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Abstract
Chemotherapeutic drugs are used effectively to manage wide types of malignancies, but their therapeutic use is limited due to
their associated hepatic intoxication. The current study sheds light on the effect of phytochemicals berberine (BBR) and
umbelliferone (UMB) on methotrexate (MTX)–induced hepatic intoxication. Forty-eight rats were allocated to normal, BBR
(50 mg/kg orally for 10 days), UMB (30 mg/kg orally for 10 days), MTX (20 mg/kg at the 5th day), BBR+MTX, and UMB+
MTX.With regard toMTX, the results of this investigation reveal potent amelioration ofMTX hepatotoxicity by BBR and UMB
through reduction of the elevated serum levels of ALT, ALP, AST, and LDH confirmed by the attenuation of histopathological
abrasion in liver tissues. BBR and UMB markedly restored antioxidant status. More importantly, BBR resulted in reducing P38
mitogen–activated protein kinase (P38MAPK), nuclear factor kappa-B (NF-κB), and Kelch-like ECH-associated protein 1 (Keap-
1) genes and enhanced mRNA expression of Nrf-2 (P < 0.05). Interestingly, in silico studies via molecular docking pinpointed
the binding modes of BBR and UMB to the binding pocket residues of P38MAPK, NF-κB, and Keap-1 and demonstrated a
promising inhibition of Keap-1, P38MAPK, and NF-κB. BBR andUMB reduced the expression of pro-apoptotic protein Bax and
apoptotic protein caspase-3 as well as increased the expression of anti-apoptotic protein Bcl-2. Therefore, BBR and UMB may
denote promising therapeutic agents that can avert hepatic intoxication in patients receiving MTX.
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Introduction

Cancer is regarded as the leading cause of mortality world-
wide. Chemotherapeutic drugs are used to treat many types of

malignancies, but their therapeutic use is limited due to their
side effects (Schmiegelow 2009).Methotrexate (MTX) is well
acknowledged as an anti-metabolite chemotherapeutic agent.
It is used on a large scale to treat diverse malignancies and
non-malignant conditions (Brown et al. 2016; Malaviya
2016). MTX inhibits dihydrofolate reductase enzyme leading
to depletion of intracellular stores of tetrahydrofolate. MTX
can induce apoptosis interrelated to the production of reactive
oxygen species (ROS) (Herman et al. 2005; Spurlock 3rd et al.
2011).

ROS can damage different cellular structures (proteins,
DNA, and lipids) and lead to disturbance of the redox status
(Muriel and Gordillo 2016). There are several transcription
factors that are affected by the redox status, such as nuclear
factor kappa-B (NF-κB) that displays a pivotal role in the
inflammation in many illnesses. NF-κB is a master controller
of the inflammatory process and cell death in different hepatic
diseases. Accumulated evidence pointed out that NF-κB was
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upregulated in the hepatic injury of various etiologies (Ali
et al. 2020; Kamel et al. 2020). The P38 mitogen–activated
protein kinase (P38MAPK) is involved in the activation and
induction of NF-κB (Luedde and Schwabe 2011; Yang et al.
2014).

Nuclear factor erythroid 2–related factor 2 (Nrf-2) is
regarded as the central regulator of cellular responses to oxi-
dative injury. Nrf-2 is a crucial factor for the detoxification in
the liver. Under normal conditions, Nrf-2 was tightly bound to
its inhibitor, Kelch-like ECH-associated protein 1 (Keap-1), in
the cytoplasm. Upon stress, Nrf-2 is released fromKeap-1 and
translocated to the nucleus and binds to antioxidant responsive
elements (AREs) and resulted in the activation of many
cytoprotective genes and detoxification enzymes (Bataille
and Manautou 2012; Hassanein et al. 2020; Shin et al.
2013). It has been noted that the activation of the Nrf-2 tran-
scription factor is highly valuable and useful in different
models of liver injury such as hepatic ischemia-reperfusion
(Mahmoud et al. 2019b), alcoholic hepatic injury (Shen
et al. 2018), non-alcoholic steatohepatitis (Hosseini et al.
2020), and acetaminophen hepatotoxicity (Lv et al. 2018).

