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Abstract
Net primary productivity (NPP) has been widely used as the indicator of vegetation function and exhibits large spatial and
temporal variations caused by numerous factors. Northwest China (NWC) is one of the driest regions in China, and water supply
is the key determinant of NPP here. However, studies on the effects of water stress on NPP in NWC at the regional scale are still
relatively lacking. Thus, in this study, based on a set of Moderate-Resolution Imaging Spectroradiometer (MODIS) NPP and
evapotranspiration (ET) datasets, we quantified the response of NPP to water stress, which is indicated by crop water stress index
(CWSI). Regional average of annual NPP in NWC showed an increasing trend during the study period, at a rate of 0.84 g C m−2

yr−1. At the province level, the NPP increase rates increased in the order of Ningxia (7.7%), Shaanxi (6.5%), Gansu (4.5%),
Qinghai (3.8%), and Xinjiang (1.7%). NPP was negatively correlated with CWSI (p<0.05) in 73% of areas, indicating the key
role of water stress in constraining NPP over this arid region. The effect of water stress on NPP changes with elevation. Water
stress has the strongest negative impact on NPP in areas with elevations around 2000 m. In elevations above 5000 m, NPP is not
limited by water stress, mostly positively correlated with CWSI. Our findings further clarify the importance of water stress in
dryland ecosystems, while highlighting that elevation gradients can significantly affect the correlation between NPP and water
stress.
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Introduction

As a key component of the terrestrial carbon cycle, net prima-
ry productivity (NPP) refers to the difference between organic
matter fixed through photosynthesis and accumulated respira-
tion consumption per unit area and per unit time of green
plants (Cramer and Field 1999; Euskirchen et al. 2002). NPP
is an effective and important indicator of vegetation function-
ing and health. It is a key determinant of terrestrial carbon

sinks and sources, which play an important role in retarding
the rate of atmospheric CO2 increase and global warming.
NPP data are useful in many applications and increasingly
relevant to decision-making. Owing to influences of climate,
soils, land cover types, and human activities, NPP has consid-
erable spatial and temporal variations.

Previous studies have examined the effects of water stress
on NPP from the perspective of various meteorological fac-
tors, such as temperature (Ciais et al. 2005; Nemani et al.
2003), precipitation (Zhang et al. 2020a), and atmospheric
vapor pressure deficit (Feng et al. 2007; Saigusa et al. 2008).
In general, extreme heat and reduced precipitation will induce
sharp reduction of NPP (Penuelas et al. 2007; Tatarinov et al.
2016). Meanwhile, increased atmospheric vapor pressure def-
icit also inhibits NPP (Penuelas et al. 2007, Tatarinov et al.
2016). However, water stress is an integrated effect that
should be more closely linked to the vegetation (Hsiao 1973;
Munns 2002). The analysis on the relationship between single
meteorological factor and NPP is unable to consider the inte-
grated influence of other factors on NPP (Hein et al. 2019; Liu
et al. 2020). Therefore, an indicator that integrates multiple
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meteorological factors is required for better indicating the im-
pact of water stress on the NPP.

Crop water stress index (CWSI) (Jackson et al. 1981),
which combines multiple meteorological factors, has been
widely used in agricultural drought monitoring (Berni et al.
2009; Pou et al. 2014), owing to its ability to capture water
stress caused by increased temperature or/and decreased pre-
cipitation and its close linkage with vegetation growth (Irmak
et al. 2000). Kullberg et al. (2017) compared multiple drought
indices and found that CWSI was more sensitive to small
changes in water stress. Gerhards et al. (2016) analyzed the
relationship between CWSI and potato growth status and
found a high agreement between them. Na et al. (2020) also
found a high agreement between CWSI and cabbage growth
status. Thus, CWSI could be an effective indicator for analyz-
ing the influence of water stress on NPP.

