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Abstract
Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed
worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-
environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its
accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole
soil–plant systems after Se application. The reduction of Hg bioavailability in soil, the formation of inert HgSe or/and HgSe-
containing proteinaceous complexes in the rhizosphere and/or roots, and the reduction of plant root uptake and translocation of
Hg in plant after Se application are systemically discussed. In addition, the positive responses in plant physiological and
biochemical processes to Se application under Hg stress are presented to show the possible mechanisms for protecting the plant.
However, application of high levels Se showed synergistic toxic effect with Hg and inhibited plant growth. The effectiveness of
Se application methods, rates, and species on Hg detoxification is compared. This review provides a good approach for plant
production in Hg-contaminated areas to meet food security demands and reduce the public health risk.
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Highlights • Se application reduced Hg soil bioavailability via
transformation to immobile species.
• Se application in soil led to formation HgSe complexes in rhizosphere
and/or roots.
• Se application prevented to root uptake and translocation of Hg to aerial
parts.
• Se application positively affected physiological and biochemical pro-
cesses of plants.
• Se doses only significantly given the narrow range between deficiency
and toxicity.
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Introduction

Mercury (Hg) is the most dangerous heavy metal (HM) be-
cause of its high toxicity to living organisms even at low
concentrations. It is ranked third among the 87 hazardous
substances by Agency for Toxic Substances and Disease
Registry (ATSDR 2017) and has become a public concern
since the recognition of Minamata disease in 1956 (Gallego
et al. 2012; Ren et al. 2014). The global amount of Hg mass
accumulated in soils was assumed to be in the range of 250–
1000 Gg (Obrist et al. 2018). The world distribution of known
sites contaminated with Hg from active and previous Hg gold
and silver mining and processing, non-ferrous metal smelters,
chlor-alkali plants, and factories that used or may have used
Hg as a catalyst to produce acetaldehyde, polyvinylchloride,
and vinyl acetate (Chen et al. 2012a) is presented in Fig. 1
(Map by Kocman et al. 2013). Mercury enters agricultural
soils through anthropogenic activities, such as smelting, met-
alliferous mining, coal burning, pesticide, fertilizer, sludge
application, and sewage irrigation (Saunders et al. 2010;
Meunier et al. 2011).

Mercury ions are easily taken up by plant roots and rapidly
transported to edible plant parts (Ren et al. 2014). The accu-
mulation of Hg in plants can result in disorders in biochemical
and physiological processes (Patra and Sharma 2000;
Benavides et al. 2005), such as blocking essential functional

groups in biomolecules, displacing essential metal ions from
biomolecules in photosynthetic pigments, reducing photosyn-
thetic rates, and negatively affecting plant nutrient uptake and
homeostasis, which lead to the inhibition of root and shoot
growth and yield production (Wang and Greger 2004; Patra
et al. 2004). After accumulating in plants, Hg is readily
biomagnified in the food chain and can threaten human health
and the ecological environment (Templeton and Liu 2010;
Han et al. 2015). Therefore, feasible countermeasures for the
remediation of Hg-contaminated farmlands are urgently nec-
essary to reduce toxic Hg concentrations, promote agro-
environmental sustainability and food safety, and reduce the
public health risk posed by Hg-contaminated soils.

Over the past several decades, techniques such as soil
washing (Makino et al. 2008), low-temperature thermal de-
sorption (Qiu et al. 2014), and phytoremediation (Belimov
et al. 2005) have been applied to the treatment of Hg-
polluted soils. Although soil washing can remove soluble
and exchangeable Hg from heavily polluted soils, it can also
remove essential soil elements (Wang et al. 2020). The high
costs and soil disturbance associated with soil washing also
need to be considered, as well as the costs of thermal treatment
and its effects on soil properties. Phytoremediation, an inex-
pensive and facile approach for soil remediation, involves the
selection of capable plant species to degrade, extract, contain,
or sequester a soil contaminant through physical, chemical,

Fig. 1 Global distribution of contaminated sites with Hg: primary Hg mining (a), chlor-alkali plants (b), large-scale precious metal mining (c), non-
ferrous metals processing (d), artisanal and small-scale gold mining (e), and other industrial sites (f) (Map by Kocman et al. 2013).
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and biological processes (Burd et al. 2000). However, this
method can result in plant death from exposure to high con-
taminant concentration. Therefore, identifying other ap-
proaches that can maintain a plant species, while reducing
plant Hg accumulation is highly desired.

