

Wald-spatial error 35.4109*** 61.9401*** 38.3440***

LR-spatial error 39.8912*** 71.7173*** 39.0324***

Hausman 220.6393*** 39.1984*** 233.8501***

Notes:Dependent variable: urban ecological efficiency 2008-2017; authors’ elaboration based onMatlab2016a software; observations=2690, T=10, 269
nodes; exclude multicollinearity through the variance inflation factor (VIF) test; *** (**,*) indicates 1% (5%, 10%) level of significance

Source: China City Statistical Yearbook, Statistical Bulletin

Table 6 R2 and log-likelihood tests under different weight matrices

Variables W1 W2 W3

Time fixed Space fixed Double fixed Time fixed Space fixed Double fixed Time fixed Space fixed Double fixed

R2 0.3761 0.8873 0.8881 0.3797 0.8863 0.8877 0.3628 0.8849 0.8870

Corr2 0.3607 0.0931 0.1007 0.3519 0.0969 0.0927 0.2828 0.1007 0.1025

sigma2 0.0546 0.0110 0.0098 0.0543 0.0100 0.0098 0.0558 0.0101 0.0099

LogL 87.19 2378.02 2397.74 78.75 2373.11 2393.40 16.36 2364.31 2390.34
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in the massive discharge of sulfur dioxide, nitrogen oxides,
and wastewater. However, traditional methods (landfill and
plant purification) cannot efficiently eliminate the harm of
chemical pollution to the ecological environment and human
health. Therefore, the improvement of the ecological efficien-
cy and ecological environment increasingly depends on envi-
ronmental regulations and technological progress. On the oth-
er hand, environmental pollution has become one of the im-
portant problems in developed and developing countries.
Formulating corresponding laws and regulations, increasing
penalties for environmental pollution, and solving environ-
mental pollution from the source have become important mea-
sures to improve ecological efficiency.

Direct and spillover effects

Considering the existence of spatial spillover effects, the total
effect needs to be decomposed into direct effects and spillover
effects to better explain the influence of industrial agglomer-
ation and environmental regulations on urban ecological effi-
ciency (Chen and Ye 2019).

The direct effects of IND and IND2 passed the significance
test under W1, W2, and W3, but IND was significantly nega-
tive and IND2 was significantly positive (Table 8). This find-
ing shows that the direct effects of IND on urban ecological
efficiency have certain threshold effects. Only when industrial
agglomeration reaches a certain scale can it break through the
“Solo Paradox” and have a positive impact on the ecological
efficiency of the local city. We also noticed that the spillover

effects of IND and IND2 under the W1 matrix passed the 0.01
significance test; however, they failed the significance test
under the W2 and W3 matrices. This result shows that only
under the distance matrix can industrial agglomeration exert
its spatial spillover effect to improve the ecological efficiency
of neighboring cities. This situation may be due to the strong
distance sensitivity of the spillover effects of industrial ag-
glomeration. Specifically, the introduction of economic fac-
tors has weakened the distance sensitivity of industrial ag-
glomeration to the ecological efficiency of neighboring cities.

The direct and spillover effects of the ER under the W1,
W2, and W3 matrices are significantly positive, which was
consistent with the expected results. Specifically, under the
W1, W2, and W3 matrices, for every 1% increase in the inten-
sity of environmental regulations, the ecological efficiency of
local cities will increase by 0.0610%, 0.0559%, and 0.0606%
and that of neighboring cities will increase by 0.0388%,
0.0308%, and 0.0553%, respectively. This result shows that
the “innovation compensation effect” produced by environ-
mental regulation is greater than the “compliance cost,”which
verifies the applicability of the Porter hypothesis in urban
ecological efficiency to a certain extent.