Northwest China (NWC) is one of the most ecologically
fragile regions in China and has received a great deal of re-
search attention (Li et al. 2020; Yao et al. 2020). Though
many studies have indicated that vegetation growth is serious-
ly limited by water supply in NWC (Pan et al. 2020; Zhang
et al. 2020b), quantitative research on the effect of water stress
on vegetation growth at the landscape scale is still lacking.

With MODIS NPP, evapotranspiration (ET), and potential
evapotranspiration (PET) datasets, this study is to answer the
above question. The specific objectives of this study are (1) to
investigate spatial and temporal variations of NPP in NWC;
(2) to quantitatively analyze changes of water stress indicated
by CWSI in NWC; and (3) to quantitatively assess the re-
sponse of NPP to water stress in recent years in NWC.

Materials and methods

Study area

NWC (73°15′ E–111°15′ E, 31°32′ N–49°10′ N) occupies
one-third of China’s area and includes five provinces and
autonomous regions (Fig. 1), namely Shaanxi, Qinghai,
Gansu, Ningxia, and Xinjiang. Plateau, basin, and mountain-
ous areas are the main terrains in this region. Most areas have
temperate continental climate and high cold climate (Gong
et al. 2018). Annual precipitation decreases from 400 mm
a−1 in the eastern region to 200 mm a−1 in the western region,
even below 50 mm a−1. The harsh natural condition causes
low NPP with significant variability here (Wang et al. 2019).

Materials

Net primary productivity dataset

Monthly MODIS NPP (http://files.ntsg.umt.edu/data) at a
spatial resolution of 1km ×1km over the period from 2000

to 2015 was used in this study. It is produced using the
MOD17A3 algorithm (Running et al. 2004). MODIS NPP is
calculated as the residual of gross primary productivity (GPP)
minus autotrophic respiration. GPP is calculated using a light
use efficiency model, and autotrophic respiration is estimated
according to temperature and biomass approximated by re-
motely sensed vegetation parameters (Fensholt et al. 2006;
Zhao et al. 2005). MODIS NPP data has been used in studies
on vegetation changes at different scales (Azhdari et al. 2020;
Bastos et al. 2013; Hasenauer et al. 2012; Li et al. 2019; Street
and McNickle 2019; Turner et al. 2006; Wang et al. 2020b).

Evapotranspiration (ET) and potential evapotranspiration
(PET) dataset

MonthlyMODIS ET and PET data (MOD16A3) (Nagler et al.
2005; Velpuri et al. 2013; Yuan et al. 2010) at a spatial reso-
lution of 0.05 × 0.05 over the period from 2000 to 2014 were
used for calculating CSWI. They were available at https://
modis.gsfc.nasa.gov/. MODIS ET and PET data are
calculated using the Penman-Monteith equation (Monteith
1965, 1981). Detailed information regarding to the calculation
of ET and PET can be found in Mu et al. (2011).

MODIS ET and PET were resampled into a spatial resolu-
t i o n o f 1 k m w i t h a p r o j e c t i o n o f
WGS_1984_UTM_Zone_50N using the bilinear interpola-
tion method (Liu and Weng 2018) for better analysis with
NPP at pixel level.

Auxiliary data

An elevation data with a spatial resolution of 30 m was ac-
quired from the Shuttle Radar Topography Mission Digital
Elevation Model (SRTM DEM) dataset. SRTM DEM dataset

Fig. 1 Location of NWC
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could be downloaded from the Geospatial Data Cloud (http://
www.gscloud.cn).

Vegetation cover data was obtained from the Moderate
Resolution Imaging Spectroradiometer (MODIS) land cover
dataset (MCD12C1). The spatial resolution of MCD12C1 is
0.05°. MCD12C1 could be downloaded from the USGS Earth
Explorer (https://earthexplorer.usgs.gov/).