Another point of view is the cross-talk between oxidative
stress and apoptosis. Oxidative stress–induced apoptosis is
primarily executed by the upregulation of pro-apoptotic Bcl-
2-associated X protein (Bax) and downregulation of anti-
apoptotic B-cell lymphoma 2 (Bcl-2) proteins. Bax and Bcl-
2 belong to the Bcl-2 family, which exerts a pivotal role in the
intrinsic apoptotic pathway (Tait and Green 2013; Youle and
Strasser 2008). The final pathway leading to apoptosis is the
activation of a series of proteases called caspases (Porter and
Jänicke 1999). Interestingly, the Bax/Bcl-2 ratio determined
the cell apoptosis and well regulation of Bax/Bcl-2 ratio by
natural compounds regarded as a reasonable therapeutic target
in hepatic diseases of different etiologies (Akanda et al. 2017;
Chu et al. 2016; Tsai et al. 2018).

A robust body of evidence lies in treating acute hepatic
damage by using compounds of natural origin, which are con-
sidered to have a diverse biological activity and are character-
ized by high efficacy and low toxicity. Antioxidants can re-
duce the adverse effects of several classical chemotherapeutic
drugs through detoxifying ROS (Newman and Cragg 2016;
Nobili et al. 2009). Berberine (BBR), an isoquinoline type of
alkaloid, is one of the natural compounds of Chinese medicine
that exist in several plants (Imenshahidi and Hosseinzadeh
2019). In cell-based systems, BBR markedly reduced
NADPH oxidase–dependent cytoplasmic and mitochondrial
ROS production (Sun et al. 2017). Umbelliferone (UMB), or
7-hydroxycoumarin, is one of the most common compounds
of the coumarin family. It is abundant in several plants such as
carrot, bitter orange, and golden apple (Hassanein et al. 2020).
Increasing studies have found that UMB exhibits various
pharmacological effects, including antioxidant (Germoush
et al. 2018; Yin et al. 2018) and anti-inflammatory effects

(Alotaibi et al. 2020; Hosseini et al. 2020). Applicably, these
biological activities of BBR and UMB make them a good
applicant to be studied in the treatment of liver intoxication
induced by MTX. Since P38MAPKs/NF-κB, Keap-1/Nrf-2,
and Bax/Bcl-2/caspase-3 pathways have become a very attrac-
tive target for drug activities, the current study focused on
examining the contribution of these pathways in the hepato-
protective effects of BBR and UMB.

Materials and methods

Drugs and chemicals

Berberine, UMB, reduced glutathione (GSH), Ellman’s re-
agent, and thiobarbituric acid (TBA) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). MTX was obtained
from Baxter Company. Assay kits for alanine aminotransfer-
ase (ALT), alkaline phosphatase (ALP), aspartate aminotrans-
ferase (AST), and lactate dehydrogenase (LDH) were pur-
chased from Biodiagnostics Co., (Egypt). RNA extraction
and cDNA synthesis kits and PCR primers (P38MAPK,
NF-κB, Keap-1, Nrf-2, and β-actin) were purchased and syn-
thesized fromVivantis Technologies (Malaysia). SYBR green
master mix was purchased from Bioline, myBio, (Ireland).
Bax (Catalog # PA5-116541), Bcl2 (Catalog # PA5-27094),
and caspase-3 (Catalog # PA5-77887) rabbit polyclonal anti-
bodies were purchased from Thermo Fisher Scientific (CA,
USA).

Animal care

Male Wister albino rats, weighing 180 ± 200 g, were pur-
chased from the central animal house, Faculty of Medicine,
Assiut University (Assiut, Egypt). Control housing tempera-
tures were maintained at 25±2°C with a 12-h light−12-h dark
cycle. Water and various diets were given to animals ad
libitum. All animal handling and treatments were conducted
according to the guidelines of the care and use of laboratory
animals approved by the ethical committee of the Faculty of
Medicine, Assiut University (License no: 17200074).

Experimental design

After 14 days of adaptation, animals were randomly allocated
into six groups (eight rats per group).

Group I: Rats received vehicle only (1 ml of 1%
carboxymethyl cellulose (CMC)) via oral gavage and
served as the normal control group.
Group II: Rats received a single oral dose of BBR (50
mg/kg/day) (Almani et al. 2017) suspended in CMC for
10 days (BBR-treated group).
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Group III: Rats received a single oral dose of UMB (30
mg/kg/day) (Wang et al. 2015) suspended in CMC for 10
days (UMB-treated group).
Group IV: Rats were injected with MTX in a single i.p.
dose of 20 mg/kg (Ali et al. 2017) at the end of the fifth
day of the experiment (MTX-treated group) plus 1 ml of
CMC orally.
Group V: Rats received both MTX and BBR treatments
as previously specified (BBR+MTX-treated group).
Group VI: Rats received bothMTX and UMB treatments
as previously specified (UMB+MTX-treated group).

