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Abstract
The agricultural sector is one of the most important sources of CO2 emissions. Thus, the current study predicted CO2 emissions
based on data from the agricultural sectors of 25 provinces in Iran. The gross domestic product (GDP), the square of the GDP
(GDP2), energy use, and income inequality (Gini index) were used as the inputs. The study used support vector machine (SVM)
models to predict CO2 emissions. Multiobjective algorithms (MOAs), such as the seagull optimization algorithm (MOSOA),
salp swarm algorithm (MOSSA), bat algorithm (MOBA), and particle swarm optimization (MOPSO) algorithm, were used to
perform three important tasks for improving the SVMmodels. Additionally, an inclusive multiple model (IMM) used the outputs
of the MOSOA, MOSSA, MOBA, and MOPSO algorithms as the inputs for predicting CO2 emissions. It was observed that the
best kernel function based on the SVM-MOSOA was the radial function. Additionally, the best input combination used all the
gross domestic product (GDP), squared GDP (GDP2), energy use, and income inequality (Gini index) inputs. The results
indicated that the quality of the obtained Pareto front based on the MOSOA was better than those of the other algorithms.
Regarding the obtained results, the IMMmodel decreased the mean absolute errors of the SVM-MOSOA, SVM-MOSSA, SVM-
MOBA, and SVM-PSOmodels by 24, 31, 69, and 76%, respectively, during the training stage. The current study showed that the
IMM model was the best model for predicting CO2 emissions.
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Introduction

Environmental degradation is one of the main challenges
faced by policymakers and decision-makers. The increasing
emission rate of CO2 into the atmosphere is one of the impor-
tant causes of environmental degradation. Increasing industri-
alization and urbanization are the other causes of CO2

emissions in developing countries (Zhao et al. 2018). The
increasing levels of CO2 emissions affect global warming
and climate change. Additionally, ocean acidification and de-
sertification are the other consequences of the emission of
CO2 into the atmosphere. Pollution levels and related diseases
are increased by the emission of CO2. Hence, CO2 emissions
affect human health. Thus, predicting CO2 emissions is one of
the most important issues for researchers. The agricultural
sector is one of the most important sources of CO2 emissions.
In 2018, 9.9% of greenhouse gas emissions were related to the
agricultural sector. Cows, agricultural soils, and rice produc-
tion can increase CO2 emissions. The agricultural sector
causes 10–14% of global anthropogenic greenhouse gas emis-
sions (Shabani et al. 2021). If decision-makers want to man-
age CO2 emissions, it is necessary to accurately estimate the
CO2 emissions caused by different sectors, such as the agri-
cultural sector. Predictive models utilize parameters that are
relevant to CO2 emissions to estimate the amounts of emitted
CO2 in different years. Shi et al. (2019a) stated that the CO2

emission depends on different parameters such as industrial
activity and energy intensity. Shi et al. (2019b) stated that the
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household sector of china is responsible for 12.6% of CO2

emissions.
In recent years, machine learning algorithms (MLAs)

have been widely used for predicting different variables,
such as climate variables, pollutants, gas emissions, and
hydrological variables (Banadkooki et al. 2020a). The ad-
vantages of MLAs include their handling of unlimited
input data, fast processing speed, and accurate predic-
tions. In the context of CO2 emissions, researchers have
used different MLAs to predict the CO2 emission and
greenhouse gases (GG). Table 1 reviews CO2 emission
forecasting approaches. As observed in Table 1, the
MLAs have the high ability for predicting CO2 emissions.
SVM is a family member of MLAs that are widely used
for predicting target variables. The SVM models have the
high ability in high-dimensional space. The modelers can
define different kernel functions depending upon their re-
quirement. The SVM models provide good generalization
capability. Also, they can reduce the computational com-
plexity. Saleh et al. (2016) investigated the ability of
SVM model in predicting CO2 emission. The data of elec-
trical energy and burning coal were used as the inputs to
the models. They used trial and error to adjust the
parameters of the SVM model. It was concluded that the
SVM model was effective for predicting CO2 emission.
Sun and Liu (2016) exploited the least square SVM
(LSSVM) model to predict different kinds of CO2 emis-
sion. They concluded that the classification of CO2 emis-
sion enhanced forecast accuracy. Ahmadi et al. (2019a)
explored the use of least square SVM (LSSVM) in
predicting CO2 emission. They used evolutionary algo-
rithms to train the SVM model. They coupled genetic
algorithm (GA) with particle swarm optimization (PSO)
to make a new hybrid algorithm for training SVM model.
It was concluded that the LSSVM-PSO-GA had better
efficiency in predicting CO2 emission compared with
LSSVM-GA and LSSVM-PSO models. Wu and Meng
(2020) coupled LSSVM with bat algorithm (BA) for
predicting CO2 emission. It was observed that the
LSSVM-BA outperformed the extreme learning model
and backpropagation neural network.

Generally, MLAs have strong prediction abilities with re-
spect to CO2 emissions, but there are challenges:

1- The model parameters of MLAs need to be tuned based
on powerful training algorithms such as advanced optimi-
zation algorithms (Ehteram et al. 2020; Banadkooki et al.
2021).

2- Some MLAs, such as the ANN, SVM, and ANFIS
models, have different kinds of kernel functions and ac-
tivation functions. Thus, the best function should be se-
lected to predict the target variable based on the received
input data (Darabi et al. 2021).

Table 1 Detailed paper reviewed

Author Description Results

Khoshnevisan
et al. (2013)

Khoshnevisan et al. (2013)
predicted GGs using
artificial neural
networks (ANNs) and
energy inputs

The results indicated that
the ANN model with a

coefficient of
determination of 0.99
had a strong ability to
predict CO2 emissions

Wang et al.
(2015)

Wang et al. (2015) used a
principal component
analysis-support vector
machine (PCA-SVM)
for predicting CO2

emissions

They reported that the
PCA-SVM based on the
radial basis function
provided accurate

results for predicting
CO2 emissions

Sun and Liu
(2016)

Sun and Liu (2016) used
the least-squares support
vector method
(LLSVM), an ANN, and
a gray model for
predicting CO2

emissions

It was found that the
LLSVM model

outperformed the other
models.

