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Abstract
The rapid modernization of the transportation sector has greatly escalated many problems, especially the high energy consump-
tion and vehicle exhaust pollution. How to reduce pollution in the transportation sector has attracted widespread attention in
recent years. Based on a balanced panel dataset of 30 Chinese provinces spanning the period of 2005–2017, this study attempts to
investigate the influence of technological innovation on the energy-environmental efficiency of the transportation sector (EETS)
using the spatial econometric approach. The empirical results suggest that first, transportation-related technological innovation
and EETS exhibited obvious hot spots and cold spots at the provincial level in China. Second, technological innovation could
facilitate the energy-environmental efficiency of transportation sector in China. Third, one province developing transportation-
related technological innovations might promote EETS in its neighboring provinces. Fourth, the transportation-related techno-
logical innovation in eastern China could boost EETS, while the transportation-related technological innovation in central and
western China had a rebound effect on EETS. One possible innovation is that this study extends the relationship between
technological innovation and energy-environmental efficiency to the transportation sector.

Keywords Technological innovation . Energy-environmental efficiency . Transportation sector . Spatial econometric model .

DEAmodel . China

Introduction

Accelerated development in the global economy has brought
many serious problems, among which environmental pollu-
tion, ecological destruction, and resource shortage have be-
come global crises (Landrigan et al. 2018; Zhu et al. 2020).
Energy-environmental efficiency is a cost-effective means to
ameliorate the energy-shortage situation, cut pollution emis-
sions, and protect the ecological environment, thus enabling to
attain sustainable development goals (Malinauskaite et al.
2020). China’s transportation sector has made astounding ad-
vances over the last two decades, but it has a high dependence

on energy sources, therefore, facing increasing environmental
pressure (Dong and Liu 2020; Hua et al. 2021). Figure 1 ex-
hibits that the count of private car in China soared from 18.48
million in 2005 to 185.15 million in 2017. Transportation-
related CO2 emissions in China increased rapidly from 337.8
million tons in 2005 to 696.3 million tons in 2017. The ratio of
transportation-related CO2 emissions (TCEs) to total CO2

emissions showed an upward trend from 2005 to 2017.
Notably, the annual growth rate of TCEs was obviously
higher than that of total CO2 emissions, except in 2010,
2011, and 2013 (Fig. 1). Hence, how to raise EETS is one of
the core issues to be solved for China’s sustainable develop-
ment (Martínez et al. 2019).

In response to environmental pollution, the Chinese gov-
ernment has issued a basket of transportation targets and pol-
icies for the transition to low-carbon travel. For instance, in
2015, the Ministry of Transport of China proposed that new
energy vehicles will be given priority in public transportation.
In 2019, the Chinese government issued the Outline for
Building a Powerful Transportation Country. This outline
pointed out that China’s transportation sector should optimize
the transportation energy structure and promote the
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application of new and clean energy. Besides, some re-
searchers have thrown light on the measures of energy effi-
ciency in the transportation sector (Cui and Li 2014; Zhang
et al. 2020a; Zhu et al. 2020). Although evidence on the im-
pact of technological innovation on energy efficiency has
been documented in some studies (Irandoust 2019; Ohene-
Asare et al. 2020; Sohag et al. 2015; Wang and Wang
2020), there are very few detailed investigations of the rela-
tionship between technological innovation and energy-
environmental efficiency in the transportation sector. Thus,
based on a balanced panel dataset of 30 Chinese provinces,
this study seeks to elaborate the relationship between
transportation-related technological innovation and EETS
using the spatial econometric approach.

Compared to extant literature, this study has two new con-
tributions. First, this work brings insights on the effect of
technological innovation on energy efficiency in the transpor-
tation sector, which, despite its significance for sustainable
development, has rarely been paid attention to in existing
studies. Second, this work is related to the small but growing
literature on economic geography (Song et al. 2018; Zhang
et al. 2018). The development of the transportation sector is
closely related to economy, population, and natural environ-
ment, which makes the transportation sector spatially depen-
dent in real life, but the spatial agglomeration of the transpor-
tation sector has received little attention in previous studies. In
this study, the geographical space adjacency is taken into ac-
count when examining the influence of transportation-related
technological innovation on EETS.

The remainder of the study proceeds: “Related literature”
reviews related literature from two aspects: methods applied to
measure energy efficiency and the influence of technological
innovation on energy efficiency; “Variable construction and
empirical models” describes the variable construction and

empirical models; “Results” and “Discussion” show and dis-
cuss the estimated results of the spatial econometric approach;
“Conclusions and implications” is the conclusions and
recommendations.

Related literature

Methods applied to measure energy efficiency

In general, the indicators used for measuring energy efficiency
can be divided into single-factor indicators (SFIs) and total-
factor indicators (TFIs). SFIs include monetary energy effi-
ciency indicators and physical indicators (Bhadbhade et al.
2020). The monetary energy efficiency indicators are mainly
constructed by the energy consumption/economic output. For
instance, Irandoust (2019) used the energy consumption/GDP
to proxy energy performance. The physical indicators relate
the total energy consumed to some physical activities (Zuberi
et al. 2020; Ren et al. 2020). For instance, Malinauskaite et al.
(2020) used the energy consumption indicators to study the
industrial energy performance in the European Union,
Slovenia, and Spain respectively, and they found that
Slovenia and Spain, which are highly dependent on imported
energy, have shown great potential for improving energy ef-
ficiency. It is worth noting that single factor indicators are
mostly result-oriented, therefore, failing to consider the entire
input-output process of production.