After completing the tenth day, rats were anesthetized with
ketamine and blood samples were collected directly from the
heart. Serum was separated following centrifugation and used
for liver function biomarkers. The liver of each rat was re-
moved and rinsed in ice-cold physiological saline. Ten percent
(w/v) tissue homogenates were prepared in ice-cooled phos-
phate-buffered saline (PBS).

Biochemical investigations

Assessment of liver enzymes

Measurement of liver enzymes (ALT, AST, ALP, and
LDH) was done by commercial kits according to man-
ufacturer instructions. The ALT and AST activities were
colorimetrically determined using the kit’s principle,
which involves measuring the amount of pyruvate or
o x a l o a c e t a t e p r o d u c e d b y f o r m i n g 2 , 4 -
dinitrophenylhydrazone (Reitman and Frankel 1957).
Belfield and Goldberg (1971) described a method for
determining ALP, in which ALP acts on phenyl phos-
phate and liberates phenol. In the presence of 4-
aminophenazone and potassium ferricyanide, the liberat-
ed phenol is colorimetrically measured. LDH was mea-
sured using the Izquierdo et al. (1982) method, in which
LDH catalyzes the reduction of pyruvate by NADH to
form lactate and NAD+. The rate of decrease of NADH
was used to calculate the catalytic concentration.

Estimation of hepatic oxidative stress parameters

The assay of lipid peroxidation in hepatic tissue was
investigated by measurement of MDA level according
to the method of Mihara and Uchiyama (1978).
Moreover, estimation of GSH content in liver tissue
homogenate was described by the method of Ellman
(1959), while the hepatic NO was determined by the
method of Montgomery and Dymock (1961). Finally,
the hepatic activity of SOD is determined according to
the method of Marklund and Marklund (1974).

Gene’s expression

Transcription of Keap-1, Nrf-2, P38MAPK, and NF-κB genes
was analyzed by quantitative real-time polymerase chain re-
action (qRT-PCR) in hepatic tissues. Total RNA extraction is
done using a kit according to manufacturer instructions.
Samples were lysed in the presence of a specially formulated
buffer that inactivates cellular RNases. RNA was eluted in
RNase-free water. cDNA synthesis was done by using a kit
in which reverse transcriptase was used to synthesize first-
strand cDNA from 2-μg total RNA. mRNA expressions were
quantified by qRT-PCR using SYBR green, and then qRT-
PCR was performed according to the manufacturer’s specifi-
cations. As a housekeeping gene, the β-actin is used. After
PCR amplification, the ΔΔ Ct was used for calculating by
subtraction of the β-actin Ct from each sample Ct (Livak
and Schmittgen 2001). The sequences of the primers (Keap-
1, Nrf-2, P38MAPK, and NF-κB) used are shown in Table 1.

Histopathological examination

Liver tissue samples were fixed in 10% neutral buffered
formalin, dehydrated using alcohol, and embedded in
paraffin. Paraffin sections (5-μm thickness) were stained
with hematoxylin and eosin (H&E) and examined for
histopathological changes under the light microscope
blind by the method of Bancroft and Gamble (2008).
The liver fields were scored according to Derelanko
(2008) as follows: normal appearance (−), mild (+),
moderate (++), severe (+++).

Immunohistochemical analysis

I n b r i e f , 5 -μm- th i c k pa r a f f i n s e c t i on s we r e
deparaffinized and rehydrated with a series of xylene
and alcohol solutions. The deparaffinized hepatic slices
were treated with 3% H2O2 for 30 min at 37°C for
quenching of endogenous peroxidase activity. The
deparaffinized hepatic slices were incubated overnight
at 4°C with primary antibodies against Bax (dilution
1:100), Bcl-2 (dilution 1:100), and caspase-3 (dilution
1:100). The sections were rinsed in PBS, incubated in
horseradish peroxidase. Slices were conjugated with
secondry antibodies for 1 houre at 37°C and rinsed in
PBS. Immuno-reactivity was detected using diaminobenzi-
dine, followed by counterstaining with hematoxylin. Slides
prepared for each case were examined by light microscopy
(Ramos-Vara and Miller 2014). Determination of mean area
percentage of Bax, Bcl-2, and caspase-3 immunoexpression
was used for quantification of protein expression from non-
overlapping microscopic fields using Leica application soft-
ware for immune-expression analysis (Leica Biosystems,
Germany).
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In silico studies