Sun et al.
(2017)

Sun et al. (2017) used an
extreme learning
machine model (ELM)
and a particle swarm
optimization-ELM
(PSO-ELM) for
predicting CO2

emissions

They used factor analysis
to identify the
appropriate input
parameters. The use of
PSO as a training
algorithm improved the
accuracy of the ELM
when predicting CO2

emissions

Li et al. (2017) Li et al. (2017) applied the
SVM genetic algorithm
for predicting CO2

emissions

The results revealed that
economic growth,
resident population
growth, and energy
intensity are the most
important parameters
affecting CO2
emissions. The GA
could also improve the
accuracy of the
standalone SVM model

Zhao et al.
(2018)

Zhao et al. (2018) used the
LLSVM-salp swarm
algorithm
(LLSVM-SSA) for
predicting CO2

emissions. Different
parameters, such as the
population, energy
consumption, energy
intensity, and gross
domestic product, were
used as the inputs for the
models

It was concluded that the
LLSVM-SSA
outperformed the
LLSVM model in terms
of predicting CO2

emissions

Ahmadi et al.
(2019a)

Ahmadi et al. (2019b) used
the group method of
data handling (GMDH)
to predict GG emissions.
Iran, Kuwait, Qatar,
Saudi Arabia, and the
United Arab Emirates
were considered in case
studies for predicting

It was reported that
GMDH was a powerful
method for predicting
CO2 emissions
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3- The selection of the best input scenario for each MLA
requires preprocessing methods.

4- Previous studies compared various models and deter-
mined a superior model for predicting CO2 emissions.
In fact, competing models are rejected or accepted based
on their accuracy, but the main question is how the syn-
ergy among multiple models can be used.

To address the abovementioned challenges, the current
study uses a new hybrid framework for predicting CO2 emis-
sions. One of the most powerful models for predicting target
variables such as CO2 emissions is the SVM. The kernel func-
tions of the SVM have the same parameters. The values of the
SVM parameters can be obtained based on robust optimiza-
tion algorithms. In this study, four multiobjective algorithms
(MOAs), namely, the MO seagull optimization algorithm
(MOSOA), MO salp swarm algorithm (MOSSA), MO bat
algorithm (MOBA), and MO particle swarm optimization
(MOPSO), are used to improve the performance of the SVM
model and address the challenges mentioned above:

1- To obtain the values of the SVM parameters, an objective
function, such as the root mean square error (RMSE), is
used as the first objective function.

2- To choose the best kernel function, the names of kernel
functions are inserted into the optimization algorithms as
decision variables. A second objective function, such as
the mean square error (MAE), is used to choose the best
kernel function.

3- The names of the input variables are inserted into the
algorithms as the decision variables. The Nash Sutcliffe
efficiency is used as the third objective function for
choosing the name each of input variables.

4- An inclusive multiple model is used to predict CO2 emis-
sions based on the synergy among the SVM-MOSOA,
SVM-MOSSA, SVM-MOBA, and SVM-MOPSO
algorithm.

Regarding the abovementioned points, the main novelties
of the current paper are as follows:

1- The establishment of new hybrid SVM models that were
not used in previous articles for predicting CO2

emissions.
2- The creation of an inclusive multiple model to use the

contributions of different SVM models for predicting
CO2 emissions.

3- The application of the current study is not limited to CO2

emissions, and modelers can use the proposed models for
predicting other variables, such as hydrological variables.

4- The presentation of an effective approach for finding the
best values of the random parameters of the compared
multiobjective algorithms.

To the best of the authors’ knowledge, no previous article
has investigated the new hybrid SVM models proposed in the
current study for predicting CO2 emissions. In this study, new
hybrid SVM models are used to predict CO2 emissions in the
agricultural sector of Iran based on data from 20 provinces
(Fig. 1). Section 2 of the current study explains the structures
of the compared models and the methods utilized. The case
study is explained in Section 3. Section 4 presents a discussion
and the experimental results. Section 5 explains the conclu-
sions of the paper.

Materials and methods

Structure of the support vector machine

The first version of the SVM was introduced by Sain and
Vapnik (1996). The SVMmodel uses a kernel function to find
the relationships between the model inputs and outputs. The
linear form of the SVM is as follows:

f xð Þ ¼ ηTr:xþ β ð1Þ
where x is the input, Tr denotes the transpose operation, η
denotes the weighting coefficients of the input variables, β is
the bias, and f(x) is the variable predicted by the SVM.

The aim of the SVM is to minimize the difference between
the predicted values and observed values. Thus, an optimiza-
tion problem is defined to minimize the error function, which
is named the e-insensitive loss function. The SVM acts based
on the following equations:

Minimize
1

2
ηk k2 þ PE ∑

m

i¼1
ψ−
i þ ψþ

i

� � ð2Þ

subject toð Þ ηi:xi þ βð Þ−zi < εþ ψþ
i ; i

¼ 1; 2; ::;mzi− ηi:xi þ βð Þ≤εþ ψ−
i ð3Þ

Table 1 (continued)

CO2 emissions.
Xu et al.

(2019)
Xu et al. (2019) applied a

dynamic nonlinear
ANN to predict CO2
emissions.

It was found that the
dynamic nonlinear
ANN had a strong
ability to predict CO2
emissions.

Duan and Luo
(2020)

Duan and Luo (2020)
coupled the gray
Verhulst model with
particle swarm
optimization
(GVMPSO) for
predicting CO2

emissions.

The results demonstrated
that GVMPSO could
predict CO2 emissions
accurately for problems
with a limited number of
data
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where PE is the penalty coefficient, m is the number of
observed data, ψ−

i and ψþ
i represent the violation of the ith

training data ε: permitted error threshold, xi is the input vari-
able, zi is the target variable, and ηi is the ith weight variable.
The weight variable and bias are obtained based on Eqs. 2 and
3. Then, they are inserted into Eq. 1 to obtain f(x). The SVM
uses several kernel functions to map the dataset to the linearly
separable space.

f xð Þ ¼ ηTr:K x; xið Þ þ β ð4Þ

Sigmoid function:

K x; xið Þ ¼ tanh γ x:xið Þ þ rð Þ ð5Þ

Radial basis function (RBF):

K x; xið Þ ¼ exp −γ x−xik k2 þ PE
� �

ð6Þ

Polynomial function:

K x; xið Þ ¼ γ x; xið Þ þ rð Þd ð7Þ
where K(x, xi) is the kernel function and γ, r, PE, d, and ε are
kernel parameters (the values of the kernel parameters are

obtained based on the corresponding MOAs).