The DEAmodels that perform well in complex systems are
widely utilized to define TFIs (Chen and Xu 2019; Li et al.
2021; Ohene-Asare et al. 2020; Song et al. 2018). Using the
spatial two-stage DEA approach, Simona et al. (2019) sur-
veyed the environmental and energy efficiency for EU elec-
tricity industry in the period of 2006–2014, and they found
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Fig. 1 Transportation CO2

emissions and private car count in
China, 2005–2017. Note:
GRTCEs represents the growth
rate of TCEs; GRTotal means the
growth rate of total CO2

emissions; GRTCEs and GRTotal
are based on the previous year.
Total represents total CO2

emissions; PCC is the private car
count. TCEs/Total denotes the
ratio of transportation-related
CO2 emissions to total CO2

emissions. Source: CSY (n.d.);
CESY (n.d.)
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that there is a two-way influence between environmental reg-
ulations and total-factor productivity. Besides, in real life,
there are not only desirable outputs (GDP) but also undesir-
able outputs (environmental pollution) after energy consump-
tion. To this end, some researchers have developed the DEA
model with undesirable output, but the traditional undesirable
DEA model cannot sort the effective decision-making units.
Accordingly, Andersen and Petersen (1993) developed an un-
desirable super-SBM model that performs well in the ranking
of decision-making units. Using the DEA model, Iram et al.
(2020) investigated energy and environmental efficiency in
OECD countries.

As for the transportation sector, existing literature mostly
utilizes DEA models to evaluate energy efficiency. For exam-
ple, Cui and Li (2014) used the three-stage virtual frontier
DEA mode to assess the EETS in China during 2003–2012,
and they found that transport structure and management
measures obviously affect EETS. Taking the 30 Chinese
provinces as an example, Zhang et al. (2020a) studied the
growth-adjusted energy efficiency in the transportation sector
through the Metaglobal frontier DEA model. They found that
the EETS in central China is relatively high. Based on the
improved DEA mode, Zhu et al. (2020) found that some eco-
nomically developed regions in China have poor sustainable
transportation efficiency.

Technological innovation and energy efficiency

According to the neoclassical growth theory, the key
factors affecting aggregate production output are labor,
capital, and technological change (Solow 1999). In prac-
tical terms, technological change consists of developing
new technologies and updating old technologies
(Kopytov et al. 2018). Updating old technologies aims
to improve existing technologies, and developing new
technologies aims to create technologies that do not
currently exist. Technological innovation can reduce
the energy intensity of production enterprises, therefore,
enabling to drive energy efficiency (Irandoust 2019).
Numerous researchers have investigated the influence
of technological innovation on energy efficiency, and
they detected a positive influence. For example, Sohag
et al. (2015) utilized the autoregressive distributed lag
to examine how technological innovation affects energy
use in Malaysia, and they revealed a negative impact.
Using the structure vector auto-regression, Pan et al.
(2019) demonstrated that technological innovation con-
tributes significantly to energy efficiency. Taking 46
African countries as an example, Ohene-Asare et al.
(2020) analyzed the relationship between energy
efficiency and economic development, and they
empirically found a positive influence. Taking a
woolen textile facility as an example, Ozturk et al.

(2020) explored whether appropriate techniques can re-
duce energy consumption and air emissions. They con-
firmed that the energy consumption and pollutant emis-
sions in the woolen textile facility can be reduced by
12–28% and 23–45% respectively due to the application
of energy efficiency technologies. Based on the China–
Japan comparison, Liao and Ren et al. (2020) investi-
gated the effects of energy-biased technology on energy
efficiency, and they argued that technological innovation
in China’s manufacturing industry positively affects the
energy efficiency at this stage. Using the Meta-frontier
DEA model, Feng and Wang (2018) investigated the
TEE in China during 2006–2014, and they proposed
that technological progress has driven significant im-
provements in transport energy efficiency.

Besides, technological innovation can develop energy-
biased technology, improve the efficiency of energy resource
utilization, and thus cut energy prices. In a market economy,
the reduction of energy prices is bound to bring about an
increase in energy demand. This energy demand increase is
referred to as the rebound effect or Jevons paradox, as it off-
sets the drop in energy demand caused by increased efficiency
(Aydin et al. 2017; Sheng et al. 2019). Evidence of the re-
bound effect has been documented in a number of studies.
Taking China’s transportation sector as an example, Liu
et al. (2018) calculated the energy rebound effect in the period
of 1981–2015 using the translog production function, and
they reported that there is an energy rebound effect in
China’s transportation sector, with an average rebound effect
of 68.3%. Yu (2020) found that technological innovation has
no significant effect on total-factor energy efficiency in China.
Based on the Chinese 284 cities, Wang and Wang (2020)
studied how technological innovation affects energy efficien-
cy through the system GMM model, and they suggested that
technological innovation negatively affects the energy
efficiency in the central region. Using the Geographically
Temporally Weighted Regression, Zhang et al. (2020b) sur-
veyed the driving factors of China’s energy efficiency during
2000–2015, and they detected a negative influence of techni-
cal level on the energy efficiency in the western region.

Summary of the literature review

Surveying prior studied on technological innovation and en-
ergy efficiency, we found that to date, studies investigating the
influence of technological innovation on energy efficiency
have produced equivocal results. Moreover, very few re-
searchers pay attention to how technological innovation af-
fects energy-environmental efficiency in the transportation
sector, while the transportation sector is commonly regarded
as the industry with high energy consumption and high envi-
ronmental pollution. Notably, existing studies on technologi-
cal innovation and EETS focus on the technological progress
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of the whole society, and none of them focus on
transportation-related technological innovation in their inves-
tigation. In addition, in real life, the development of the trans-
portation sector is significantly influenced by spatial location,
but the spatial agglomeration of the transportation sector has
rarely been considered in previous studies. Therefore, this
study attempts to find out the impact of transportation-
related technology innovation on EETS using the spatial
econometric approach.