Transportation development (TRA) was negatively corre-
lated with urban ecological efficiency and passed the 0.01
significance test. We tried to explain this result from the fol-
lowing aspects. First, ecological efficiency is a comprehensive
index that considers economic development and the ecologi-
cal environment, which means that the evaluation of ecolog-
ical efficiency not only considers economic development but

Table 7 Regression results of spatial Durbin model with fixed effects

Explanatory variables Traditional panel model Spatial Durbin model with fixed effect

W1 W2 W3

IND −0.3202*** (−7.3827) −0.1478*** (−2.2899) −0.2059*** (−3.2651) −0.2016*** (−3.1317)
IND2 0.031*** (9.915) 0.0079* (1.7483) 0.0118*** (2.4951) 0.0119*** (2.4606)

ER 0.0896*** (15.667) 0.0609*** (12.4960) 0.0551*** (11.5517) 0.0599*** (12.2331)

TRA −0.071*** (−9.1736) −0.0137** (−1.7338) −0.0118 (−1.329) −0.0163** (−1.8134)
POP 0.1830*** (8.400) −0.0391 (−1.2673) −0.0781*** (−2.5333) −0.0678*** (−2.2374)
FDI 0.008** (2.188) 0.0115*** (3.6984) 0.0132*** (4.1995) 0.0123*** (3.9100)

TEC 0.059*** (6.378) 0.0182*** (2.6327) 0.0155*** (2.2683) 0.0195*** (2.8322)

W*IND −1.7100*** (−3.9730) −0.4286*** (−2.3842) −1.6222*** (−2.9065)
W*IND2 0.1247*** (3.9297) 0.0263*** (2.1804) 0.1011*** (2.8269)

W*ER −0.0286** (−1.8211) 0.0070 (0.7282) 0.0046 (0.2672)

W*TRA −0.0778*** (−2.1711) −0.0868*** (−4.0723) −0.1074*** (−2.1674)
W*POP −0.0598 (−0.6862) 0.2119*** (3.6300) 0.108446 (0.9925)

W*FDI 0.0770*** (3.7695) 0.0230*** (2.7203) 0.1131*** (4.0888)

W*TEC −0.0309* (−1.6316) −0.023*** (−1.9340) −0.0521*** (−2.5596)
R2 0.553 0.8873 0.8863 0.8849

sigma2 0.0099 0.0100 0.0101

Log-L 2385.2306 2373.1138 2364.316
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also considers the ecological environment. Although the im-
provement of transportation level can promote the flow of
factors and economic development, it also accelerates re-
source consumption and environmental pollution (haze pollu-
tion, black and odorous water bodies, etc.). When the environ-
mental pollution effect brought by transportation development
is greater than the economic development effect, it will have a
negative impact on ecological efficiency. In addition, as the
world’s largest infrastructure construction country, a large part
of China’s economic development is driven by infrastructure
investment. However, the construction of transportation infra-
structure needs to consume many resources, and the particu-
larly dense and unreasonably designed infrastructure not only
fails to produce transportation network effects but also causes
a waste of resources. Finally, the improvement of the trans-
portation level may produce a “siphon effect,” attracting a
large number of people and industries into the city, thereby
increasing energy consumption and generating a large amount
of domestic sewage, garbage, and automobile exhaust.

The direct effect of population density under the W2 and
W3 matrices is significantly negative, and the spillover effect
is positive, indicating that population agglomeration may
cause environmental pollution and traffic congestion, which
is not conducive to the improvement of local urban ecological
efficiency. Under the W1, W2, and W3 matrices, the direct
effects and spillover effects of FDI are significantly positive.
This finding shows that the introduction of FDI did not pro-
duce a “pollution haven” effect but instead brought many
advanced experience, technology, and management models,
which improved the urban ecological efficiency. Moreover,
technological innovation had a strong positive impact on the
ecological efficiency of local cities, but it had a significant
negative impact on the ecological efficiency of neighboring
cities, which could be explained by the “rebound effect” (Bye

et al. 2018). Specifically, technological innovation has im-
proved the resource utilization efficiency of local cities; how-
ever, for neighboring cities, the improvement of resource uti-
lization efficiency will further expand the demand for re-
sources, thereby offsetting the resource consumption saved
by technological innovation.