Seagull optimization algorithm

The SOA has been widely applied in different fields, with
applications such as multiobjective optimization (Dhiman
et al. 2020; Dhiman and Kumar 2019), feature selection (Jia
et al. 2019), experimental fuel cell modeling (Cao et al. 2019),
and classification (Jiang et al. 2020). Few parameters, easy
implementation, fast convergence, and the use of swarm ex-
perience are the advantages of the SOA. The migrating birds
are the prey of the seagulls. The seagulls use natural spiral-
shaped movement to attack migrating birds. Seagulls live in a
group and travel towards the direction of the seagull that is
most fit for survival. The mathematical model of the SOA is
based on the migration phase and attack phase:

(1) Migration phase

When the seagulls move in the search space, collisions be-
tween neighbors should be avoided. Thus, the new locations
of the search agents (seagulls) are computed as follows:

Fig. 1 Methodology flowchart
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P
!

s ¼ α� L
!

s xð Þ ð8Þ

where P
!

s is the location of the search agent that prevents

collisions with the other seagulls, L
!

s xð Þ is the location of
the seagull during iteration (i), and α is the motion behavior
of the seagull. αis computed as follows:

α ¼ f c− i� f c
Max ið Þ

� �� �
ð9Þ

where fc is the frequency control of α and i is the number of
iterations. In the next phase, the seagulls move towards the
direction of the best neighbor:

N
!

e ¼ ζ � P
!

b− L
!

s

� �
ð10Þ

where N
!

e is the location of seagull L
!

s (moving towards the

best seagull P
!

b ) and ζ is a random value. A random value is
obtained based on the following equation:

ζ ¼ 2� α2 � RA ð11Þ
where RA is a random number. Finally, the seagulls update
their locations as follows:

F
!

s ¼ P
!

s þ N
!

s

��� ��� ð12Þ

where F
!

s is the distance between the search agent and best
seagull.

(2) Attack phase

During the attack, seagulls maintain their altitude using their
wings and weight. The speed and angle of the seagull attack
are changed continuously. They use spiral movements to at-
tack their prey, as follows:

xx
0 ¼ r � cos τð Þ ð13Þ

yy
0 ¼ r � sin τð Þ ð14Þ

zz
0 ¼ r � τ ð15Þ

r ¼ u� eτv ð16Þ
where r is the radius of each spiral turn, xx′ is the position of
the seagull in plan x, yy′ is the position of the seagull in plan y,
zz′ is the location of the seagull in plan z, u and v are constants,
and τ is a random number. Finally, the seagulls change their
locations as follows:

L
!

s ¼ F
!

s � xx
0 � yy

0 � zz
0

� �
þ P
!

b ð17Þ

where L
!

s stores the best solution. Figure 2 shows the flow-
chart of the SOA.

Salp swarm algorithm

The SSA is widely applied for optimization problems in dif-
ferent fields, such as feature selection (Tubishat et al. 2021),
engineering optimization (Salgotra et al. 2021), optimal power
flow calculation (Abd el-sattar et al. 2021), and ANN training
(Kandiri et al. 2020). The SSA has a good balance between
exploration and exploitation, as well as fast convergence. The
positions of salps in an optimization problem signify a candi-
date solution. The first salp at the front of the salp chain is
called the leader, and the other salps are called followers.
Figure 3 shows a salp chain. The position of the leader is
changed as follows:

Salp1; j ¼ Food j þ ρ1 � upj−lowj

� �
� ρ2 þ lowj

� �
←ρ3≥0:50

Food j−ρ1 � upj−lowj

� �
� ρ2 þ low j

� �
←ρ3 < 0:50

2
6664

3
7775

ð18Þ
where Salp1, j is the location of leader, Foodj is the food
source in the jth dimension, ρ1 is a control parameter, and ρ3
and ρ2 are random parameters. ρ1 is updated as follows:

ρ1 ¼ 2� e
−4�l
Lð Þ2 ð19Þ

where L is the maximum number of iterations and l is the
current number of iterations. The locations of the followers are
updated as follows:

foli; j ¼
1

2
foli; j þ foli−1; j

� �
ð21Þ

where foli, j is the position of the ith follower in the jth dimen-
sion. Figure 4 shows the SSA flowchart.

Bat algorithm

The BA was inspired by the behavior of bats when finding
food. The BA has been applied in different fields, such as
image segmentation (Yue and Zhang 2020), parameter extrac-
tion for photovoltaic models (Deotti et al. 2020), MLA train-
ing (Dong et al. 2020), optimal reactive power dispatching
(Mugemanyi et al. 2020), continuous optimization (Chakri
et al. 2017), and numerical optimization (Wang et al. 2019).
The bats use echolocation behavior to distinguish food from
obstacles. A bat adjusts its distance from food based on its
wavelength, frequency, and pulsation rate. The bats update
their frequencies, velocities, and locations as follows:

frei ¼ fremin þ r1 fremax−freminð Þ ð22Þ

66175Environ Sci Pollut Res (2021) 28:66171–66192



veitþ1 ¼ veit þ f i X i
t−X

best
t

� � ð23Þ
X tþ1

i ¼ X t
i þ vetþ1

i ð24Þ

where frei is the frequency of the ith bat, fremin is the min-
imum frequency, r1 is a random value, veitþ1 is the velocity of

the ith bat at iteration t+1, X i
t is the location of the ith bat at

iteration t, and X best
t is the location of the best bat (the best

solution). The bats use a random walk to perform the local
search operation:

X tþ1
i ¼ X t

i þ φAtþ1
i ð25Þ

where φ is a random number and Atþ1
i is a loudness param-

eter. The pulsation rate and loudness are adjusted based on the
following equations:

Atþ1
i ¼ μAt

i ð26Þ
rtþ1
i ¼ ri 0ð Þ 1−exp −γtð Þ½ � ð27Þ
where μ and γ are constant values, ri(0) is the initial value of
the pulsation rate, Atþ1

i is the value of loudness at iteration t+1,
and rtþ1

i is the pulsation rate at iteration t+1. Figure 5 shows
the BA flowchart.

Start Define the algorithm 
parameters 

Define the algorithm 
parameters

Initialize seagull population 
randomly 

Compute the objective 

function for the solutions

Implement operators

1- Migration
2- Attack 

Termination satisfied?