Methods

Change rate and inter-annual variability of NPP

In this study, change rate (Wang et al. 2016b) was used to
characterize the dynamics of NPP over the past years.
Coefficient of variation (CV), as a statistic indicator
representing the degree of variation of a variable, i.e.,
the ratio of the standard deviation to the mean, was ap-
plied to quantify the inter-annual variability of NPP. The
two indicators could be calculated as (Alharbi et al. 2019;
Rojo Baio et al. 2019):
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where C is the change rate of NPP N (%); Ni is the value of

NPP in time location i in the range from 1 to n; N is the
average of NPP during the study period; and CV is the coef-
ficient of variation. The larger the CV value, the greater the
inter-annual variability of NPP over time.

Mann-Kendall trend and mutation test

Mann-Kendall trend and mutation test were applied to further
analyze the trend and mutation status of NPP in individual
provinces within NWC. The specific analysis process is as
follows:

For a NPP time series data N, the Mann-Kendall trend test
statistic variable S is defined as (Burn and Elnur 2002):

S ¼ ∑
m‐1

p¼1
∑
m

q¼pþ1
Sgn Nq‐Np

� � ð3Þ

where m is the length of N and Np and Nq are the pth and
qth values of N, respectively. Sgn () is a symbolic function,
which is defined as:

Sgn Nq‐Np
� � ¼

þ1 Nq‐Np > 0
0 Nq‐Np ¼ 0
−1 Nq‐Np < 0

8<
: ð4Þ

when n > 10; the trend significance statistic Z is calculated
as:

Z ¼

S‐1ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þp S > 0

0 S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þp S < 0

8>>>><
>>>>:

ð5Þ

var Sð Þ ¼ n n‐1ð Þ 2n‐15ð Þ=18 ð6Þ

where var(S) is the variance of S. A positive or negative
value of Z indicates an upward or downward trend ofN. When
| Z | is greater than or equal to 1.96, the trend is significant at
the level of 95%.

The Mann-Kendall mutation test method was used to iden-
tify the year when the NPP change is abnormal, that is, the
year with NPP significantly inconsistent with the past overall
NPP change trend. Firstly, we need to construct an order se-
quence Sk (Rahman et al. 2017):

Sk ¼ ∑
k

d¼1
∑
d‐1

e
αde 1 < k≤mð Þ ð7Þ

where αde is the discriminant function and k is the length of
the selected time series data.

In Eq. (7), αde is calculated as:

αde ¼ 1 Nd > Ne

0 Nd < Ne

	
1≤e≤dð Þ ð8Þ

where Nd and Ne are the dth and eth values of time series
data N, respectively.

Secondly, based on Sk calculated using Eq. (7), the first
mutation detection variable Uf can be calculated as (Pettitt
1979):

U f ¼ Sk−E Skð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Skð Þp ð9Þ

where E(Sk) and var(Sk) are the average and variance of Sk,
respectively. They are calculated as:

E Skð Þ ¼ k k þ 1ð Þ=4 ð10Þ
var Skð Þ ¼ k k−1ð Þ 2k þ 5ð Þ=72 ð11Þ

After calculatingUf, we need to arrange the time series data
X in reverse order and calculate the second mutation detection
statistic (recorded asUb) using Eqs. (6) to (10). Then, we need
to plot the test statistic Uf and Ub as line graphs, respectively.
If there is an intersection between Uf and Ub, then the
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corresponding time of the intersection is the beginning of the
NPP mutation (Lou et al. 2017; Xing et al. 2017).

Correlation analysis

In this study, the correlation coefficient between NPP and
CWSI was used to indicate the response of NPP to water
stress. It was calculated as (Zhang et al. 2007b):

r ¼
∑n

i N i−N
� �

Qi−Q
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i N i−N
� �2

∑n
i Qi−Q
� �2

r ð12Þ

where r is the correlation coefficient between NPP N and

CWSI Q; Qi is the CWSI value in year i; and Q is the multi-
year average of CWSI.