Selenium (Se) is an essential micronutrient for humans and
animals; it is predominantly obtained by consumption of ce-
reals, vegetables, meat, and fish (Rayman 2000). Recently, the
application of Se fertilizers to reduce Hg has gained consider-
able attention as a cost-effective strategy for mitigating Hg
accumulation and the deleterious effects of Hg on plants
(Feng et al. 2013b; Wang et al. 2016a). Many previous studies
found that the application of exogenous Se could reduce the
accumulation of Hg in plants cultivated in flooded soils
(Zhang et al. 2012; Wan et al. 2016), unflooded soils
(Shanker et al. 1995; Tran et al. 2018a), or in hydroponic
systems (Mounicou et al. 2006; Lin et al. 2012). In addition,
some studies also confirmed that Se application could allevi-
ate Hg-induced oxidative stress by regulating the metabolism
of reactive oxygen species (ROS), such as superoxide anions
(O2

−), hydroxyl radicals (OH−), and hydrogen peroxides
(H2O2). Moreover, the resultant processes may scavenge ex-
cess oxygen free radicals, decrease lipid peroxidation (LPO),
enhance the activity of antioxidant enzymes, and prevent the
inhibition of photosynthesis (Pandey and Gupta 2015; Wu
et al. 2016). Therefore, Se application at appropriate dosages
could stimulate plant growth and counteract the diverse envi-
ronmental stresses caused by Hg contamination (Kumar et al.
2012; Malik et al. 2012).

This review explored available information on the mecha-
nisms underlying Hg detoxification in soil–plant systems
through the application of exogenous Se. The transformation
of Hg speciation and bioavailability in soils, the uptake from
the soil and translocation, the transformation of Hg within
plants, and the physiological and biochemical responses of
the plant after Se application are discussed to confirm the
possible mechanisms (Fig. 2). In addition, the effects of Se
species, rates, and application methods under Hg stress are
also discussed.

Reduction of Hg bioavailability in soil after Se
application

The protective effect of Se against Hg toxicity was first noted
by Pařízek and Oštádalová (1967) over 50 years ago in rats;
most of the early studies were in mammals. Later, there were
many studies that demonstrated that Se application could re-
duce the toxicity of many heavymetals, including Hg, Cd, and
Pb, through reduction of HMs accumulation by plants
(Mukherjee and Sharma 1988; Shanker et al. 1996a;
Thangavel et al. 1999). The protective effect involved the
binding of Se to Hg, thereby acting as a “tonic” that

sequestered Hg in a form that no longer harmed important
biomolecules. To understand how Se protects against Hg tox-
icity, it is necessary to understand the interaction processes
between Hg and Se in the soil.

Immobilization of Hg in soil after Se application

The speciation of Hg and Se in soil

The speciation of Hg in soil The most common forms of Hg in
soils include elemental Hg (Hg0), mercuric mercury (Hg2+),
mercuric sulfide (HgS), and methyl Hg (CH3Hg

+) (Clarkson
and Magos 2006; Yang et al. 2008). Hg2+ is the dominant and
highly soluble Hg species under the highly oxidizing condi-
tions of unflooded soils (Fernandez-Martinez et al. 2015).
Mercury is reduced in the soil environment, as follows:

Hg0 ⇆ Hg2
2+ ⇆ Hg2+ ⇆ (CH3)Hg ⇆ (CH3)2Hg (Shanker

et al. 1996b; McNear et al. 2012)
Bacterial merB (organomercurial lyase) facilitates the

protonolysis of organic-Hg to Hg2+, whereas bacterial merA
(mercuric ion reductase) transforms Hg2+ to Hg0 (Ruiz and
Daniell 2009).