NO

Yes 

End

Fig. 2 The flowchart of the
different optimization levels of
SOA

Fig. 3 The schematic structure of
the salp chain (Zhang et al.
2021b)

66176 Environ Sci Pollut Res (2021) 28:66171–66192



Particle swarm optimization

PSO is a powerful optimization algorithm that is widely used
in different fields, such as for multiobjective optimization
problems (Zhang et al. 2020), feature selection problems
(El-Kenawy and Eid 2020), environmental economic dispatch
problems (Xin-gang et al. 2020), green coal production

problems (Cui et al. 2020), and the training of ANN models
(Darwish et al. 2020). The collaborative behavior of the
swarm in the PSO algorithm is one of the advantages of
PSO with regard to finding optimal solutions. In PSO, first,
the random positions and velocities of the particles are initial-
ized. Then, an objective function is computed for each particle
so that the best particle position achieved by the population so

Start Initialize the population 
of salp

Compute the 

objective function 

of salp

Update the best 

soluation

Termination 

condition

Yes

Return the best 

soluation

Update 

parameter 

Check if 

i<=population 

size?

NO

NOAmend the salp based 

on upper and lower 

bounds of variable

Yes

Check if i==1

Yes
Change the 

location of leader 

salp

i=i+1

Update the 

location of the 

leader salp

NO

Fig. 4 The flowchart of the SSA

Fig. 5 The flowchart of the BA
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far is identified. The velocities and positions of the particles
are updated based on the following equations. The process
continues until the stopping criterion is satisfied.

vi;d t þ 1ð Þ ¼ κvi;d tð Þ þ c1r1 pbest; i; d−xi;d tð Þ� �
þ c2r2 gbest ; d−xi;d tð Þ� � ð28Þ

xi;d t þ 1ð Þ ¼ xi;d tð Þ þ vi;d tð Þ ð29Þ
where vi, d(t + 1) is the velocity of the ith particle in the dth
dimension during iteration t+1, c1 and c2 are acceleration co-
efficients, pbest, i, d is the personal best position, gbest, d is the
global best position, xi, d(t + 1) is the position of the ith particle
during iteration t+1, and r1 and r2 are random numbers.

Multiobjective optimization problems

In a multiobjective optimization problem (MOOP), some ob-
jective functions can conflict with each other. A solution to an
MOOP cannot be compared with other solutions based on
relational operators. One of the most important conceptions
in MOOPs is Pareto dominance. Solution A dominates solu-
tion B if it has equal values (with at least one better value) on
all objectives. The circles in Fig. 6 are better than the squares
in Fig. 6 based on the fact that the circles achieve lower ob-
jective function values of for a minimization problem with the
aim of minimizing both objectives.While the circles dominate
the squares, they do not dominate each other. EachMOOP has
a set of best non-dominated solutions, namely, the Pareto op-
timal set. The projection of Pareto optimal solutions in the
search space is known as the Pareto optimal front. In an
MOOP, there is an external archive in which the non-
dominated solutions of MOAs are stored. The next challenge
is the selection of a target for each iteration of the algorithm. In
fact, the targets are the best positions of the leader, bat, parti-
cle, and seagull for the MOSSA, MOBA, MOPSO algorithm,

and MOSEOA, respectively. To find the target for updating
the positions of other agents, the number of neighboring so-
lutions (NSs) in the neighborhood of each solution is counted.
During this phase, the target should be chosen from the set of
non-dominated solutions with the least crowded neighbor-
hood. To determine the populated neighborhood, NSs within
a certain maximum distance are counted.

d
!¼ ma x!−mi n!

Archiveð Þsize ð30Þ

d
!

is the crowding distance, ma x! denotes maximum value

for every objective, and mi n! represents minimum value for
every objective. Based on the computed distances, a rank is
assigned to each solution. Then, a roulette wheel is used to
choose the target. The solutions with more NSs have higher
ranks, and thus, the target is chosen among the solutions with
the lowest ranks. Setting the size of the archive is another
challenge. Archives can store a limited number of non-
dominated solutions. Thus, the solutions with the most
crowded neighborhoods are chosen for removal from the ar-
chive. Following a similar process, the crowding distances are
computed, and a rank is assigned to each solution. A roulette
wheel is used for selecting the solutions with the highest ranks
(the most crowded neighborhoods). To update the archive of
non-dominated solutions, the following rules should be
considered:

1- If one of the archive solutions dominates the external
solutions, the external solution should be discarded.

2- If a solution dominates all non-dominated solutions in the
archive, the external solution should be added to the
archive.

The MOSOA, MOBA, MOPSO algorithm, and MOSSA
are performed based on the following procedure:

1- The random parameters of theMOAs are defined for each
algorithm.

2- The random positions (velocities) of agents (particles,
bats, seagulls, and salps) are defined.

3- The objective function (OBF) is calculated for each agent.
4- The non-dominated solutions are determined based on the

value of the OBF.
5- The size of the archive is checked, and if it is full, the

solutions with the most NSs are removed from the
archives.

6- The archive should be updated based on the rules men-
tioned above.

7- The target is selected from the solutions with the least
crowded neighborhoods.

Fig. 6 Dominance conception
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8- The process is repeated until the satisfaction of an end
condition occurs.

Case study

According to the Paris Agreement, Iran has agreed to
decrease CO2 emissions by 4% by 2030. Iran has stated
that if there is international support without any risk of
sanctions, a 12% reduction in CO2 emissions is possible.
However, there are challenges with respect to decreasing
CO2 emissions. During the 2000s, environmental issues
had lower importance than economic and social issues.
The developing industrial unit around Tehran (capital of
Iran) is one of the main causes of increased CO2 emis-
sions and air pollutants. Iran is known as the 7th largest
CO2 emitter in the world. The agricultural sector of Iran is
one of the important causes of increased CO2 emissions.
There are different parameters in the agricultural sector
that affect CO2 emissions. One of the most important
parameters is the gross domestic product (GDP).
Different studies have investigated the effect of the GDP
on CO2 emissions. Cowan et al. (2014) stated that there
was a Granger causality between the GDP and CO2

emissions in Brazil during the period from 1990 to
2000. Zubair et al. (2020) investigated the relationship
between CO2 emissions and the GDP in Nigeria. They
stated that the CO2 emissions during the long-term period
(1980–2018) in Nigeria decreased with increasing GDP.
Additionally, the literature has used the environmental
Kuznets curve (Kuznets 1955) to find the relationship
between economic growth and environmental quality.
Grossman and Krueger (1991) used the Kuznets curve to
explain the relationship between environmental degrada-
tion and economic growth. Based on the Kuznets curve,
first, economic growth degraded the environment. After
economic growth reached its maximum value, the growth
improved the environment. Additionally, the square of the
per capita GDP is one of the most effective parameters for
predicting CO2 emissions (Shabani et al. 2021; Hosseini
et al. 2019). Another effective parameter for predicting
CO2 emissions is the Gini coefficient (Cheng et al.
2021; Shabani et al. 2021). The Gini index estimates in-
come inequality in the agricultural sector of Iran. Energy
consumption is yet another effective parameter for esti-
mating CO2 emissions. The amount of fossil fuels utilized
in this sector is presented as the energy consumption var-
iable. Ali et al. (2021) stated that increasing fossil fuel
usage increases CO2 emissions. Koengkan et al. (2019)
stated that renewable energies should be used as alterna-
tives to fossil fuels because fossil fuels increase CO2

emissions.