Robustness test

With reference to the relevant literature, we conducted robust-
ness tests on the above main results from the following two
aspects to ensure the reliability of the research conclusions
(Zheng et al. 2014). First, we introduced the first-order lag
term of the explained variable to investigate the influence of
factors other than the explanatory variable on the explained
variable. Moreover, we used the number of industrial enter-
prises above a designated size to characterize the level of
industrial agglomeration to test the robustness of the model.

The first-order lag term of the explained variable was sig-
nificantly positive, which showed that the changes in ecolog-
ical efficiency had strong time inertia (Table 9). The U-shaped
relationship between ecological efficiency and industrial ag-
glomeration was supported, and environmental regulations
could still promote the improvement of ecological efficiency,
indicating that the above research conclusions were reliable.
In fact, this paper evaluated the impact of industrial agglom-
eration and environmental regulation on urban ecological ef-
ficiency based on three spatial weight matrices, which also
verified the robustness of the model to a certain extent.

Spatial stratified heterogeneity assessment

With the development and popularization of positioning and
observation technologies, whether at a finer or larger research

Table 8 Direct effects and spillover effects

Explanatory
variables

W1 W2 W3

Direct effect Spillover effect Direct effect Spillover effect Direct effect Spillover effect

IND −0.1695***
(−2.6444)

−0.5863***
(−3.3172)

−0.2233***
(−3.4952)

−0.6641
(−1.6541)

−0.2078***
(−3.2233)

−0.3118
(−1.2055)

IND2 0.0095** (1.9548) 0.4218***
(3.2419)

0.0129***
(2.6656)

0.0405 (1.4080) 0.0122*** (2.5659) 0.1940 (1.2706)

ER 0.0610***
(12.7235)

0.0388** (1.8054) 0.0559***
(11.8667)

0.0308***
(2.5102)

0.0606***
(12.0427)

0.0553***
(1.9926)

TRA −0.0145*
(−1.6531)

−0.2800***
(−2.3789)

−0.0147***
(−1.6434)

−0.1236***
(−4.4223)

−0.0169* (−1.8109) −0.2043***
(−2.3070)

POP −0.0407 (−1.3401) −0.2989 (−1.0376) −0.0712***
(−2.3535)

0.2563***
(3.4314)

−0.0691**
(−2.2129)

0.1409 (0.7629)

FDI 0.0126***
(4.0636)

0.2730***
(3.5003)

0.0140***
(4.5684)

0.0363***
(3.1790)

0.0132***
(4.1751)

0.2138***
(3.9505)

TEC 0.0183***
(2.8370)

−0.0554 (−0.9002) 0.0148*** (2.1586) −0.0258*
(−1.7703)

0.0197***
(2.8412)

−0.077**
(−2.1229)
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scale, the problem of spatial stratified heterogeneity has be-
come prominent (Wang et al.2010). Spatial stratified hetero-
geneity, referring to the within-strata variance less than the
between strata variance, is a unique geographical phenome-
non. Considering that ecological efficiencymay have a certain
spatial stratified heterogeneity, we need to measure it with a
geographical detector model and explain its reasons.

The results showed that all explanatory variables passed
the 0.01 significance test (Table 10). Among them, the q
values of IND, IND2, and ER were 0.1799, 0.1897, and
0.1659, respectively, which had the most significant impacts
on urban ecological efficiency. On the one hand, industrial
agglomeration has strong technology and management spill-
over effects and is an important engine for promoting econom-
ic development and improving ecological efficiency. On the
other hand, due to excessive emissions and lack of supervi-
sion, although industrial agglomeration has promoted eco-
nomic development, it has also led to environmental pollution
and ecological damage. It is worth noting that the q value of
POP was relatively small, indicating that the distribution pat-
terns of ecological efficiency and population density had cer-
tain spatial differences.