Variable construction and empirical models

Variable construction

Dependent variable

The dependent variable is set as EETS. The basic idea of this
study to assess energy-environmental efficiency is to mini-
mize the undesirable output (transportation-related CO2 emis-
sions) in the case of maximizing desirable output (transporta-
tion-related GDP). Figure 2 shows the diagram of EETS.

Suppose there are n decision-making unitsDMUj(j = 1, 2,
3,…, n), m inputsU = [u1, u2,…, un] ∈ Rm × n, s1 desirable
outputsOg ¼ og1; og2;…; ogn

� �
∈Rs1�n, and s2 undesirable out-

puts Ob ¼ ob1; ob2;…; obn
� �

∈Rs2�n. The production possibili-
ty set is expressed by Eq. (1):

P ¼ u; og; ob
� �

u≥Uξ; og ≤Oξ; ob≥Oξ; ξ≥0
��� � ð1Þ

where ξ represents the non-negative intensity vector.
Following Tone (2004), we constructed the SBM model with
undesirable output as follows:

θ* ¼ min
1−

1

m
∑
m

i¼1

si
ui0

1þ 1

s1 þ s2
∑
r¼1

s1 sgr
ogr0

þ ∑
r¼1

s2 sbr
obr0

	 


s:t:

u0 ¼ Uξ þ s
ob0 ¼ Obξ þ sb

og0 ¼ Ogξ−sg

sb≥0 ; s≥0 ; sg ≥0; ξ≥0

8>>><
>>>:

ð2Þ

where θ∗ is the calculated efficiency score of DMU, and it
has a range of [0,1]. s is the input slack vector. sg and sb are
output slack vectors. Using Charnes-Cooper transformation,
we transformed the nonlinear Eq. (2) into the linear Eq. (3):

φ* ¼ min k−
1

m
∑
m

i¼1

si
ui0

 !

s:t

k þ 1

s1 þ s2
∑
r¼1

s1 sgr
ogr0

þ ∑
r¼1

s2 sbr
obr0

	 

¼ 1

ku0 ¼ ϑU þ s
kob0 ¼ ϑOb þ sb

kog0 ¼ ϑOg−sg

sb≥0 ; s≥0 ; sg ≥0
ϑ≥0 ; k≥0

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

It is worth noting that there will be multiple DMUs whose
efficiency score is 1 when Eq. (3) is performed. In other
words, Eq. (3) fails in discriminating those effective DMUs.
To this end, we improved Eq. (3) and constructed the unde-
sirable super-SBMmodel (Andersen and Petersen 1993; Tone
2002):

η* ¼ min

1

m
∑
m

i¼1

ui
ui0

1

s1 þ s2
∑
r¼1

s1 o
g

r

ogr0
þ ∑
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b
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0
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g
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b
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g
≥0; ξ≥0

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where η∗ is the calculated efficiency score of DMU, and
η∗ ≥ 0. In our case, the transportation-related inputs and
outputs were assumed to be constant returns to scale.
Following Zhang et al. (2020a) and Zhu et al. (2020), inputs
U = [u1, u2, … , un] ∈ Rm × n in our case are set to
transportation-related capital (tcapit), transportation-related la-
bor (tlabor), and transportation-related energy consumption

Fig. 2 Diagram of EETS
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(tconsu); desirable output Og ¼ og1; og2;…; ogn
� �

∈Rs1�n is

transportation-related GDP (tgdp); undesirable output Ob ¼
ob1; ob2;…; obn
� �

∈Rs2�n is transportation-related carbon emis-
sions (tcarbo). The data on tgdp, tcapit, and tlabor are obtained
by CSY. The data on tcarbo was calculated by the fuel-based
carbon footprint model (Appendix 1) Appendix Table 8.

Explanatory variable

Inconsistent with existing related research, the techno-
logical innovation in this study refers to transportation-
related technological innovation rather than the techno-
logical innovation of the whole society. Transportation-
related technological innovation (TTI) is considered as
the main explanatory variable. Various proxy measures
of technological innovation are available in previous
studies, such as the number of patent applications, re-
search and development investment, and technological
progress (Omri and Bel Hadj 2020; Zameer et al.
2020). Following previous research (Ahmad et al.
2020; Yasmeen et al. 2020), the number of the
transportation-related patent is used as the proxy for
transportation-related technological innovation. The
transportation-related technology in this study involves
five aspects, namely general vehicle, railway, trackless
land vehicle, ship-related equipment, and aircraft
(Table 1). Using the International Patent Classification
(IPC) code, we obtained the counts of transportation-
related patents from the official search website (http://
pss-system.cnipa.gov.cn/).

Control variables

Based on the previous studies and data availability, this study
selects three socio-economic indicators as control variables,
namely GDP per capita, industrial agglomeration, and urban-
ization level.

(1) GDP per capita (PGDP). Regions with high GDP per
capita generally have advanced energy utilization tech-
nologies and pay more attention to environmental regu-
lations. Extensive studies have confirmed the positive

relationship between GDP per capita and energy effi-
ciency (Lv et al. 2020; Ohene-Asare et al. 2020).

(2) Industrial agglomeration (IA). Industrial agglomeration
is beneficial to shorten the distance of transportation and
improve transportation efficiency. Besides, industrial ag-
glomeration leads to pollution agglomeration aggravat-
ing regional environmental pollution (Dong et al. 2020).
Following Morrissey (2014), this study uses the location
quotient index to calculate industrial agglomeration:

IAi ¼
indui= ∑

n

i¼1
indui

GDPi= ∑
n

i¼1
GDPi

ð5Þ

where indui denotes the added value of the secondary
industry in province i. n stands for the count of prov-
inces. GDPi represents the GDP of province i.