Generally, based on the abovementioned discussions, the
following inputs are used in the current study for predicting
CO2 emissions:

1- GDP
2- Square of the GDP
3- Energy use
4- GINI index

To obtain the real GDP, the nominal values are divided by
the producer price index, and the total values are divided by
the population to obtain the per capita GDP. However, differ-
ent input combinations can be provided based on the inputs
above. To find the best input combination, the SVM is
coupled with the MOAs. Table 2 shows the statistical charac-
teristic data. The annual data for 25 provinces of Iran from
1990 to 2018 are extracted to predict the CO2 emissions
caused by the agricultural sector of Iran. The website of the
Statistics Center of Iran is used to collect the dataset.

Hybrid SVM and MOAs

In this section, the MOAs are used to improve the accuracy of
the SVM based on the following procedure:

1- The input data are prepared for the SVMmodels. Seventy
percent of the data are used for training, and 30% of the
data are used for testing. These percentages are chosen
because they provide the lowest error for the SVMmodel.

2- The SVMmodel uses the training data for predicting CO2

emissions. If the stopping criterion is satisfied, it proceeds
to the testing phase; otherwise, the MOAs are linked to
the SVM model.

3- The MOAs are defined based on the rules in section 2.5.
The names of the inputs, the names of the kernel func-
tions, and the initial guesses of the kernel parameters are
inserted into the MOAs as decision variables. Three ob-
jective functions are used to find the parameter values, the
best kernel function, and the best input combination. The
RMSE is used as the first objective function for finding
kernel parameters. The MAE is used to find the best ker-
nel function. The NSE is used to find the best input com-
bination. In fact, the positions of the agents determine the
values of the decision variables.

4- The Pareto front is created, and the nondominated solu-
tions are placed on the Pareto front. Each solution in-
cludes three kinds of information: the best input combi-
nation, the values of the parameters, and the best kernel
function.

5- Amulticriteria decision process is used to choose the best
solution from the Pareto front as the final solution.

6- The SVM model based on the obtained formations runs
again, and the process is repeated.

66179Environ Sci Pollut Res (2021) 28:66171–66192



Inclusive multiple model

Previous studies used competitive models for predicting dif-
ferent target variables, but there are several concerns:

1- The final outputs of the previous studies were the selec-
tions of the worst model and the best model. The best
model was suggested for subsequent studies, and the
worst models were discarded.

2- The intercomparisons between the predictive models
were never exhaustive.

3- There was no effort to provide more accurate results
based on the synergy among all competitive models used.

In this study, first, SVM-MOSOA, SVM-MOPSO, SVM-
MOSSA, and SVM-MOBA are used to predict CO2 emis-
sions. In the next stage, to increase the accuracy of the outputs,
an inclusive multiple model is used to improve the accuracy of
the final outputs based on the synergy among the SVM-
MOSOA, SVM-MOPSO, SVM-MOSSA, and SVM-MOBA
models as follows:

1- First, the SVM-MOSOA, SVM-MOPSO, SVM-
MOSSA, and SVM-MOBA models are used to predict
CO2 emissions.

2- In the next stage, the outputs of SVM-MOSOA, SVM-
MOPSO, SVM-MOSSA, and SVM-MOBA are used as
the inputs for the ANN model to predict CO2 emissions.

In fact, the outputs of the first stage are considered lower-
order modeling results. The utilization of the inclusive
multiple model causes the accuracy of the results to be
increased based on the utilization of the advantages of all
competitive models. The modeler ensures that the capac-
ities of all models are used to extract the most accurate
results possible.

However, the ANN model used in the current study in-
cludes one input layer, one hidden layer, and one output layer,
as observed in Fig. 7. The input layer receives the outputs of
the competitive models as its inputs. The hidden layer pro-
cesses the received inputs based on the chosen activation func-
tion. In this study, the sigmoid function is used as it was one of
the successful activation functions used in previous studies
(Banadkooki et al. 2020b, Ehteram et al. 2021). The ANN
processes data based on the following equation:

Y ¼ b0 þ ∑
Nh

i¼1
ω j f boj þ ∑

Nin

i¼1
ωijIN ij

� �
ð31Þ

where b0 and boj are the bias of the output and the hidden
layer, respectively; ωij is the weight of the ith input in the jth
hidden layer neuron; INij is the network input; f is the activa-
tion function; ωj is the weight of the output from hidden neu-
ron j; Nh is the number of hidden neurons; Y is the output; and
Nin is the number of inputs.

f yð Þ ¼ 1

1þ e−y
ð32Þ

Table 2 The statistical
characteristic of input and output
data

Parameter Unit Average Maximum Minimum Standard deviation

Training

CO2 (output) Per capita CO2 Metrics kg 6.12 12.98 2.44 2.225

Gini - 30.24 45.12 22.23 8.76

GDP Real Per capita GDP

(Billion Rial)

0.824 8.76 0.023 1.912

GDP2 Square of GDP

(Billion Rial)

612.44 898.23 9.25 124.56

EC Energy use

1000 barrels of oil equivalent

1123.12 4567.87 567.24 85.12

Testing

CO2 (output) Per capita CO2 Metrics kg 7.44 12.25 1.98 2.34

Gini - 32.25 47.12 24.25 9.12

GDP Real Per capita GDP

(Billion Rial)

0.912 9.12 0.045 1.998

GDP2 Square of GDP

(Billion Rial)

615.54 897.12 12.23 134.23

EC Energy use

1000 barrels of oil equivalent

1112.2 4678.12 672.2 98.23
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f (y) is the output of the activation function based on the

input y (y: boj þ ∑
Nin

i¼1
ωij IN ij ). In this study, the back-

propagation algorithm is used to train the ANN model.