The interaction detection of seven explanatory variables
found that the interaction term of the explanatory variable
had a higher impact on ecological efficiency than a single
explanatory variable (Table 11). For example, the impact of
IND on ecological efficiency was 0.1799, and the impact of

the interaction term of IND and ER on ecological efficiency
was 0.2786. This result shows that urban ecological efficiency
is affected by multiple factors, and it is necessary to compre-
hensively utilize industrial agglomeration, environmental reg-
ulation, technological innovation, and other approaches to re-
duce environmental pollution and improve ecological
efficiency.

Conclusions and discussion

For any country, ecological efficiency and economic develop-
ment are double-edged swords. It is inevitable to sacrifice the
ecological environment in exchange for economic develop-
ment, especially in developing countries where science and
technology are relatively backward. Despite these facts, when
faced with rapid economic development, we can still achieve
green and coordinated development through environmental
regulations and industrial agglomeration. This paper explored
the spatial and temporal distribution patterns of ecological
efficiency in 269 cities in China from 2008 to 2017 and its
internal driving mechanism through the Super-SBM-DEA
model and ML index. In addition, combined with the spatial
Durbin model under different weight matrices, we investigat-
ed the direct and spillover effects of industrial agglomeration
and environmental regulations on urban ecological efficiency.
Furthermore, we also explore the spatial stratified

Table 9 Robustness test

Explanatory variables Traditional panel model Spatial Durbin model with fixed effect

W1 W2 W3

EE(-1) 0.8953*** (103.5227) 0.4040*** (20.8695) 0.4071*** (21.0250) 0.4146*** (21.5591)

IND −0.0334* (−1.6901) −0.1290** (1.9650) −0.1884*** (−2.9444) −0.1816*** (−2.7831)
IND2 0.0035*** (1.9317) 0.0077* (1.7599) 0.0120*** (2.4725) 0.0121*** (2.4607)

ER 0.0166*** (6.4628) 0.0465*** (9.6963) 0.0438*** (9.3614) 0.0474*** (9.7737)

TRA −0.0117** (−3.4796) −0.0519*** (−5.3762) −0.0564** (−5.9178) −0.0538*** (−5.5841)
POP 0.0145 (1.2793) −0.0706** (−2.1405) −0.0935*** (−2.8184) −0.0926*** (−2.8913)
FDI 0.0047*** (2.4359) 0.0108*** (3.4948) 0.0122*** (3.9231) 0.0113*** (3.1790)

TEC 0.0030 (0.6465) 0.0059** (1.9031) 0.0044 (0.6771) 0.0067 (1.0406)

W*EE(-1) 0.2044* (1.6066) 0.0475 (1.0194) 0.1065 (0.9169)

W*IND −1.2301** (−2.8146) −0.1010 (−0.5615) −0.5209(−0.9189)
W*IND2 0.0897*** (2.7799) 0.0048 (0.3969) 0.0300 (0.8305)

W*ER −0.0127 (−0.8652) 0.0039 (0.4606) −0.0104 (−0.6833)
W*TRA −0.1813*** (−4.0347) −0.0972*** (−4.4563) −0.1981*** (−3.9990)
W*POP −0.13962 (−1.5619) 0.1154* (1.8728) −0.0583 (−0.5106)
W*FDI 0.0785*** (4.0089) 0.0215*** (2.5360) 0.0941*** (3.1790)

W*TEC 0.00258 (0.1232) −0.0091 (−0.7163) −0.0196 (−0.8269)
R2 0.870 0.9136 0.9127 0.9125

sigma2 0.0084 0.0085 0.0085

Log-L 2479.3555 2465.6947 2465.3065
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heterogeneity of ecological efficiency and its driving factors
through the geographic detector model. We hope that this
research provides a reference for improving the ecological
efficiency of China and other developing countries.