(3) Urbanization level (UL). Regions with high levels of
urbanization generally have good transportation infra-
structure. In addition, rapid urbanization leads to lower
woody plant coverage and more energy consumption,
which is not conducive to emission reduction (Dong
et al. 2019). The level of urbanization is represented by
the share of the urban population in the total population
of the province.

Data sources

The study area (Appendix Figure 8) includes a representative
sample of 30 Chinese provinces (Tibet, Hong Kong, Macau,
and Taiwan are not included due to lack of data). 2005 was an
important time point for China’s CO2 emissions since China’s
per capita CO2 emissions after 2005 were significantly higher
than the world level. Thus, the time span of the sample in this
study is from 2005 to 2017. Besides, the data on tcapit, tgdp,
and PGDP is converted into the 2005 constant price. Table 2
details the statistical description and data sources for the above
variables. The data on PGDP, IA, and UL are collected by
CSY. Figure 3 illustrates the analytical framework of this
study.

Table 1 Patent IPC code related
to transportation Energy type IPC codes

Transportation-related technological innovation General vehicle B60

Railway B61

Trackless land vehicle B62

Ship-related equipment B63

Aircraft; aviation; space navigation B64
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Empirical models

In this section, the empirical models used to explore how
transportation-related technological innovation influences
EETS are presented. First, we examined whether EETS and
transportation-related technological innovation are spatially
dependent. Through the spatial autocorrelation model, we
conducted a spatial autocorrelation test on transportation-
related technological innovation and EETS (“Spatial autocor-
relation test”). Then, we sought to find out the relationship
between transportation-related technological innovation and
EETS using the spatial panel econometric approach (“Model
for assessing the influence of transportation-related technolog-
ical innovation on EETS”).

Spatial autocorrelation test

Spatial autocorrelation test consists of the global Moran’s I
(MIglobal) and local Moran’s I (MIlocal) (Moran 1953). The
MIglobal assesses the spatial dependence of the overall study
region (Dong et al. 2019), and the MIlocal focuses on the local
regions:

MIglobal ¼
n ∑

n

i¼1
∑
n

j¼1; i≠ j
Wij X i−X
� �

X j−X
� �

∑
n

i¼1
∑
n

j¼1; i≠ j
Wij

 !
∑n

i X i−X
� �2

MIlocal ¼
n X i−X
� �

∑
n

j¼1; i≠ j
Wij X j−X
� �

∑n
i X i−X
� �2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6Þ

where X means variables (i.e., EETS and TTI). Xi and Xj
respectively represent the X in area i and area j. n stands for the

count of regions. X is the mean value of X among the n
regions. Wij means the spatial weight, which defines the spa-
tial relationship among regions. Considering the characteris-
tics of the transportation sector, the spatial adjacent weight
matrix was used to define the spatial relationship of regions
in our case:

Wij ¼ 1 if area i and area j are adjacent
0 if area i and area j are not adjacent


ð7Þ

The estimated results of MIlocal exhibit four types of clus-
ter: High-High (hot spot), High-Low, Low-Low (cold spot),
and Low-High. The High-High cluster means that provinces
with high EETS are surrounded by neighbors with high EETS.
The High-Low cluster suggests that provinces with high
EETS are surrounded by neighbors with low EETS.

Model for assessing the influence of transportation-related
technological innovation on EETS

Spatial panel econometric model is an improved panel ordi-
nary least square model (POLS), which considers spatial de-
pendence in explanatory variables, explained variable, and
error term (Wang and Zhu 2020). The spatial panel lag model
(SPLM) captures the spatial dependence in the explained var-
iable; the spatial panel error model (SPEM) captures the spa-
tial dependence in the error term; the spatial panel Dubin
model (SPDM) captures the spatial dependence in explanatory
and explained variables (Zhu et al. 2019). The spatial panel
econometric model was constructed by Eq. (8):

Table 2 Statistical description
and data sources of the variables Indicators Variables Unit Mean Max. Min. S.D.

Explained variable EETS - 0.51 1.38 0.10 0.29

Main explanatory variable TTI Item 3,562.02 46,711.00 5.00 6,138.48

Control variables PGDP 103 yuan 38.74 128.99 5.05 24.18

IA - 0.97 1.21 0.44 0.16

UL % 52.96 89.60 26.87 13.94

Fig. 3 Analytical framework
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yit ¼ αi þ βX
!

it þ π ∑
n

j¼1
Wijyjt þ χ ∑

n

j¼1
Wij X

!
jti þ eit

eit ¼ γWeit þ εit

8<
: ð8Þ

where yit denotes explained variable. X
!

it means the vector
consisting of explanatory variables.Wij is the spatial weight matrix
obtained by Eq. (7). β denotes the coefficient. αi is the constant.
Parameters π,χ, and γ represent the spatial regression coefficients.
eit denotes the error term.Whenπ=χ= γ= 0, Eq. (8) is the POLS
model; when π ≠ 0, χ = γ = 0, Eq. (8) represents the SPLM
model; when π = χ = 0, γ ≠ 0, Eq. (8) is the SPEMmodel; when
π ≠ 0, χ ≠ 0, γ = 0, Eq. (8) is transformed into the SPDMmodel
(Zhu et al. 2019; Zhu et al. 2020a).According toEq. (8), the spatial
panel econometric model of transportation-related technological
innovation on EETS was constructed:

EETSit ¼ αi þ β1TTI it þ β2PGDPit þ β3IAit þ β4ULit þ ψ ∑
n

j¼1
WijEETSjtþ

ϖ1 ∑
n

j¼1
WijTTI it þϖ2 ∑

n

j¼1
WijPGDPit þϖ3 ∑

n

j¼1
WijIAit þϖ4 ∑

n

j¼1
WijULit þ eit

eit ¼ τWeit þ εit

8>>>><
>>>>:

ð9Þ

Results

Spatial characteristics of EETS

According to Eq. (4), the energy-environmental efficiency in
China’s transportation sector was evaluated (see Fig. 4). We

selected three time points in 2005, 2011, and 2017 (i.e.,
starting, intermediate, and ending points) to draw the spatial
patterns of EETS in China. In general, the annual average
value of EETS exhibited a downward trend, dropping from
0.563 in 2005 to 0.473 in 2017. Figure 5a–c illustrates that
there were obvious spatial distribution differences in China’s
provincial-level EETS in 2005, 2011, and 2017. To be specif-
ic, eastern China, such as Hebei, Tianjin, Shandong, Fujian,
and Jiangsu, had relative advantages in the EETS. The aver-
age values of EETS for these provinces were all above 0.7,
suggesting that these provinces were more effective in terms
of transportation-related energy inputs and outputs. The prov-
inces with low EETS, such as Xinjiang, Yunnan, Sichuan,
Qinghai, Guangxi, and Chongqing, were mainly located in
the western region.

Spatial autocorrelation analysis

According to Eq. (6), the spatial autocorrelation model was
established to investigate whether EETS in one province ben-
efits from its neighboring provinces. The MIglobal values of
EETS tended to increase in the study period of 2005–2017
(Fig. 6), indicating that the provincial-level EETS was corre-
lated among neighboring provinces in China. In addition, we
conducted a spatial correlation analysis for the transportation-
related technological innovation. The MIglobal values of TTI
all passed the 5% significance test, suggesting that during the
sample period, the transportation-related technological

Fig. 4 Calculated results of EETS in China, 2005–2017. Notes: Eq. (3) is used to calculate for EETS. Blue indicates eastern China; green represents
central China; yellow denotes western China
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innovation in China had a significant spatial adjacent depen-
dence at the provincial level.

The MIglobal values of EETS and TTI were positive, indi-
cating that there may be hot or cold spots in the EETS and
transportation-related technological innovation. To verify this
conjecture, we conducted the local spatial autocorrelation test
for the EETS and transportation-related technological innova-
tion, as shown in Fig. 7. There were obviously hot and cold
spots in China’s province-level EETS. Specifically, in 2005,
there were High-High cluster (Henan-Shandong), Low-High
cluster (Jiangxi-Jiangsu), and Low-Low cluster (Yunnan-
Guizhou-Sichuan-Chongqing-Gansu) in the EETS (Fig. 7a).
In 2017, the hot-spot area of EETS included Shanxi and

Hebei; the cold-spot area was composed of Xinjiang,
Sichuan, and Qinghai (Fig. 7b).

Besides, in 2005, the transportation-related technological
innovation had three province-level spatial clusters in China
(Fig. 7c), namely High-High cluster (Jiangsu-Shanghai),
Low-High cluster (Anhui-Fujian), and Low-Low cluster
(Xinjiang-Gansu-Ningxia-Sichuan-Inner Mongolia). In
2017, Ningxia and Sichuan exited the Low-Low cluster;
Anhui and Zhejiang joined the High-High cluster; Jiangxi
joined the Low-High cluster; Sichuan joined the High-Low
cluster. These findings suggest that Anhui and Sichuan have
performed well in developing transportation-related techno-
logical innovations. In conclusion, during the study period,

Fig. 5 Spatial pattern of EETS in China
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China’s province-level EETS and transportation-related tech-
nological innovation deviated from the spatial uniform distri-
bution. Considering the spatial difference and correlation, we
used the spatial econometric model to investigate how
transportation-related technological innovation affects EETS
(Fig. 8).

Spatial econometric analysis

Before carrying out spatial econometric analysis, we need to
test the model specification (LeSage and Pace 2009). We first
constructed the non-space model (i.e., POLS model) and then
conducted the LM tests on the non-space model. The estimat-
ed results of the LM tests indicate that the non-spatial model
was not suitable for our case due to its overlook of geographic
spatial differences.

Second, we constructed the spatial econometric model
based on Eq. (9) to investigate how transportation-related
technological innovation affects EETS. The Hausman test of
the spatial econometric model failed the significance level test,
and thus, we considered the spatial econometric model under
the random effect (Table 3). The Wald tests rejected the null
hypotheses at the 5% level, which means that the SPDM

model was suitable for our case. Thus, the SPDM model
was uti l ized to explain the relat ionship between
transportation-related technological innovation and EETS.

As shown in Table 3, the coefficient lnTTI was − 0.111 (t =
− 2.185, p < 0.05), suggesting that the transportation-related
technological innovation was negatively associated with the
EETS. A 1% increase in the transportation-related technolog-
ical innovation would result in a 0.111% decrease in the
EETS. The coefficient lnPGDP was 0.775 (t = 3.870, p <
0.01), implying that the regional economic development con-
tributed to improving the EETS. Every unit increase in the
economic development would contribute to 0.234 units in-
crease in the EETS. The coefficient lnIA means that industrial
agglomeration would cut the EETS in China. The coefficient
lnUL was − 1.498 (t = − 3.812, p < 0.01), suggesting that the
level of urbanization would weaken the EETS in China, and
every unit increase in the urbanization level would reduce the
EETS by 0.190 units. This result is consistent with Lv et al.
(2020), who believed that urbanization level exerts a negative
effect on energy efficiency. In addition, the coefficient
W×lnTTI was positive with a 5% significance level, indicat-
ing that the transportation-related technological innovation of
a province could facilitate the EETS of its adjacent provinces.