Multicriteria decision model

A Pareto front includes multiple solutions. To choose the best
solution, a multicriteria decision model is used. One of the
powerful multicriteria decision models is the weighted aggre-
gate sum product assessment (WASPAS) technique, which is
widely used in different fields, such as solving solar wind
power problems (Nie et al. 2017), fuel technology selection
(Rani and Mishra 2020), and the development of smart cities
(Khan et al. 2020). To use the WASPAS technique to choose

the best solution from the Pareto front, the following steps are
considered:

1- A decision matrix is adjusted so that the values of each
criterion (NSE, RMSE, and MAE) are inserted into the
matrix for each solution.

2- The decision matrix is normalized based on the following
equations:

For the NSE criterion:

z*ij ¼
zij

maxizij
ð33Þ

For the RMSE and MAE criteria:

z*ij ¼
mini:zij
zij

ð34Þ

(a)
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Fig. 7 (a) The measured CO2 for
700 data points and (b) the
starcture of the IMM model
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z*ij is a normalized value, and zij is the performance of the ith

alternative with respect to the jth criterion.

3- In the next stage, the weighted sum model and weighted
product model are computed as follows:

Ki ¼ ∑
n

j¼1
κij:zij ð35Þ

Li ¼ ∏
n

j¼1
z*ij

� �w j ð36Þ

where Ki is the weighted sum model, Li is the weighted prod-
uct model, κij denotes the weight of each criterion, and n is
number of criteria.

4- The aggregated measure is computed as follows:

Si ¼ σKi þ 1−σð ÞLi ð37Þ
where σ is a constant parameter (σ:0.5). The solution with the
highest value of Si is chosen as the best solution.

In this study, to evaluate the performances of the tested
models, the following indexes are used:

& Root mean square error (ideal values are close to zero)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

∑
m

i¼1
CO2es−CO2obð Þ2

s
ð38Þ

• Scatter index (SI<0.10: excellent performance, SI:0.10
<SI< 0.20: good performance, SI:0.20 <SI< 0.30: fair perfor-
mance, and SI>0.30: poor performance (Li et al. 2013):

SI ¼ RMSE

CO2ob

ð39Þ

• Mean absolute error (MAE):

MAE ¼ 1

m
∑
m

i¼1
CO2es−CO2obj j ð40Þ

• Nash Sutcliffe efficiency (NSE) (values close to 1 are
ideal)

NSE ¼ 1−
∑
m

i¼1
CO2es−CO2obð Þ2

∑
m

i¼1
CO2es−CO2es

� � ð41Þ

• Uncertainty with a 95% confidence level (lowest values
are ideal)

U 95 ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2 þ RMSE

2
� �r

ð42Þ

• Percentage bias

PBIAS ¼ 100*
∑
n

i¼1
CO2es−CO2obð Þ2


 �

∑
n

i¼1
CO2ob

ð43Þ

where SD is the standard deviation of the residual, m is the
number of data points, CO2ob denotes the observed CO2

levels, and CO2es is the average estimated CO2es.
Additionally, to evaluate the quality of the Pareto fronts

obtained by the different MOAs, the following indices are
used:

1- Spacing index: this shows the spread of the computed
Pareto front.

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np−1
∑
np

i¼1
d−dii

� �s
ð44Þ

where np is the number of Pareto solutions, dii is the Euclidean
distance between the two consecutive in the Pareto front, and

d is the average distance between solutions. The lowest SP
value corresponds to the best algorithm.

Maximum spread (MS): the MS shows the distance be-
tween the boundary conditions. The highest MS value corre-
sponds to the best algorithm:

MS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
nf

i¼`
max d ri; tið Þð Þ

s
ð45Þ

where d is a function used to compute the Euclidean distance,
ri is the maximum value in the i-th objective function, ti is the
minimum value in the ith objective function, and nf is the
number of objective functions.

Discussion and results

Determination of random algorithmic parameters

The MOAs used have random parameters, and their accurate
values should be determined because the accuracies of MOAs
depend on the random parameters chosen. One of the most
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robust methods for designing parameters and experiments is
the Taguchi model. The Taguchi model is widely used in
different fields, such as for optimizing the tuning parameters
of models (Dutta and Kumar Reddy Narala 2021), optimizing
thermal conductivity (Aswad et al. 2020), optimizing air dis-
tributor channels (Feng et al. 2020), optimizing soil erosion
(Zhang et al. 2021a), and optimizing runoff water quality (Liu
et al. 2021). To determine the values of the random parame-
ters, the following steps are considered:

1- The levels of the parameters and the number of parame-
ters should be determined. For example, the population
size and the maximum number of iterations should be
determined for the MOSOA. Thus, there are two param-
eters. As observed in Tables 3a and 4 values are assigned
to the population size and the maximum number of itera-
tions to find the best values of these random parameters.

2- Regarding the number of parameters and their levels, an
orthogonal array is chosen from the Taguchi table. The
Taguchi model uses the orthogonal array to decrease the
required number of experiments. Regarding the two pa-
rameters with four levels each in the MOSOA, L16 covers
the required experiments for the parameters of the
MOSOA. As observed in Table 3b, there are 16 experi-
ments for two parameters with four levels.

3- In the next stage, the signal (S)-to-noise (N) ratio is com-
puted for each experiment:

S
N
ratio ¼ −10log1o objective functionð Þð Þ2 ð44Þ

High values of the S/N are ideal.

4- The mean of the S/N values is computed for factors at the
different levels and computed as follows:

Meanð Þfactor ¼ llevel ¼ i ¼ 1

nij

� ∑
j¼1

nij S
N

� �
factor

¼ l
level

¼ i

" #

ð45Þ
where Mean S/N denotes the mean signal-to-noise ratio.

Table 3b shows the S/N values for 16 experiments. The
average S/N for each of the levels of the parameters is com-
puted in Table 3c. The highest mean S/N values correspond to
the best parameter values. As observed in Table 3c, the pop-
ulation size and the maximum number of iterations in level 1
have the highest mean S/Ns. Thus, the best values for the

population size and the maximum number of iterations are
14.26 and 15.33, respectively. Obtained via a similar process,
the optimal values of the other parameters for the other com-
pared MOAs are reported in Table 3d.