First, we found that due to differences in industrial structure
and production efficiency, China’s urban ecological efficiency
had strong temporal and spatial heterogeneity, and the spatial
pattern of “high in the east and low in the west” was the most
prominent, which was consistent with the research of Zhang
et al. (2011). The change point of China’s urban ecological
efficiency was 2012. Specifically, ecological environmental
changes have strong accumulation and lag, and the
environmental damage caused by industrialization and
urbanization could not be reflected immediately, which led
to structural changes in ecological eff iciency in
approximately 2012. Due to the different life cycles of cities,
the internal evolution mechanism of urban ecological
efficiency had significant differences. TECH, PEFFCH, and
SECH contributed the most to the ecological efficiency of the
eastern, central, and western regions, respectively. Relatedly,
Yasmeen et al. (2020) used the SBM-DEA model, combined
with energy-saving emission reduction and economic devel-
opment data, to prove that the relatively high level of technol-
ogy in eastern China has a strong promotion effect on the
ecological environment.

Second, the industrial agglomeration coefficient under the
traditional panel model was significantly smaller than the co-
efficient under the W1, W2, and W3 matrices. This finding
shows that if spatial and economic factors are not considered,
the impact of industrial agglomeration on urban ecological
efficiency will be underestimated. During the study period,
the level of industrial agglomeration in China was relatively
low, which inhibited the growth of urban ecological efficien-
cy. However, as the scale and intensity of industrial

agglomeration continue to increase, it can effectively break
through the “Solo Paradox” and improve urban ecological
efficiency. Similarly, Chen et al. (2020) found that further
expansion of industrial agglomeration can reduce environ-
mental pollution and improve ecological efficiency. Under
the W1, W2, andW3 matrices, the coefficients of environmen-
tal regulation were 0.0609, 0.0551, and 0.0599, respectively,
and all passed the 0.01 significance test, which was consistent
with most existing studies (Wang et al. 2019).

Third, the direct effect of industrial agglomeration on urban
ecological efficiency had a significant U-shaped relationship.
However, the spillover effect of industrial agglomeration may
have strong distance sensitivity, leading to its failure to pass
the significance test under the economic distance matrix and
the asymmetric economic distance matrix. In other words, the
introduction of economic factors has weakened the distance
sensitivity of industrial agglomeration to the ecological effi-
ciency of neighboring cities. Moreover, the direct and spill-
over effects of ER under the W1, W2, and W3 matrices were
significantly positive, which was consistent with the expected
results. Specifically, under the W1, W2, and W3 matrices, for
every 1% increase in the intensity of environmental regula-
tions, the ecological efficiency of local cities will increase by
0.0601%, 0.0559%, and 0.0606%, respectively, and that of
the neighboring cities will increase by 0.0388%, 0.0308%,
and 0.0553%, respectively. This result shows that the “inno-
vation compensation effect” formed by environmental regula-
tions is greater than the “compliance cost,” which verifies the
applicability of the “Porter Hypothesis” in urban ecological
efficiency to a certain extent.

Finally, the model test demonstrated that the current infra-
structure construction in China consumes many resources and
cannot produce traffic network effects in a short time, which
may not be conducive to the improvement of urban ecological

Table 10 The q-statistic values and p values for the ecological efficiency determinants from the factor detector

Explanatory variables IND IND2 ER TRA POP FDI TEC

q-statistic 0.1799 0.1897 0.1659 0.0491 0.0210 0.1078 0.1094

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 11 Detection of interaction factors of ecological efficiency

Explanatory variables IND IND2 ER TRA POP FDI TEC

IND 0.1799

IND2 0.1971 0.1897

ER 0.2786 0.2893 0.1659

TRA 0.1977 0.2095 0.1835 0.0492

POP 0.2253 0.2330 0.2177 0.1021 0.0210

FDI 0.2153 0.2176 0.2107 0.1234 0.1504 0.1078

TEC 0.2597 0.2486 0.2216 0.1473 0.1507 0.1791 0.1094
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efficiency. The introduction of FDI did not produce a “pollu-
tion paradise effect” but instead brought advanced experience,
technology, and management models to improve urban eco-
logical efficiency. Technological innovation has improved the
ecological efficiency of local cities, but due to the “rebound
effect,” it has expanded the resource demand of neighboring
cities, resulting in a significantly negative spillover effect. In
addition, the geographical detector shows that each variable
has a certain impact on the urban ecological efficiency, and
the impact of the interaction term is greater than that of a
single variable.