Molecular docking of BBR and UMB against P38MAPK,
Keap-1, and NF-κB was performed by using AutoDock
Vina 1.5.6 (Trott and Olson 2010). The complex

structures of P38MAPK, Keap-1, and NF-κB with their
binding ligands were retrieved from protein data bank
with PDB IDs 3ZS5 (Azevedo et al. 2012), 4L7B (Jnoff
et al. 2014), and 1VKX (Chen et al. 1998), respectively.
All ligands and water molecules were removed from the

Table 1 The sequences of the Keap-1, Nrf-2, P38MAPK, NF-kB, and β-actin primers

Gene Primer sequence Annealing temperature Product size (bp) Accession number Position on the gene

Start Stop

Keap-1 5- TCAGCTAGAGGCGTACTGGA3- XM_006242591.3 64 83

3- TTCGGTTACCATCCTGCGAG5- 57 °C 500 563 544

Nrf-2 5- CCGTCCCTAGGTCCTTGTTC3- XM_006234396.3 36 55

3- CAGGGCAAGCGACTGAAATG5- 57 °C 619 654 635

P38MAPK 5- AGAGTCTCTGTCGACCTGCT3- XM_017601781.1 1072 1091

3- CCTGCTTTCAAAGGACTGGT5- 55 °C 156 1227 1208

NF-κB 5- TGGGACGACACCTCTACACA3- XM_006233360.4 2806 2825

3- GGAGCTCATCTCATAGTTGTCC5- 55 °C 411 3250 3229

β-actin 5- CCACCATGTACCCAGGCATT3- XM_039089807.1 966 985

3- ACGCAGCTCAGTAACAGTCC5- 55 °C 243 1208 1189

Fig. 1 Effect of BBR and UMB on serum ALT, ALP, AST, and LDH
levels of MTX-intoxicated rats. BBR, berberine; UMB, umbelliferone;
MTX, methotrexate; ALT, alanine aminotransferase; AST, aspartate ami-
notransferase; ALP, alkaline phosphatase; LDH, lactate dehydrogenase.
Data were presented as mean of 8 rats ± SEM. Statistical analysis was

performed by using one-way ANOVA followed by Tukey’s post hoc
comparison test. aStatistically significant difference from normal control
group at P < 0.05. bStatistically significant difference fromMTX group at
P < 0.05
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Table 2 lesion scores for liver
histopathological findings Histopathological lesion Control BBR UMB MTX MTX+BBR MTX+UMB

Cytoplasmic vacuolization of
hepatocytes

− − − +++ + +

Congestion of hepatic sinusoids − − − +++ − −
Kupffer cells activation − − − ++ − −
Portal inflammatory cells infiltration − − − + − −

−, no change; +, mild change; ++, moderate change; +++, severe change

Fig. 2 Effect of BBR and UMB on hepatic histopathological aberrations
induced by MTX. BBR, berberine; UMB, umbelliferone; MTX,
methotrexate. Photomicrographs showed that liver section for control
and BBR- and UMB-treated groups showed a normal histological struc-
ture of hepatic lobule. Sever histopathological changes for rats treated
with MTX in the form of a cytoplasmic vacuolation of hepatocytes,

inflammatory cell infiltration (red arrow), and congestion of both central
veins and hepatic sinusoids (yellow arrow). An improvement in the his-
topathological examination resulted from combined administration of
BBR or UMBwithMTX in liver sections with slight vacuolation of some
hepatocytes (green arrow)
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complex structures and the PDBQT files were prepared
accordingly. Chimera 1.12 software was used to visualize
and analyze the binding of berberine and umbelliferon
with P38MAPK, Keap-1, and NF-κB.

Statistical analysis

Data obtained were analyzed using SPSS, version 20. Values
in the text are the mean ± standard error (SEM). One-way
analysis of variance (ANOVA) test with Tukey’s post hoc
comparison test was applied across all groups for testing the
significant difference (P < 0.05).

Results

Effect of BBR and UMB on MTX-induced liver dys-
function in rats

In this work, MTX administration resulted in significant de-
velopment of hepatic injury as demonstrated by a dramatic
rise of serum ALT, ALP, AST, and LDH activities in the
MTX-treated group. In contrast, serum ALT, ALP, AST,

and LDH activities in the BBR+MTX- and UMB+MTX-treat-
ed animals significantly decreased with respect to the MTX-
treated group. So, BBR and UMB protected the liver
(hepatocytes) from liver injury (Fig. 1).