Mercuric chloride and mercuric hydroxide are likely to be
reduced to Hg0 as follows:

Hg2+ + Cl2 and Hg2+ + [OH]2 into Hg0) (Shanker et al.
1996b; McNear et al. 2012)

The speciation of Se in soil Selenium exists in different forms
in the soil, including selenate (SeO4

2−), selenite (SeO3
2−), el-

emental Se (Se0), and selenide (Se2−) (Zhang et al. 2014). Se0

and Se2− have poor mobility (Tolu et al. 2011). SeO3
2− and

SeO4
2− are both highly available for plant uptake, whereas

SeO3
2− is less available than SeO4

2− due to its strong adsorp-
tion onto soil particles (Nakamaru and Altansuvd 2014). Long
periods of overlying water cause low pH values and anoxic
conditions in flooded paddy soil (Rothenberg and Feng 2012).
Under anoxic conditions, SeO4

2− can be reduced to SeO3
2−

and then rapidly transformed into Se0 and even to Se2− or
organic Se by sulfate-reducing bacteria (SRB) as follows:

SeO4
2− → SeO3

2− → Se0 → Se2− (Yang et al. 2008; Li
et al. 2014a)

Immobilization processes of Hg in soil

Immobilization of Hg in soil via HgS complex formation The
anoxic conditions or highly oxidizing conditions of rhizo-
spheres enhance microbial activity, decrease pH, and promote
the release of carbon-rich root exudates that can facilitate the
formation of sulfides (S2−) (Jia et al. 2015). In addition, Hg2+

ion is a class Bmetal ion with a strong affinity for ligands with
soft donor atoms (Rayner-Canham and Overton 2010). At
typical concentrations in soil, Hg2+ tends to form stable com-
plexes with OH−, Cl−, and S containing functional groups of
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organic ligands (Powell et al. 2004). In addition, Barnett et al.
(1997) postulated that Hg can form HgS upon binding with –
SH groups of organic matter that exists at a higher redox
potential than S2−. The affinity of Hg2+ for S2− results in the
formation of mercuric sulfide precipitation (HgS) low solubil-
ity complex, as follows:

Hg2+ + S2− → HgS (Boszke et al. 2006; Jonsson et al.
2012)

Immobilization of Hg in soil via inert HgSe complex formation
Selenium often occurs as an isomorphous substituent of
sulfur (S) in sulfide crystal lattices. In addition, S and Se
have the same atomic structure, the same charge (S2− and

Se2−), and similar atomic radii and ionic radii (S: 0.184 nm,
Se: 0.191 nm); thus, Se can easily be incorporated into the
crystalline lattices of S (Zhang 2014b). Therefore, S2− can
be replaced by Se2− to form inert mercuric selenide (HgSe)
precipitates or an isomorphous series of HgS–HgSe (in
cinnabar ore), because the binding affinity of Se2− with
Hg (logK 1045) is one million times greater than that of S
with Hg (logK 1039) (Syversen and Kaur 2012; Zhang et al.
2014). Moreover, the solubility product constants of HgSe
precipitates (Ksp∼10−58–10−65) are drastically lower than
those of HgS precipitates (Ksp ∼10−52) (Björnberg et al.
1988). When Se and Hg coexist in soil under appropriate
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Fig. 2 Mechanisms underlying
Hg detoxification in soil–plant
systems after Se application

46855Environ Sci Pollut Res  (2021) 28:46852–46876



conditions, Hg can first thermodynamically react with Se
to form an inert, highly stable HgSe precipitate.