Policy recommendations

(1) Optimize the allocation of resources and promote the
coordinated development of urban ecological efficiency.
Due to the industrial foundation and location advantages,
China’s urban ecological efficiency has strong temporal
and spatial heterogeneity, which has become an impor-
tant factor restricting the coordinated development of
regions. As a high-value area of ecological efficiency,
the eastern region should give full play to its leading role
and strengthen cooperation with the central and western
regions in ecological governance. The central and west-
ern regions should pay attention to pollution control
while developing the economy, and actively learn from
the advanced pollution control technologies and experi-
ence of the eastern region. In addition, it is necessary to
optimize the allocation of resources through industrial
transfer and talent introduction measures to improve
the level of technological progress and scale efficiency
in the central and western regions, and promote the co-
ordinated and efficient development of urban ecological
efficiency.

(2) Expand the scale of industrial agglomeration and opti-
mize the industrial structure. Our research shows that
industrial agglomeration and ecological efficiency have
a certain U-shaped relationship, that is, only when indus-
trial agglomeration breaks a certain threshold can the
ecological efficiency of local and neighboring cities be
improved. Therefore, it is necessary to further utilize the
industrial agglomeration advantages of major urban ag-
glomerations, extend the industrial chain, broaden the
value chain, and help more cities cross the “turning
point” of industrial agglomeration through the develop-
ment of specialization and clustering. In addition, con-
sidering that ecological efficiency has strong spatial au-
tocorrelation and spillover effects, policy makers must
eliminate local protectionism, lay out industrial develop-
ment from the perspective of regional integration, and
strengthen information sharing and exchanges and coop-
eration between cities.

(3) Strengthen environmental regulations and pollution con-
trol investment. Appropriate environmental regulations
can effectively expand the “innovation compensation ef-
fect,” accelerate technology transfer and knowledge ex-
change between enterprises, enhance product competi-
tiveness, and improve urban ecological efficiency.
However, due to performance appraisal and job promo-
tion, local governments have lowered environmental reg-
ulatory requirements in pursuit of economic develop-
ment. This is not only not conducive to industrial trans-
formation and upgrading, but also hinders the improve-
ment of urban ecological efficiency to a certain extent.
Therefore, local governments should transform the eco-
nomic growth mode, regard environmental protection as
an important assessment indicator, and vigorously devel-
op high-tech and clean energy. Meanwhile, it is neces-
sary to establish appropriate environmental regulatory
policies, eliminate backward production capacity and
high-polluting enterprises, promote enterprises to carry
out technological innovation, and expand the “innova-
tion compensation effect” of environmental regulation.

The limitations of this study are as follows: on the one
hand, we did not consider the impact of different types of
industrial agglomeration and environmental regulations on ur-
ban ecological efficiency. Previous studies have shown that
different types of industrial agglomeration may produce vary-
ing externalities (e.g., Marshall–Arrow–Romer, Porter, and
Jacobs externalities). Therefore, we should pay attention to
whether different types of industrial agglomeration and urban
ecological efficiency still follow a U-shaped relationship, and
which type of industrial agglomeration can maximize urban
ecological efficiency. On the other hand, our research shows
that ecological efficiency is affected by multiple factors. How
to construct a more reasonable ecological efficiency evalua-
tion system and choose a more appropriate evaluation model
is the focus of future research.
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