Histopathological examination of the liver showed the
normal histological structure of hepatic lobule and sinu-
soids in normal control, BBR, and UMB groups.
Histological assessments clearly indicated severe histo-
pathological changes for rats treated with MTX in the
form of cytoplasmic vacuolation of hepatocytes, inflam-
matory cell infiltration (red arrow), and congestion of
both central veins and hepatic sinusoids (yellow arrow).
Combined administration of MTX with BBR or UMB
resulted in obvious improvement of the liver histologi-
cal architecture with slight vacuolation of some hepato-
cytes (green arrow) as depicted in Table 2 and Fig. 2.

Effect of BBR and UMB on hepatic oxidative stress
biomarkers

Methotrexate administration resulted in massive production of
hepatic oxidative injury as observed by the increase in both
MDA and NO2

− contents and decrease in both GSH content

Fig. 3 Effect of BBR and UMB on hepatic GSH, MDA, and NO2
−

contents and SOD enzymatic activity. BBR, berberine; UMB,
umbelliferone; MTX, methotrexate; GSH, reduced glutathione; MDA,
malondialdehyde; NO2

−, nitrite; SOD, superoxide dismutase. Data were

presented as mean of 8 rats ± SEM. Statistical analysis was performed by
using one-way ANOVA followed by Tukey’s post hoc comparison test.
aStatistically significant difference from normal control group at P < 0.05.
bStatistically significant difference from MTX group at P < 0.05
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and SOD activity with respect to control animals. On the con-
trary, BBR+MTX or UMB+MTX co-treatment markedly de-
creased both MDA and NO2

− contents, while GSH content
and SOD activity were elevated with respect to the rats given
MTX only (Fig. 3).

The impact of BBR and UMB on P38MAPK/NF-κB
signaling pathway

With regard to the normal control group, the current study
demonstrated that the hepatic P38MAPK gene was significantly

upregulated in rats givenMTX alone. Conversely, co-treatment
of BBR or UMB with MTX resulted in a marked downregula-
tion of the P38MAPK gene (Fig. 4). Additionally, our data
demonstrated that the hepatic NF-κB gene was significantly
upregulated in rats given MTX alone, which was attenuated
by the administration of BBR and UMB with MTX (Fig. 5).

Effect of BBR and UMB on Keap-1/Nrf-2 pathway

It was observed that the gene expression of Nrf-2 sig-
nificantly declined in MTX-intoxicated rats, while the

Fig. 4 Effect of BBR and UMB on hepatic P38MAPK expression levels
of MTX-treated rats. BBR, berberine; UMB, umbelliferone; MTX, meth-
otrexate; P38MAPK, P38 mitogen activated protein kinase. Data were
presented as mean of 8 rats ± SEM. Statistical analysis was performed
by using one-way ANOVA followed by Tukey’s post hoc comparison
test. aStatistically significant difference from normal control group at P <
0.05. bStatistically significant difference fromMTX group at P < 0.05. In

silico evidence for the binding of BBR and UMB to P38MAPK protein.
BBR forms a hydrogen bond with the side chain of K53, π-π interactions
with the aromatic rings of the side chain of Y35 and F169, and hydro-
phobic interaction with the side chain of V30, V38, and L108. UMB
forms two hydrogen bonds with K53 and π-π interactions with the aro-
matic ring of F169
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hepatic Keap-1 genemarkedly increased in comparison to that
of the normal control. In contrast, the group of rats given
BBR+MTX or UMB+MTX showed a remarkable reversal
of the aberrant expression of both Nrf-2 and Keap-1 genes
in the liver as compared with MTX-treated rats (Fig. 6).

Effect of BBR and UMB on Bax/Bcl-2/caspase-3
pathway

In our study, Bax, Bcl-2, and caspase-3 hepatic protein
expressions were analyzed by immunohistochemistry.
The immunohistochemical investigation of Bax, Bcl-2,

and caspase-3 proteins exhibited a strong expression of
both hepatic Bax and caspase-3 as well as a weak expres-
sion of Bcl-2 of MTX-treated rats when compared with
the expression of normal rats. Meanwhile, these changes
were strongly modulated by BBR and UMB treatment as
evidenced by weak expression of both Bax and caspase-3
along with strong expression of Bcl-2 (Figs. 7, 8, and 9).

In silico evidence

A molecular docking approach has been used to predict the
binding affinity of BBR and UMB against Keap-1,

Fig. 5 Effect of BBR and UMB on hepatic NF-κB expression levels of
MTX-treated rats. BBR, berberine; UMB, umbelliferone; MTX, metho-
trexate; NF-κB, nuclear factor kappa-B. Data were presented asmean of 8
rats ± SEM. Statistical analysis was performed by using one-way
ANOVA followed by Tukey’s post hoc comparison test. aStatistically
signif icant difference from normal control group at P <
0.05.bStatistically significant difference from MTX group at P < 0.05.