CWSI

CWSI indicates the degree that water demand is satisfied. It is
calculated as (Drechsler et al. 2019; Ezenne et al. 2019;
Jackson 1982):

CWSI ¼ 1−
ET
PET

ð13Þ

where ET and PET are the annual evapotranspiration and
annual potential evapotranspiration, respectively. A CWSI
value of 0 indicates that evaporative demand is fully satisfied
and there is no water stress. A CWSI value of 1 means that ET
is zero and serious water stress occurs.

Hurst index

Hurst index is an effective method in time series data predic-
tion, especially in non-stationary time series forecasting (Jiang
et al. 2017; Tong et al. 2018; Wu et al. 2017; Xue et al. 2015).
In NPP-related studies, Hurst index is also widely used (Li
et al. 2021; Liu et al. 2017). Hurst index is flexible for the
length of time series, usually more than 10 years (Jia et al.
2020; Qu et al. 2020). In this study, Hurst index (Hurst 1951)
was used to determine whether the future trend of NPP is
consistent with the past. It is calculated as:

(1) Given a NPP time series Ni, i = 1, 2, ... n, mean series
MEANτ with different lengths of time τ (1≤ τ ≤n) are con-
structed as:

MEAN τ ¼ 1

τ
∑
τ

i
N i ð14Þ

(2) The cumulative deviation (CD), extreme deviation
(ED), and standard deviation (SD) and process parameter G
are calculated as:

CD i; τð Þ ¼ ∑
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G τð Þ ¼ lg
ED i; τð Þ
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(3) The linear relationship between G(τ) and lg(τ) is fitted
using the least square method (Cox andMatuschak 1941), and
the slope obtained is the Hurst index.

Hurst index ranges from 0 to 1 and was used to determine
the consistency of future NPP trend with that in the past.
When Hurst index is between 0 and 0.5, the future trend of
NPP is contrast to the past (this trend is unsustainable) (Pan
and Dong 2018). When Hurst index is 0.5, it means the future
trend of NPP has no connection to the past. When the Hurst
index is between 0.5 and 1, it means the future trend of NPP is
consistent with the past (this trend is sustainable) (Li and Pan
2018).

Results

Spatial patterns of NPP in NWC

Figure 2a shows the distribution pattern of multi-year mean
annual NPP in NWC. There is distinguishable heterogeneity
of NPP in NWC. Overall, NPP decreases gradually from east
to west. NPP in the southeastern region was usually above
400 g C m−2 yr−1. At the provincial level (Fig. 2b), Shaanxi
has the highest NPP with a multi-year average value of
347.92 g C m−2, followed by Gansu (316.53 g C m−2),
Ningxia (173.38 g C m−2), Xinjiang (145.4 g C m−2), and
Qinghai (118.31 g C m−2).

Figure 2c shows the CV spatial distribution of annual NPP
in NWC. NPP exhibited strong inter-annual variability in
north-central Shaanxi, southern Ningxia, western Qinghai,
and the Kunlun Mountains in western Xinjiang with CV
values above 0.2. Averaged over the entire study area, CV
was equal to 0.156. As to each province (Fig. 2d), NPP had
the largest inter-annual variability in Ningxia with an average
CV value of 0.188, followed by Shaanxi, Qinghai, and
Xinjiang with average CV values of 0.168, 0.161, and
0.154, respectively. Gansu had the smallest average CV value
of 0.134. Overall, the provincial average CV decreased with
the increase of annual NPP.

Temporal changes of NPP in NWC

Figure 3 shows the change trend of regional average annual
NPP and its anomalies during 2000 to 2015 in NWC. NPP
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Fig. 2 Spatial distribution of annual NPP (a) and its CV (c) in NWC as well as boxplots of annual NPP (b) and its CV (d) for each province during the
period from 2000 to 2015

Fig. 3 Change trend of average
annual NPP in NWC from 2000
to 2015
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here showed a fluctuating upward trend (p<0.05) with an av-
erage increasing rate of 0.84 g C m−2 yr−1. NPP was lower
than the multi-year means in years 2000, 2001, 2002, 2008,
and 2011.