(a) 2005 (b) 2017

(c) 2005                                  (d) 2017

Fig. 7 Results of local spatial correlation test for EETS and transportation-related technological innovation in 2005 and 2017. Note: (a) and (b) are
EETS; (c) and (d) are transportation-related technological innovation
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Table 3 Results of the influence
of transportation-related techno-
logical innovation on EETS

Variables Non-space SPDM SPLM SPEM

lnTTI 0.056** (2.582) − 0.111** (− 2.185) − 0.042 (− 1.055) − 0.047 (− 1.100)

lnPGDP − 0.157 (− 1.635) 0.775*** (3.870) 0.146 (1.392) 0.127 (1.149)

lnIA 0.513*** (3.817) − 0.931*** (− 4.559) − 0.693*** (− 3.609) − 0.727*** (− 3.748)

lnUL 0.612*** (2.852) − 1.498*** (− 3.812) − 0.455 (− 1.406) − 0.361 (− 1.094)

intercept 0.280 (0.339) 6.923*** (6.157) 7.534*** (6.542)

W × lnTTI 0.182** (2.402)

W × lnPGDP − 0.125 (− 0.474)

W × lnIA − 0.495 (− 1.405)

W × lnUL 0.869 (1.361)

R2 0.095 0.718 0.700 0.699

σ2 0.251 0.076 0.082 0.082

Nobs 390 390 390 390

Fixed effect N N N N

Random effect N Y Y Y

LM lag 23.644*** - - -

LM error 34.718*** - - -

Robust LM lag 4.100** - - -

Robust LM error 15.392*** - - -

Wald spatial lag - 20.536*** - -

Wald spatial error - 19.169*** - -

Hausman 9.993 (p = 0.351)

Note: lnTTI means the logarithm of the variable TTI, also similar cases for lnPGDP, lnIA, and lnUL. * is p < 0.1;
** means p < 0.05; *** represents p < 0.01. t-statistics in (). “N” denotes no. “Y” means yes

Fig. 8 Map of eastern, central, and western China
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Sensitivity analysis

Testing of time lag

In practical terms, there may be a time lag when
transportation-related technological innovation influences
EETS. Moreover, time lag on explanatory variables can effec-
tively overcome endogenous problems. To this end, we per-
formed a first-order lag and a second-order lag on the explan-
atory variables and re-estimated the foregoing models. Table 4
reveals that the first-order lag and second-order lag of lnTTI
were positive and significant. This finding suggests that the
previous technological innovation has continuous influences
on current EETS.

Testing of different spatial weights

Spatial weight plays an important role in the spatial economet-
ric model (LeSage and Pace 2009; Wang and Zhu 2020; Zhu

et al. 2020a). The foregoing results were based on the spatial
adjacent matrix that can only describe the adjacency relation-
ship among the sub-regions. Do the above results hold for
different spatial weights? To answer this question, we con-
structed a geospatial-distance weight and (WG) an
economic-distance weight (WE). The geospatial-distance
weight (WG) measures the geographical distance among
sub-regions using the latitude and longitude of the provincial
capitals. The economic distance matrix (WE) measures the
economic gap among regions:

WG
ij ¼

1

dist2ij
i≠ jð Þ

0 i ¼ jð Þ

8<
: ; WE

ij ¼
1

gdpi−gdpj

��� ��� i≠ jð Þ

0 i ¼ jð Þ

8><
>:

ð10Þ

where distij denotes the geographical distance among prov-
inces. gdpi denotes the mean value of per capita GDP in the
sub-region i during the sample period. Table 5 lists the robust

Table 4 Empirical results of the
spatial econometric model with
year lag

Variables First-year lag Second-year lag

SPDM SPLM SPEM SPDM SPLM SPEM

lnTTI − 0.240*** − 0.178*** 0.176*** − 0.178** − 0.155** − 0.155**

(− 3.609) (− 2.647) (− 2.637) (− 2.502) (− 2.138) (− 2.144)

lnPGDP 0.665*** 0.400* 0.392 0.472* 0.342 0.332

(2.646) (1.659) (1.639) (1.693) (1.283) (1.258)

lnIA − 0.869*** − 0.780*** − 1.407*** − 0.754** − 0.706** − 0.699**

(− 3.088) (− 2.712) (− 3.070) (− 2.406) (− 2.224) (− 2.190)

lnUL − 1.477*** − 1.413*** − 1.908*** − 1.649*** − 1.639***

(− 2.852) (− 3.040) (− 3.195) (− 3.135) (− 3.169)

Intercept

W × lnTTI 0.277*** 0.107

(2.603) (0.950)

W × lnPGDP − 0.282 − 0.291

(− 0.897) (− 0.759)

W × lnIA − 0.170 0.070

(− 0.333) (0.121)

W × lnUL − 0.216 0.760 0.663

(− 0.217) 0.075 (0.564)

R2 0.766 0.760 360 0.767 0.765 0.765

σ2 0.065 0.075 Y 0.066 0.076 0.076

N 360 360 N 330 330 330

Fixed effect Y Y Y Y Y

Random effect N N N N N

Wald lag 7.620 1.441

Wald error 8.140* 1.797

LR lag 7.600 1.473

LR error 7.867* 1.640

Hausman 15.477* (p = 0.078) 17.118** (p = 0.046)

Note: * is p < 0.1; ** means p < 0.05; *** represents p < 0.01. t-statistics in (). “N” denotes no. “Y” means yes
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test results of spatial econometric models with different spatial
weights. Comparing Table 5 with Tables 3 and 4, the signs
and significance of lnTTI were consistent. This result means
that the above results have good robustness.

Discussion

Based on the representative sample of 30 Chinese provinces
during 2005–2017, this study attempts to elaborate
transportation-related technological innovation and EETS in
terms of (a) whether there is spatial dependence among
Chinese provinces in EETS; (b) Does transportation-related
technological innovation improve EETS?