In silico evidence for the binding of BBR and UMB to NF-kB protein.
BBR forms three hydrogen bonds with S363, H364, and G365. It shows
hydrophobic interaction with the side chain of non-polar residues in the
active site like V358, V412, and L440, and its aromatic ring exhibits CH/
π interaction with the polarized C–H bonds of P362. UMB forms a
hydrogen bond with R356 and CH/π interaction with P362
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P38MAPK, and NF-κB. The unique tetracyclic skeleton and
multiple polar groups of BBR encourage both the hydropho-
bic and electrostatic interaction with the target proteins. BBR
exhibited high binding affinity to Keap-1, P38MAPK, and
NF-κB with docking energy −8.96±0.23 kcal/mol, −9.44
±0.60 kcal/mol, and −7.50±0.47kcal/mol, respectively. For
P38MAPK, BBR forms a hydrogen bond with the side chain
of K53, π-π interactions with the aromatic rings of the side
chain of Y35 and F169, and hydrophobic interaction with the
side chain of V30, V38, and L108 (Fig. 4). For NF-κB, BBR
forms three hydrogen bonds with S363, H364, and G365. It
shows hydrophobic interaction with the side chain of non-
polar residues in the active site like V358, V412, and L440,

and its aromatic ring exhibits CH/π interaction with the polar-
ized C–H bonds of P362 (Fig. 5). For Keap-1, BBR forms
four hydrogen bonds with the side chain of R483 and S508
and π-π interactions with the aromatic ring of the side chain of
Y572 (Fig. 6). These non-covalent interactions promote the
fitting of BBR in the binding pocket as illustrated in the sur-
face map of proteins.

Umbelliferone is a 7-hydroxycoumarin that showed a
promising binding affinity to Keap-1, P38MAPK, and
NF-κB with docking energy −6.43 ± 0.22 kcal/mol, −6.85 ±
0.56 kcal/mol, and −6.13 ± 0.16 kcal/mol, respectively. For
P38MAPK, UMB forms two hydrogen bonds with K53 and
π-π interactions with the aromatic ring of F169 (Fig. 4). For

Fig. 6 Effect of BBR and UMB on hepatic Nrf-2 and Keap-1 mRNA
expression levels of MTX-treated rats. BBR, berberine; UMB,
umbelliferone; MTX, methotrexate; Nrf-2, nuclear factor erythroid 2–
related factor-2; and Keap-1, Kelch-like ECH-associated protein-1. Data
were presented as mean of 8 rats ± SEM. Statistical analysis was per-
formed by using one-way ANOVA followed by Tukey’s post hoc com-
parison test. aStatistically significant difference from normal control

group at P < 0.05.bStatistically significant difference from MTX group
at P < 0.05. In silico evidence for the binding of BBR and UMB to Keap-
1 protein. BBR forms four hydrogen bonds with the side chain of R483
and S508 and π-π interactions with the aromatic ring of the side chain of
Y572. UMB forms a hydrogen bond with the side chain of N382 and π-π
interactions with the aromatic ring Y334
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Fig. 7 Effect of BBR and UMB on hepatic Bax protein expression level
of MTX-treated rats. BBR, berberine; UMB, umbelliferone; MTX, meth-
otrexate; Bax, Bcl-2-associated X protein. Data were presented as mean
of 8 rats ± SEM. Statistical analysis was performed by using one-way

ANOVA followed by Tukey’s post hoc comparison test. aStatistically
signif icant difference from normal control group at P <
0.05.bStatistically significant difference from MTX group at P < 0.05

Fig. 8 Effect of BBR and UMB on hepatic Bcl-2 protein expression level
of MTX-treated rats. BBR, berberine; UMB, umbelliferone; MTX, meth-
otrexate; Bcl-2, B-cell lymphoma 2. Data were presented as mean of 8
rats ± SEM. Statistical analysis was performed by using one-way

ANOVA followed by Tukey’s post hoc comparison test. aStatistically
significant difference from normal control group at P < 0.05.
bStatistically significant difference from MTX group at P < 0.05
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NF-κB, UMB forms a hydrogen bond with R356 and CH/π
interaction with P362 (Fig. 5). For Keap-1, UMB forms a
hydrogen bond with the side chain of N382 and π-π interac-
tions with the aromatic ring Y334 (Fig. 6). UMB showed a
well-fitted structure in the active site of the proteins, as shown
in the surface map of the docked structures.