The spatial distribution of NPP change rate is shown in Fig.
4a. In 88.2% of NWC, the change rate of NPP ranged from
−10 to 10%. The small decreasing change rate of NPP, rang-
ing from −10 to 0%, occurred in 18.8% of the study area,
mainly distributed in northern Xinjiang. In 80.6% of the entire
region (Fig. 4b), NPP showed increasing change rates. In
northern Shaanxi, southern Ningxia, and eastern Gansu, the
change rate of NPP was above 10% (Fig. 4a). At the provin-
cial level, Ningxia had the highest change rate of NPP (7.7%),
followed by Shaanxi (6.5%), Gansu (4.5%), Qinghai (3.8%),
and Xinjiang (1.7%).

Mutation analysis of NPP in NWC

The Mann-Kendall test indicated that provincial mean NPP in
Gansu, Ningxia, and Shaanxi showed a significant upward
trend from 2000 to 2015 (Z>1.96). Meanwhile, the upward
trend of NPP in Qinghai and Xinjiang was not significant
(Z<1.96) (Fig. 5). The mutation test showed that NPP muta-
tions occurred in all provinces. In Gansu, the NPP mutation
occurred in 2007 with a decrease of 10 g C m−2 yr−1 in annual
NPP, mainly caused by NPP reduction in central Gansu
(Qilian mountains). In Ningxia, NPP changed abruptly in
2004 and 2009, respectively. Specifically, annual NPP de-
creased by 23.0 g C m−2 yr−1 in 2005 compared to that in
2004, while annual NPP was increasing year by year until
2004. Similarly, annual NPP decreased by 1.85 g C m−2

yr−1 in 2009 compared to that in 2008, while annual NPP
increased substantially with a value of 22.45 g C m−2 yr−1 in

2010 compared to that in 2009. In Shaanxi, NPP showed
mutations in 2004 and 2008. Annual NPP decreased by 27.7
and 3.1 g C m−2 yr−1 in the 2 years, respectively. As to
Qinghai, NPP changed abruptly between 2002 and 2003.
The provincial mean annual NPP decreased by 2.48 g C m−2

yr−1 in 2003 relative to the value in 2002. Xinjiang had the
highest number of NPP mutations, which occurred in 2002,
2007, 2010, and 2014, respectively, in which NPP changed by
2.49, 1.72, 0.62, and −5.57 g C m−2 yr−1 in comparison to
values in previous years.

Effects of water stress on NPP in NWC

The change rate of annual mean CWSI in NWC from 2000 to
2014 is shown in Fig. 6. CWSI decreased in areas of about
928262 km2, accounting for 59.65% of the regional total. The
increase in CWSImainly occurred in the northern of Xinjiang,
the southern of Qinghai, and Shaanxi. The decreasing rate of
CWSI exceeded 30% in areas of about 882311 km2. The
areas, in which CWSI increased, amounted to about 627823
km2 and were mainly distributed in the eastern of Qinghai, the
southeastern of Gansu, the northern of Shaanxi, and the
Kunlun Mountains in Xinjiang. The increasing rate of CWSI
exceeded 30% in areas of about 587669 km2. It means that the
water stress condition in those regions had been increasing
significantly. Overall, CWSI decreased and increased in
59.65% and 40.35% of the entire region, indicating that water
stress decreased in most of the study area.

Figure 6b shows the correlation coefficient between NPP
and CWSI in NWC. NPP was negatively correlated with
CWSI in about 73.1 % of NWC (about 1125184 km2), indi-
cating that the NPP was restricted by water stress in most of
NWC. In areas of about 468660 km2 (30.4%), the negative

Fig. 4 Spatial distribution of NPP change rate (a) and number of pixels at each range of change rates (b) during the period from 2000 to 2015
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correlation between NPP and CWSI was significant (p<0.05),
mainly distributed in the northwestern of Xinjiang, the south-
ern of Ningxia, and the middle of Gansu. In about 26.9% of
the region (415156 km2), NPP was positively correlated with
CWSI. The positive correlation between NPP and CWSI was
only significant (p<0.05) in 2.4% of the region (37096 km2),
mainly distributed in the southwestern of Qinghai.