The spatial pattern of EETS indicated the existence of spa-
tial disparity in the provincial EETS. This finding coincides
with previous studies that emphasize the importance of

geographic space for energy efficiency (Buylova 2020;
Irandoust 2019; Malinauskaite et al. 2020). This finding may
enrich the theories related to the energy environment and help
local governments formulate energy development strategies
following local conditions. According to the results of the
spatial autocorrelation test, there was a stable spatial depen-
dence in China’s province-level EETS during 2005–2017.
This result coincides with the broader studies on geographical
autocorrelation of energy efficiencies, such as Li et al. (2018),
Wang et al. (2019), and Zhong et al. (2020). China’s provin-
cial transportation-related technological innovation exhibited
obvious hot spots and cold spots, which supports the previous
work of Jang et al. (2017) for Korea.

Technological innovation exerted a negative impact on
EETS in China during 2005–2017, which is inconsistent with
the previous studies, such as Liao and Ren et al. (2020) for
China and Japan, Ozturk et al. (2020) for 46African countries,

Table 5 Empirical results of
econometric models with
different spatial weights

Variables WG WE

SPDM SPLM SPEM SPDM SPLM SPEM

lnTTI − 0.117* − 0.141** − 0.148** − 0.091* − 0.054 − 0.079*

(− 1.906) (− 2.227) (− 2.362) (− 1.841) (− 1.334) (− 1.848)

lnPGDP 0.469** 0.514** 0.537** 0.612*** 0.168 0.156

(2.140) (2.257) (2.369) (3.000) (1.594) (1.360)

lnIA − 0.897*** − 0.899*** − 0.908*** − 0.711*** − 0.597*** − 0.572***

(− 3.330) (− 3.320) (− 3.290) (− 3.190) (− 3.120) (− 2.977)

lnUL − 0.925* − 1.190*** − 1.155*** − 0.772* − 0.479 − 0.186

(− 1.904) (− 2.795) (− 2.838) (− 1.853) (− 1.458) (− 0.556)

Intercept 6.061*** 6.092***

(5.268) (5.345)

W × lnTTI − 0.261* 0.251*

(− 1.760) (1.792)

W × lnPGDP 0.425 − 0.146

(0.799) (− 0.310)

W × lnIA 0.032 − 1.373***

(0.045) (− 3.213)

W × lnUL − 0.824 − 0.767

(− 0.778) (− 0.821)

R2 0.749 0.744 0.742 0.732 0.711 0.708

σ2 0.069 0.078 0.078 0.072 0.079 0.080

N 390 390 390 390 390 390

Fixed effect Y Y Y N N N

Random effect N N N Y Y Y

Wald lag 4.577 - - 21.178*** - -

Wald error 3.408 - - 22.974*** - -

LR lag 4.508 - - - - -

LR error 3.404 - - - - -

Hausman 18.789*** (p = 0.027) 12.460 (p = 0.188)

Note: * is p < 0.1; ** means p < 0.05; *** represents p < 0.01. t-statistics in (). “N” denotes no. “Y” means yes
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and Ohene-Asare et al. (2020) for Turkey. This is possible
because although advanced transportation technology can im-
prove the performance of individual transportation products, it
can also promote the popularization of transportation vehicles
(Aydin et al. 2017; Irandoust 2019; Liu et al. 2018). Besides,
developing countries are immature in the treatment technolo-
gy of traffic exhaust, and the rapid development in the trans-
portation sector is bound to bring huge environmental pres-
sure (Huang et al. 2020; Romero et al. 2020). This finding
may support the notion that developing countries should pay
more attention to controlling transportation pollution as they
modernize their transportation sector.

In addition, Table 6 reported that the spatial coefficient
W×lnTTI was positive and significant. This finding suggests
that transportation-related technological innovation would ex-
ert an adjacent space spillover effect on EETS. To verify this
conjecture, we conducted a decomposition test on the SPDM
model of Table 3 utilizing the partial differential method. The
decomposition test confirms the existence of the adjacent
space spillover effect (Table 6). Namely, one province devel-
oping transportation-related technological innovations might
improve EETS in its neighboring provinces, which is in line
with the work of Carlino and Kerr (2015) and Zhu et al.
(2020a). This finding may be of great significance to cross-
regional cooperation in province clusters. In our case, if
Shandong, Henan, Hubei, Jiangxi, and Fujianwant to improve
EETS through technological innovation, they may benefit
f rom the spat ial spi l lover of the H-H cluster of
transportation-related technological innovation (Jiangsu-
Anhui-Shanghai-Zhejiang).

Besides, we investigated the influences of transportation-
related technological innovation on EETS in the eastern, cen-
tral, and western regions to find out how this influence differs
across the regions of China (Table 7). Interestingly, the
transportation-related technological innovation in eastern
China was positively associated with the EETS, while the
transportation-related technological innovation in central and
western China adversely influenced the EETS. This result is
possibly attributed to two reasons: (1) the development of
renewable energy technology innovation in eastern China
was significantly faster than that in central and western

China (Wang and Zhu 2020), and thus, eastern China has
relatively advanced pollution treatment technology; (2) east-
ern China with the high level of social development is recep-
tive to new energy technologies. For example, according to
the special survey on China’s auto market 2018–2024, the top
five provinces (Guangdong, Zhejiang, Shandong, Shanghai,
and Beijing) in terms of new energy vehicle sales in 2018were
all located in the eastern region.

Conclusions and implications

Conclusions

Taking 30 Chinese provinces as an example, this study at-
tempts to explore how transportation-related technological in-
novation affects EETS through the undesirable super-SBM
model and the spatial empirical method. The spatial empirical
results suggest that during the sample period of 2005–2017,
China’s province-level EETS and transportation-related tech-
nological innovation deviated from the spatial uniform distri-
bution. Transportation-related technological innovation
would exert a negative effect on China’s EETS. Besides,
place-based conditions may play an important role in the in-
fluence of transportation-related technological innovation on
the EETS.