Discussion

Intriguingly, toxicities associated with classical chemother-
apeutic drugs have a significant impact on the outcome of
patients receiving chemotherapy. These adverse effects of-
ten limit their efficiency. Since the liver detoxifies the xe-
nobiotics in the body, it is regarded as the first target organ
that encounters all toxic drugs and chemicals. Notably, tox-
icities associated with MTX are dose dependent (Howard
et al. 2016). Accordingly, a large area of research interest
focused on adjuvant therapies for patients with cancer in
order to get a better response with lower toxicities.
Accumulated evidence demonstrated that increasing the
generation of ROS plays a key role in MTX-induced hepat-
ic intoxication. ROS formations release pro-inflammatory
cytokines that induce apoptosis and hepatocytes damage
(Abdel-Wahab et al. 2020; Khalifa et al. 2017).

Compounds of natural origin have received great interest;
these compounds can provide relative protection against

oxidative stress injury. These natural products are an available
source of effective and alternative treatment for liver disor-
ders. Antioxidants are agents that protect against oxidative cell
injury through electron donation and neutralization of free
radicals (Saeidnia and Abdollahi 2013; Sayed et al. 2020).
However, there is little knowledge on the molecular mecha-
nisms of these products and their biological properties.
Therefore, the aim of the current study is to investigate the
underlying molecular mechanisms involved in the
hepatoprotection of BBR and UMB onMTX-induced hepatic
injury for more clarification and full understanding leading to
move a step towards the translational application of BBR and
UMB in cancer protocols.

We provided the first evidence that co-administration of
BBR or UMB with MTX remarkably attenuated MTX hepa-
totoxicity in rats, as demonstrated by the reduction in ALT,
ALP, AST, and LDH activities and inflammatory cell infiltra-
tion into the liver. It is attributed to the alteration of the mem-
brane permeability due to the hepatic injury that leads to a
leakage of these enzymes.

Mitigating oxidative stress and boosting antioxidant de-
fense mechanisms mediate the protective effect of BBR or
UMB against hepatic injury. In the present investigation, he-
paticMDA andNO2

− contents were significantly enhanced by
MTX, whereas the content of GSH and the activity of SOD
were remarkably suppressed in the MTX-treated group. These
results agree with previous studies done by Fayez et al. (2018)

Fig. 9 Effect of BBR and UMB on hepatic caspase-3 protein expression
level of MTX-treated rats. BBR. berberine; UMB, umbelliferone; MTX,
methotrexate. Data were presented as mean of 8 rats ± SEM. Statistical
analysis was performed by using one-way ANOVA followed by Tukey’s

post hoc comparison test. aStatistically significant difference from normal
control group at P < 0.05. bStatistically significant difference from MTX
group at P < 0.05
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and Bu et al. (2018). It has been noted that lipid peroxidation
resulted from MTX caused mitochondrial dysfunction
(Tabassum et al. 2010). BBR or UMB co-treatment with
MTX dramatically recovered these disordered changes in the
liver due to the antioxidant ability of BBR. Li et al. (2014)
reported that BBR antioxidant capacity is due to its direct free
radical scavenging, increased SOD expression, and NADPH
oxidase inhibition. Also, some studies mentioned that UMB
had shown antioxidant efficacy in different hepatotoxicity
models, including carbon tetrachloride (Mahmoud et al.
2019a) and N-nitrosodiethylamine (Subramaniam and Ellis
2016).

An increasing body of evidence reported that liver injury is
related to the increased generation of inflammatory mediators
caused by leukocyte invasion into the site of injury.
Furthermore, reports have shown that ROS increases the ex-
pression of inflammatory mediators and NF-κB (Jaeschke
2011). The most important pathway through which ROS exert
an effect on gene transcription is via NF-κB (Gloire et al.
2006; Morgan and Liu 2011). P38MAPK pathway positively
regulates NF-κB, which is regarded as an important controller

of the inflammatory response (Cuadrado and Nebreda 2010).
The NF-κB pathway is one of the best-knowledge pathways
that are involved in the pathogenesis of different illnesses
(Robinson and Mann 2010). In the present study, MTX-
BBR co-treatment remarkably decreased the expression levels
of P38MAPK as well as NF-κB in the liver of rats, indicating
that P38MAPK/NF-κB pathway is implicated in MTX hepa-
totoxicity. This finding clearly supports the notion that BBR
could inhibit the inflammatory response via its ability to
downregulate P38MAPK/NF-κB expression.