Figure 7a shows the overall change of NPP with CWSI.
With the increase in CWSI from 0.3 upwards, annual NPP

significantly declined. In areas with CWSI in the range from
0 to 0.3, annual NPP was very low. These areas are mainly
located in high altitudes (above 3000 m), such as the edges of
the Qaidam Basin and the foothills of the Kunlun and
Tianshan Mountains. Although adequate snow and ice melt-
ing water makes high-altitude areas less water stressed (Tang
et al. 2019), low temperature here resulted in very low NPP
(Guo et al. 2020) and high inter-annual variability (CV) of
NPP (Fig. 7b). CV values of NPP did not show a noticeable

Fig. 5 Mann-Kendall trend and mutation test results of provincial mean NPP in NWC. a Gansu, b Xinjiang, c Qinghai, d Ningxia, e Shaanxi

Fig. 6 Change rate of CWSI (a) and correlation between NPP and CWSI (b) in NWC
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changing pattern with CWSI under the conditions of CWSI
above 0.3.

Discussion

Response of NPP to the change in water stress

In most of the region, annual NPP showed increasing trends
and were negatively correlated with CWSI, indicating water
stress acted as a key determinant of NPP trends and inter-
annual variability in NWC. As shown in Fig. 8, with the de-
creasing change rate of CWSI (from positive to negative), the
change rate of NPP starts to increase (from negative to posi-
tive). With 0 as the splitting point, the average rate of change
of NPP was 8.91% when the rate of change of CWSI was less
than 0, i.e., when water stress started to diminish. When the
rate of change of CWSI was greater than 0, i.e., when water
stress started to increase, the average rate of change of NPP

was only 0.01%. This significant difference further illustrates
the significant limiting effect of water stress on NPP.

Previous studies reported larger reduction of NPP caused
by water stress than this study (Wang et al. 2016a; Zhang et al.
2007a). This phenomenon can be explained by two reasons.
On the one hand, plants in chronically water-deficient areas,
such as NWC, are extremely efficient in water use, which
makes them highly resistant to short-term droughts (Zhang
et al. 2016). Thus, even if a small increase in water stress
occurs, NPP would not significantly decrease. Of course,
when water stress increases to very high levels, vegetation
growth in these areas will still be affected (Liu et al. 2015;
Lu and Zhuang 2010). In this study, when the change rate of
CWSI increased above 60%, NPP showed apparent decreases
(Fig. 8). On the other hand, artificial irrigation would suffi-
ciently alleviate the negative impact of natural water stress on
plants. Efficient water-saving irrigation, as one of the impor-
tant measures to mitigate drought in water-deficient regions,
has been widely implemented in agriculture in NWC (Chang

Fig. 7 Annual NPP (a) and its
CV (b) under different CWSI
intervals. The larger the CWSI is,
the more severe the water stress is

Fig. 8 Change rates of NPP in
different ranges of CWSI change
rates
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et al. 2016; Yang et al. 2020; Yue et al. 2016). This active
manual intervention makes that even though CWSI is increas-
ing, the actual water stress on the plant does not increase
significantly (Belder et al. 2005; Ghrab et al. 2013; Zhu
et al. 2014).

When the mean change rates of CWSI were less than 0, i.e.,
decrease in water stress, NPP increased apparently, with mean
increase rates averaged 8.91%. This is consistent with the
findings in many other regions, such as Sahel (Fensholt
et al. 2006), Mongolia (Poulter et al. 2013), and Amazonia
(Lee et al. 2013). However, the increase rate of NPP did not
greatly increase with further decrease of CWSI. Areas with
large magnitudes of CWSI normally have high elevations
(Figs. 1 and 6). Temperature is also a key factor controlling
vegetation growth and NPP here (Dai et al. 2011; Wang et al.
2020a). The positive effect of decrease in water stress on NPP
might be offset by temperature since increase in precipitation
is normally accomplished with decrease in temperature.