Implications

The current study has three theoretical implications for the
existing literature: First, our findings, gained from a provincial
cluster, hold the view that spatial proximity has an indispens-
able role in energy efficiency research. These results may
extend the literature on agglomeration externalities by using
the meso-geography of EETS within China’s provincial clus-
ter. Second, this study is related to the existing literature on the
influence of technological innovation on energy efficiency.
The general result of previous studies is that advanced tech-
nology facilitates energy efficiency (Liao and Ren 2020;
Ohene-Asare et al. 2020; Ozturk et al. 2020), while this study
supports the notion that technological innovation has a re-
bound effect on the energy efficiency in transportation sector.
Third, this study extends the literature on human–environment
interactions to geography through the application of
geospatial methods, which may build a bridge between social
science research and natural science research.

Besides, this study proposes the two practical implications
for improving EETS: First, the government needs to incorpo-
rate considerations of regional differences into the policy for-
mulation towards transportation development. Specifically,
provinces in the hot-spot area of EETS (Shanxi and Hebei)
could strengthen inter-provincial cooperation to obtain
energy-environmental efficiency spillovers from neighboring

Table 6 Decomposition test of SPDMmodel in Table 3 (random effect)

Variables Direct effects Indirect effects Total effects

lnTTI − 0.110** (0.040) 0.185** (0.026) 0.074 (0.329)

lnPGDP 0.784*** (0.000) − 0.093 (0.736) 0.691** (0.034)

lnIA − 0.939*** (0.000) − 0.553 (0.139) − 1.492*** (0.002)

lnUL − 1.514*** (0.001) 0.824 (0.229) − 0.689 (0.328)3

Notes: values in () are p-statistics. ** means p < 0.05. *** denotes p <
0.01
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provinces. In contrast, provinces in the cold-spot area of
EETS (Xinjiang, Sichuan, and Qinghai) should give pri-
ority to improving their infrastructure to attract more
capital investment and talents. Second, the impact of
technological innovation on EETS is positive in the
eastern region and negative in the central and western
regions. Thus, formulating transportation-related innova-
tion policies should vary from region to region. For
example, eastern China can use preferential policies
(e.g., tax incentives and talent rewards) to encourage
enterprises to carry out transportation-related technolog-
ical innovations. Central China should take advantage of
its location adjacent to eastern China and actively estab-
lishes cooperation in green transportation technologies
with the eastern provinces. Western China may give
priority to strengthen environmental regulations and
control traffic pollution.

Limitations and future research

Taking the transportation sector with high energy consump-
tion and high environmental pollution as an example, this
study investigates the impact of technological innovation on
energy-environmental efficiency. Future research can select
other sectors (i.e., industry) to verify the empirical results ob-
tained in this study. Besides, in real life, spatial location plays
an important role in the transportation sector, and thus, this
study explores the relationship between technological innova-
tion and energy-environmental efficiency from the perspec-
tive of geographic space. Future research can investigate the
relationship between technological innovation and energy-
environmental efficiency for different transportation sectors,
such as general vehicle, railway, trackless land vehicle, ship-
related equipment, and aircraft.

Table 7 Effects of transportation-
related technological innovation
in different regions on EETS

Eastern region Central region Western region

Variables Non-space SPDM Non-space SPDM Non-space SPDM

lnTTI 0.314** 0.284* − 0.368*** − 0.449*** − 0.227*** − 0.186**

(2.275) (1.874) (− 3.086) (− 3.806) (− 2.679) (− 2.518)

lnPGDP − 1.012** − 1.371*** − 0.293 − 0.787* 2.078*** 2.166***

(− 2.396) (− 2.817) (− 0.594) (− 1.679) (6.228) (7.611)

lnIA − 1.682** − 2.052*** 0.055 1.423*** − 1.184*** − 1.477***

(− 2.581) (− 3.147) (0.134) (3.337) (− 2.764) (− 3.300)

lnUL − 0.773 − 0.965 0.434 0.338 − 3.483*** − 2.850***

(− 0.890) (− 1.171) (0.672) (0.357) (− 4.021) (− 3.712)

W × lnTTI 0.623** − 0.488** − 0.034

(2.313) (− 1.993) (− 0.189)

W × lnPGDP − 1.409** − 1.128 2.445***

(− 2.299) (− 1.279) (3.296)

W × lnIA − 1.381* 3.090*** − 0.943

(− 1.683) (3.684) (− 1.050)

W × lnUL − 3.585** 0.941 0.181

(− 2.367) (0.987) (0.102)

R2 0.289 0.814 0.145 0.741 0.245 0.833

N 130 130 117 117 143 143

Fixed effect Y Y Y Y Y Y

LM lag 0.129 3.818* 11.500***

LM error 2.930* 3.732* 13.176***

Robust LM lag 17.234*** 0.087 0.157

Robust LM error 20.035*** 0.0012 1.833

Wald lag 34.590*** 26.286*** 28.637***

Wald error 23.891*** - 11.968**

LR lag 29.333*** 21.189*** 18.433***

LR error 25.171*** - 10.242**

Note: * is p < 0.1; ** means p < 0.05; *** represents p < 0.01. t-statistics in (). “N” denotes no. “Y” means yes
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Appendix 1. The fuel-based carbon footprint
model.

TCEit ¼ ∑
8

g¼1
TECg*NCVg*CEFg*Fg ð11Þ

where TCEit means transportation-related CO2 emissions,
g (g = 1, 2…, 8) represents energy type. TECk denotes the
transportation-related energy consumption of g energy type.
NCVg, CEFg, and Fg are detailed in Appendix Table 8.
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