The Pareto fronts of different models

Figure 8 shows the Pareto fronts obtained for different models.
As observed in Fig. 8, the RMSE, MAE, and NSE of SVM-
MOSOA vary from 0.25 to 0.75 (kg), from 0.12 to 0.62 (kg),
and from 0.92 to 0.98, respectively. The RMSE, MAE, and
NSE of SVM-SSA vary from 0.35 to 10.05 (kg), from 0.24 to
0.72, and from 0.91 to 0.97, respectively. The RMSE and
MAE of SVM-MOSOA for the non-dominated solutions are
lower than those of the other models. The red circle shows the
best solution obtained by the multicriteria decision process.
As observed in Table 4, the best solution determines the best
input scenario, the values of the SVM parameters, and the best
kernel function. Table 4a shows the best kernel functions for
the different SVMmodels. The best kernel function for SVM-
MOSOA is the RBF, and it is the sigmoid function for SVM-
MOSSA, SVM-MOBA, and SVM-MOPSO. The values of
the SVM parameters are shown in Table 4b, and the best input
combinations are shown in Table 4c. Figure 9 compares the
quality of the Pareto fronts obtained by the different models.
As observed in Fig. 9, MOSOA provides the lowest SP and
the highest MS among the models. The MOPSO provides the
lowest MS and the highest SP. Thus, MOPSO and MOSOA
provide the worst and the best Pareto fronts among the tested
models, respectively.

Comparison of model accuracies with respect to
predicting CO2 emissions

Table 5 compares the performances of different models. The
RMSE of SVM-MOSOA during the training stage is 16, 55,
57, and 60% lower than those of the SVM-MOSSA, SVM-
MOBA, and SVM-MOPSO models. The MAE obtained by
SVM-MOSOA is 0.29, and they are 0.32, 0.69, and 0.91 for
the SVM-MOSSA, SVM-MOBA, and SVM-MOPSO
models, respectively. SVM-MOSOA obtains the highest
NSE and the lowest PBIAS during the training stage among
the different SVM-MOA models. If the accuracies of the
SVM-MOA models are compared with those when the IMM
model is added, it is clear that the IMM model increases the
accuracy of each of the SVM-MOA models during the train-
ing stage. The IMM model decreases the MAEs of the SVM-
SOA, SVM-MOSSA, SVM-MOBA, and SVM-PSO models
by 24, 31, 68, and 76%, respectively. The model performance
comparison indicates that the IMM and SVM-MOBA have
the highest and lowest NSEs, respectively, among the tested
models during the training phase. The performances of the
models indicate that SVM-MOSOA has the best accuracy
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among the SVM-MOA models. The NSE of SVM-MOSOA
is 0.93, and they are 0.90, 0.89, and 0.84 for the SVM-
MOSSA, SVM-MOBA, and SVM-MOPSO models, respec-
tively. The performances of the models indicate that the IMM
model outperforms all SVM-MOA models in the testing
phase. The model accuracy comparison indicates that the
IMM and SVM-MOPSO have the lowest and highest
PBIAS among the models, respectively. As observed in
Table 5, the IMM model decreases the RMSEs of the SVM-
MOSSA, SVM-MOBA, and SVM-MOPSO models by 20,
36, 47, and 50%, respectively. Figure 10a compares the per-
formances of the models based on the IS index. As observed

in this figure, the SI values of the IMM model are 0.04 and
0.060 during the training and testing stages, respectively, and
thus, the performance of the IMM model is excellent. The
performances of SVM-MOSOA, SVM-SSA, SVM-BA, and
SVM-PSO are good during the training and testing phases.
Figure 10b compares the performance of the models based
on the U95%measure. As observed in Fig. 10b, it is clear that
the IMM and SVM-MOSOA provide the lowest uncertainty
levels in comparison with the other models. Figure 11 shows
the scatterplots obtained using testing data. Additionally, the
R2 values obtained on the training data are mentioned for each
model. The R2 of the IMM is 0.995, while they are 0.9899,

Table 3 (a) The level and factors
of MOSOA, (b) the S/N value of
16 experiments, (c) the mean S/N
value for different parameters,
and (d) the optimal value of other
parameters of other MOAs

a

Population size Maximum number of iterations

Level 1=50 Level 1=100

Level 2=100 Level 2=200

Level 3=150 Level 3=300

Level 4=200 Level 4=400

b

Run Population size Maximum number of iterations S/N

1 1 1 15.67

2 1 2 16.72

3 1 3 12.89

4 1 4 11.78

5 2 1 14.12

6 2 2 12.23

7 2 3 14.87

8 2 4 12.98

9 3 1 15.76

10 3 2 14.76

11 3 3 12.25

12 3 4 11.12

13 4 1 15.78

14 4 2 12.78

15 4 3 11.25

16 4 4 10.98

c

Population size S/N Maximum number of iterations S/N

Level 1=50 14.26 Level 1=100 15.33

Level 2=100 12.30 Level 2=200 14.12

Level 3=150 11.21 Level 3=300 12.75

Level 4=200 13.42 Level 4=400 11.99

d

MOBA: population size: 200, the maximum number of iterations: 100, maximum frequency:5 Hz, minimum
frequency:1, maximum loudness:0.70, and minimum loudness:0.20

MOPSO: population size:100, the maximum number of iterations:100, acceleration coefficient

:2.0, and inertia weight

:0.5

MOSSA: population size:200, the maximum number of iterations:100, ρ2=0.4 and ρ3=0.8
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0.9830, 0.9798, and 0.9752 for the SVM-MOSOA, SVM-
MOSSA, SVM-MOBA, and SVM-MOPSO models, respec-
tively. Thus, the IMM has the highest R2 values. Taylor dia-
grams are effective diagrams for comparing models. A Taylor
diagram uses three evaluation criteria, namely, the standard

deviation, root mean square error, and correlation coefficient,
to evaluate the accuracies of the compared models. A model
has a better performance than those of other models if its point
is closest to the reference point (observed data). As observed
in Fig. 12, the IMM and SVM-MOSOA have better

Table 4 The obtained
information by the best solution
of Pareto fronts for (a) the
selection of kernel function, (b)
the values of SVM parameters,
and (c) the best input combination

a

Kernel SVM-MOSOA SVM-MOSSA SVM-MOBA SVM-MOBA

Sigmoid function ✓ ✓ ✓

RBF ✓

Polynomial

b

Parameters of sigmoid for SVM-MOSOA: PE:3, γ:2, and ε:0.168

Parameters of RBF for SVM-MOSSA: PE:2, γ:0.509, r:2, and ε:0.168

Parameters of RBF for SVM-MOBA: PE:2, γ:0.712 r:2, and ε:0.268

Parameters of RBF for SVM-MOPSO: PE:2, γ:0.514 r:2, and ε:0.112

SVM-MOSOA SVM-MOSSA

SVM-MOBA SVM-MOPSO

Fig. 8 Obtained Pareto fronts for different models
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performances than the other models. Figure 13 shows the
boxplots of the models. As observed in this figure, the IMM
and SVM-MOSOA have good agreement with the measured
data. The relative error of each data point for the different
models is computed based on the heat map in Fig. 14. As
observed in Fig. 14, the relative error induced by the IMM
model varies from 10 to 20%, and this model has the lowest
relative errors among the tested models. The relative error of

SVM-MOBA varies from 40 to 60% and 50 to 60%for the
SVM-MOPSO model.