Change in the response of NPP to water stress with
elevation

Hydrothermal conditions change with elevation. As a conse-
quence, the growth of vegetation differs at different elevations
(Huang et al. 2020; Sun et al. 2020a; Sun et al. 2020b; Teng
et al. 2020). Changes of NPP with elevation have been report-
ed in numerous studies (Liu et al. 2018; Vetaas et al. 2019; Ye
et al. 2019). NWC has large elevation gradients (maximum
above 8000 m), which could also influence the correlation
between NPP and water stress. Thus, we further investigated
the change in the response of NPP to water stress in different
elevation ranges (Fig. 9).When the elevation exceeds 4000m,
correlation coefficients between NPP and CWSI were mostly
positive, indicating that water stress was not a limiting factor
of NPP. In NWC, the areas with elevation over 4000 m are
mainly distributed in western Qinghai and the foothills of
Kunlun Mountains. In these highly elevated areas, tempera-
ture also acts as the key determinant of NPP.

Under the condition of elevation below 4000m, correlation
coefficients between NPP and CWSI were mostly negative.
This means that water stress limits NPP. In areas with eleva-
tion below 2000 m, the negative correlation between NPP and
CWSI becomes intensified with the increase of elevation.
Water stress has the strongest negative impact on NPP in areas
with elevation in the range from 1000 to 2000m (Fig. 9).With
further increase in elevation above 2000 m, the negative im-
pact of water stress on NPP becomes weaker and weaker,
indicated by the shift of the correlation coefficient between
NPP and CWSI from negative to positive.

In general, this finding confirms the important role of ele-
vation in regulating water stress and affecting vegetation
growth, which provides new ideas for studying the response
of vegetation to environmental changes.

Change in the relationship between NPP and water
stress under various vegetation types

The difference in the characteristics of vegetation determines
the response of various vegetation to the external environment
is also different (Chen et al. 2020; Wu et al. 2015), for exam-
ple, the response to water stress (Lian et al. 2021; Porporato
et al. 2001). Thus, we further compared the relationship be-
tween NPP and water stress of various vegetation types in
NWC (Fig. 10). On the whole, the vast majority of NPP and
CWSI show a negative correlation, which once again shows
that water stress is an important factor limiting NPP. At the
same time, it is noted that there are also large differences in the
correlation between NPP and water stress in various vegeta-
tions. Specifically, NPP in CRO was most closely related to
water stress, with an average correlation of −0.45, followed by
GRA (−0.24), DBF (−0.2), WS (−0.13), CNVM (−0.13),
SAV (−0.04), and MF (−0.03). The strong correlation be-
tween farmland NPP and water stress indicates that the crop
yield of NWC is still severely restricted by natural water con-
ditions. Artificial water regulation techniques such as high-
efficiency water-saving irrigation still have a lot of room for
expansion in NWC (Du et al. 2014; Zou et al. 2020).

On the other hand, after comparing the two major for-
est types (DBF and MF), we found that MF was signifi-
cantly less dependent on water stress than DBF, suggest-
ing that MF may be better adapted to the drought envi-
ronment of NWC and reminding us that mixed forest spe-
cies may have greater environmental resistance due to
higher biodiversity compared to single forest species
(Ammer 2019; Jactel et al. 2017; Spiecker 2003). The
results of three vegetation types dominated by herbaceous
plants (GRA, SAV, and WS) show that NPP in pure
grasslands (GRA) is the most sensitive to water stress,
while vegetation NPP mixed with shrubs and other woody
plants is much weaker in response to water stress.