Importantly, Nrf-2 is a strategic controller of the antioxi-
dant process, as it regulates several detoxifying genes respon-
sible for combating oxidative stress. Therefore, the Keap-1/
Nrf-2 system has a vital role in regulating cell homeostasis
(Deshmukh et al. 2017; Ma 2013). Wu et al. (2011) reported
that activation of Nrf-2 by hepatocyte-specific Keap-1 knock-
out in mice leads to an increase in the hepatic concentration of
NADPH and resulted in the protection of the liver from ROS
(Wu et al. 2011). Additionally, strong evidence has indicated
that ROS generation stimulates cytokine releases such as
iNOS and COX-2 (Ali et al. 2017). Our study demonstrated

Fig. 10 Proposed mechanisms for hepatoprotective effects of BBR and
UMB against MTX-induced hepatic intoxication. BBR, berberine; UMB,
umbelliferone; MTX, methotrexate; ALT, alanine aminotransferase;
ALP, alkaline phosphatase; AST, aspartate aminotransferase; LDH, lac-
tate dehydrogenase; ROS, reactive oxygen species; ROS, reactive

nitrogen species; P38MAPK, P38 mitogen–activated protein kinase; NF-
κB, nuclear factor kappa-B; Keap-1, Kelch-like ECH-associated protein
1; Nrf-2, nuclear factor erythroid 2–related factor2; Bax, Bcl-2 associated
X protein; and Bcl-2, B-cell lymphoma 2
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that BBR and UMB significantly attenuated the lipid peroxi-
dation level and inflammatory response, followed by activa-
tion of Nrf-2 nuclear translocation in the hepatic tissues.
Hence, the results of this study suggested that co-
administration of BBR or UMB with MTX protects against
MTX-induced oxidative liver injury through the activation of
Nrf-2. Accumulated Nrf-2 activates antioxidant and
cytoprotective enzymes, and subsequently, BBR and UMB
may inhibit inflammation and oxidative damage.

Then, we aimed to explore the modulatory effect of BBR
and UMB on Keap-1, P38MAPK, and NF-κB. Therefore, mo-
lecular docking was done to examine their binding modes.
The structural features of BBR and UMB allowed them to
form different non-covalent interactions with the active sites
of Keap-1, P38MAPK, and NF-κB. BBR showed a higher
binding affinity with the target proteins as compared to
UMB. However, both drugs produced a promising inhibition
of Keap1, P38MAPK, and NF-κB. The findings of the docking
studies support our hypothesis and emphasize the antioxidant
and anti-inflammatory role of BBR and UMB as protective
agents against hepatic injury.

Finally, oxidative injury together with the inflammato-
ry response induces hepatic apoptosis (Jaeschke 2011).
Interestingly, one of the important and major strategic
regulators of the apoptosis process is Bcl-2 family pro-
teins (Chao and Korsmeyer 1998). Bax may bind to Bcl-
2, forming Bax/Bcl-2 heterodimers. The ratio of Bax to
Bcl-2 determines the susceptibility of a cell to apoptosis
(Khodapasand et al. 2015). Here, MTX-induced rats
markedly upregulated both Bax and caspase-3 proteins,
while the level of anti-apoptotic protein Bcl-2 significant-
ly decreased. These findings might be explained in terms
of the MTX-induced inflammation and oxidative stress in
the liver of rats. Co-administration of BBR or UMB with
MTX markedly prevented MTX-induced apoptosis
through downregulation of both Bax and caspase-3 pro-
teins along with upregulation of Bcl-2 protein. It may be
attributed to its capability to attenuate ROS. In line with
this, Eissa et al. (2018) reported a decrease in both Bax
and caspase-3 protein expressions in the liver fibrosis rat
model induced by thioacetamide following treatment with
BBR.

Conclusion

Col lec t ive ly , the cur ren t resu l t s conf i rmed the
hepatoprotection of BBR and UMB against hepatic intoxica-
tion induced by MTX. BBR and UMB have potent antioxi-
dant, anti-inflammatory, and anti-apoptotic activities. Our da-
ta clarified the underlyingmolecular mechanism of hepatopro-
tective effects of BBR and UMB as indicated by well regula-
tion of Keap-1/Nrf-2 and P38MAPK/NF-kB and Bax/Bcl-2/

caspase-3 signaling pathways. In addition, our obtained data
indicated a close relationship between these signaling path-
ways (Fig. 10).
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