Concluding discussion

Regarding the obtained results, the following points should be
considered:

1- One of the main advantages of the current study is that it
finds the best input combination without preprocessing
data, such as through the use of the gamma test and prin-
cipal component analysis. Each multiobjective algorithm
can automatically find the best input combination with
respect to a defined objective function.

5- The findings of the current research confirm the results
from previous article by Ahmadi et al. (2019b), who
showed the optimization algorithm could improve the ac-
curacy of SVM and LSSVM models for predicting CO2

emission. They stated that the optimization algorithms
such as PSO and GA had the high abilities for
improving the accuracy of soft computing models such
as SVM and LSSVMmodel. Sun and Liu (2016) used the
LSSVM as a family member of SVM model to predict
CO2 emission. They reported that the LSSVM model
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Fig. 9 The SP and MS values for comparing different models

Table 5 The comparison of the accuracy of different models

Model RMSE MAE NSE PBIAS

Traning

IMM 0.33 0.22 0.98 0.16

SVM-MOSOA 0.35 0.29 0.97 0.12

SVM-MOSSA 0.42 0.32 0.94 0.15

SVM-MOBA 0.78 0.69 0.90 0.19

SVM-MOPSO 0.89 0.91 0.86 0.21

Testing

IMM 0.36 0.24 0.95 0.18

SVM-MOSOA 0.45 0.32 0.93 0.16

SVM-MOSSA 0.56 0.45 0.90 0.19

SVM-MOBA 0.97 0.93 0.89 0.21

SVM-MOPSO 0.99 0.96 0.84 0.23

(a)
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Fig. 10 Comparison of the accuracy of different models based on a: SI
index and b: U95%
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outperformed the backpropagation neural network and
grey models. Shabani et al. (2021) confirmed that the
square of the GDP, GDP, energy use and GINI index
were the effective inputs for predicting CO2 emission. A
comparison of the results obtained by the current study
and Shabani et al. (2021) revealed accurate predictions
with least errors for IMM model.

2- The findings of the current study confirm the results from
previous studies by Ehteram et al. (2021) and Seifi et al.
(2020), who showed the high potential of multiobjective
algorithms for improving the performances of MLAs.

3- The results of the current study are similar to those of
Shabani et al. (2021) and Khatibi et al. (2017), who

Fig. 11 The scatterplots for the (a) IMM (R2 (training:0.997)), (b) SVM-MOSA ((R2 (training:0.9912)), (c) SVM-MOSSA (R2 (training:0.9876)), (d)
SVM-BA (R2 (training:0.9812)), and (e) SVM-MOPSO (R2 (training:0.9798))
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showed that the IMM-based models provide high accura-
cy for the prediction of target variables.

4- Future studies can investigate the effects of uncertain in-
puts and model parameters on the accuracies of the
resulting models.

5- All of the evaluation criteria show that the performances
of the IMM and SVM-MOSOA are the best, but future
studies can use the multicriteria model to assign a rank to
each model and then select the one with the best
performance.

6- The performances of the models used in the current study
are not limited to theoretical aspects; policy-makers and
decision-makers can utilize the tools used here to identify
the effective parameters of CO2 emissions and then find
real relationships between the inputs and outputs. Thus,

the models are suitable for environmental management
and provide good insights for predicting CO2 emissions.

7- However, it should be noted that there are challenges with
improving MLA models based on MOAs, such as
converting a single objective optimization algorithm to
multiobjective optimization algorithms, defining various
objective functions, and selecting the best solution on the
given Pareto front.

8- Depending on the kinds of MLAs used in a given study,
objective functions can be defined. For example, the num-
ber of hidden layers, the ANN parameters (weight and
bias), the selection of the activation function, and the best
input combination selection can be defined as the decision
variables for an ANN model. Thus, four objective func-
tions can be defined for the model under study.

Fig. 12 Taylor diagram for
comparing different models

Fig. 13 The box plot of models
for predicting CO2 emission
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9- The increasing number of inputs and model parameters
may increase the computational complexities and time
consumptions of the models.

10- Another ability of the introduced models is that they
provide spatial maps of CO2 emissions so that the re-
gions with high and low CO2 emissions are classified
accurately.

11- An ensemble of different kinds of kernel functions for
SVMs can also be one of the strategies for increasing the
accuracy of the SVM model because the model can use
the advantages of different kernel functions.

Conclusion

Predicting CO2 emissions is a real challenge for policy-
makers and decision-makers with respect to managing the
environment. CO2 emissions rely on different parameters,
and thus, finding accurate relationships between model inputs
and outputs is an important issue. The agricultural sector is
one of the important sources of CO2 production. Thus, the
current study used SVMmodels for predicting CO2 emissions
based on data from the agricultural sector. In this study, some
MOAs were used to improve the accuracies of several SVM
models based on finding the best input combinations, model
parameters and kernel functions. Then, an IMM model used
the outputs of the models as its inputs to increase their accu-
racies. The best input combination for all models was the use
of the Gini index, GDP, GDP2, and EU. The SVM-MOA
models selected different kernel functions for mapping com-
plex relationships between the inputs and outputs. The results
indicated that the SOA provided the best Pareto front among
the tested MOAs. It was observed that the IMM model

decreased the MAEs of the SVM-MOSOA, SVM-MOSSA,
SVM-MOBA, and SVM-PSO models by 24, 31, 75, and
76%, respectively. Additionally, SVM-MOSOA achieved
the highest accuracy among the SVM-MOA models. The
MAE obtained by SVM-MOSOA was 0.29, and they were
0.32, 0.69, and 0.91 for the SVM-MOSSA, SVM-MOBA,
and SVM-MOPSO models, respectively. The general results
indicated that the IMM model could significantly increase the
accuracies of the SVM models. The results of the current
study could be useful for decreasing pollutants in the environ-
ments of different countries. The next papers can cover the
deficiencies of the current paper. They can test the models for
predicting CO2 in the different regions of the world. Also, they
can add the other socioeconomic to the inputs to consider the
effect of different inputs on the accuracy of the models.
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