Fig. 9 Correlation between NPP and CWSI at different elevation
gradients
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Overall, NPP in single vegetation type showed a stronger
relationship to water stress, while the NPP inmixed vegetation
types showed a lower dependence to water stress. This finding
inspires us that forest and grass symbiosis may be a feasible
path for ecologically sustainable development in NWC, rather
than a single tree planting afforestation (Brancalion and Holl
2020; Grossnickle and Ivetić 2017; Steidinger et al. 2019).

Consistency in past and future trends of NPP

The consistency in past and future trends of NPPwas analyzed
according to the Hurst index (Fig. 11). Values in Fig. 11 were
determined on the basis of Hurst index and trends of NPP
during the period from 2000 to 2015. In 58% of the region,
past and future trends of NPP are inconsistent (H<0.5). In 11%
of the entire region, NPP showed a decreasing trend during the
period from 2000 to 2015 and might increase in the future,
mainly located in the northern of Xinjiang. In 47% of the
region, NPP increased in the past and might decrease in the
future, mainly located in the eastern of Qinghai. In 34% of the
entire region, NPP might keep the increase trend in the future,
mainly located in Shaanxi, the southern of Gansu, and the
western of Qinghai. Overall, future increase and decrease in
NPP might occur in 46% and 54% of the region, respectively.

It should be kept in mind that the future trend of NPP
projected by the Hurst index does not consider the effects of
human activities on NPP. In practice, some human activities
could offset negative impacts of natural conditions on NPP to
some extent. Hao et al. (2020) found that straw returning and
fertilization could significantly increase the accumulation of
organic carbon and productivity in farmlands over NWC. Li
et al. (2012) pointed out that high-efficiency water-saving

irrigation significantly increased the productivity and yield
of crops in this region. Niu et al. (2019) declared that the
vegetation coverage and aboveground biomass could be sig-
nificantly enhanced here by proper ecological engineering.
Thus, the shift of NPP from increase to decrease in some areas
could be alleviated or reversed through positive human
activities.

Conclusion

In this study, MODIS NPP and ET products were used to
analyze the dynamics of NPP and its response to water stress
indicated by CWSI in NWC. The main findings are the
following:

(1) NPP increased in 80.6% of NWC during the period from
2000 to 2015. The increasing rate averaged 0.84 g C m−2

yr−1. At the provincial level, Gansu had the most increase
of NPP, followed by Shaanxi, Ningxia, Qinghai, and
Xinjiang.

(2) Water stress acted as controlling factor of NPP in most of
NWC. In about 73.1% of this region, annual NPP was
negatively correlated with annual mean CWSI. Overall,
NPP decreased with the increase of CWSI under the
condition of CWSI above 0.3, accounting for the
45.28% of the entire region.

(3) NPP in CRO was most closely related to CWSI, with an
average correlation coefficient of −0.45, followed by
GRA (−0.24), DBF (−0.2), WS (−0.13), CNVM
(−0.13), SAV (−0.04), and MF (−0.03). NPP in single
vegetation type showed a stronger relationship to water
stress, while the NPP in mixed vegetation types showed
a lower dependence to water stress.

Fig. 10 Correlation between NPP and CWSI under various vegetation
types in NWC. GRA, grasslands; DBF, deciduous broadleaf forests; MF,
mixed forests; SAV, savannas; WS, woody savannas; CRO, croplands;
CNVM, cropland or natural vegetation mosaics

Fig. 11 The consistency in past and future trends of NPP over NWC
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(4) The response of NPP to water stress varies with eleva-
tion. The negative impact of water stress on NPP was the
strongest at elevations about 2000 m. With further in-
crease of elevation above 2000 m, the control of water
stress on NPP became weaker and weaker. At elevations
above 5000 m, the correlation between NPP and WSI
was mostly positive.

Our results highlighted the limiting effect of water stress on
NPP in arid region. This effect is elevation dependent, which
is important for better projection of the response of vegetation
to climate change. Of course, there are some uncertainties in
this study, mainly caused by uncertainties of NPP, ET, and
PET data used, the exclusion of deserts and semi-deserts, and
relatively short study period. These issues need be well inves-
tigated in the future.
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