Se may thermodynamically react with Hg2+/Hg0 to form an
insoluble HgSe complex in the rhizosphere (Yang et al. 2008;
McNear et al. 2012), as presented in the following chemical
equations:

Hg0 + Se0 → HgSe
and/or Hg2+ + Se2− → HgSe

Immobilization of Hg in soil via organo-HgSe complex pro-
cesses Besides inert HgSe complex, organic HgSe com-
plexes are also found in soil. When paddy soil is supple-
mented with Se, Se may displace S in the R-SH, R-SSH,
and R-SS-R groups to form more stable chemicals, such
as R-SeH, R-SeSeH, and R-SeSe-R (Khan and Wang
2009). Simultaneously, Hg binds to non-R-SH, R-SSH,
and R-SS-R and may be released and readsorbed by
strong Se functional groups (Laurier et al. 2003;
Shoham-Frider et al. 2007), thereby forming strong com-
plexes with Se-organic ligands, which are more inert and
stable and less available to microbes and plants. Xu et al.
(2019) further suggested that HgSe in soil may contain
HgSe, CH3HgSe

−, and (CH3Hg)2Se, as well as HgSeR,
RSHgSeR, CH3Hg-SeR, and CH3Hg-SeSR, which play
dominant roles in soil Hg levels. However, this finding
needs to be verified further.

Promotion of Hg immobilization in soil

Wang et al. (2016b) demonstrated that Se2− can react with
Hg2+ under anoxic and suboxic conditions and form HgSe
complexes, despite sulfate input in paddy soil. They also
found by transmission electron microscopy and energy-
dispersive X-ray spectroscopy that the molar ratios of
Hg:Se and Hg:S were 1 in nanoparticles. However, anoth-
er study showed that Hg LIII-edge synchrotron radiation
X-ray absorption near-edge structure (XANES) spectrum
exhibited that the typical spectral feature was HgSe in-
stead of α-HgS (Wang et al. 2016a). Furthermore,
Zhang et al. (2012) found that Se contents were positively
correlated (P < 0.01) with Hg contents in flooded soil due
to the formation of HgSe complexes in the rhizosphere.
Other studies reported that application of SeO3

2−- or
SeO4

2−- to dryland soil promoted the formation of HgSe
precipitate in the rhizospheres of radish (Raphanus sativus
L.) (Shanker et al. 1996b), tomato (Solanum lycopersicum
L.) (Shanker et al. 1996a), or pak choi (Brassica rapa L.
var. chinensis) (Tran et al. 2018a). In addition, HgSe
compounds may react further with dissolved organic mat-
ter in the rhizosphere to form high molecular weight HgSe
complexes (Plant et al. 2003; Chiasson-Gould et al.
2014).

Transformation of Hg into immobile Hg speciation in
soil after Se application

The formation of sufficiently stable insoluble HgSe bonds in
soils after Se application may limit the amount of bioavailable
Hg2+ in the soil rhizosphere through the transformation of Hg
species.

The fractions of Hg in soil

Mercury exist in different speciations in soil, and Hg fractions
were arranged following the sequential mobile levels with
toxicity decreasing in that order, such as mobile fractions,
semi-mobile fractions, and non-mobile fractions (Han et al.
2003; Fernandez-Martinez et al. 2005). The mobile Hg frac-
tion (water-soluble and exchangeable Hg) represents less than
2% of total soil Hg, but this fraction contains the most avail-
able Hg, including oxidized inorganic (Hg2+-mercuric and
Hg2

2+-mercurous) and oxidized organic (CH3Hg
+-methyl

mercury and C2H5Hg
+-ethyl mercury) (Boening 2000; Li

et al. 2009). The semi-mobile fractions force Hg to strongly
bind to sites in natural organic matter, iron and manganese
oxides, humic acid, fulvic acid, and amino acids, thereby
forming thermodynamically stable complexes (Han and
Banin 2000; Zhong and Wang 2009). The non-mobile frac-
tions, which include the combination of Hg0, HgS, and HgSe,
have lower bioavailability because of their very low solubility,
thereby leading to less toxicity (Boszke et al. 2002; Covelli
et al. 2009).

Transformation of Hg into less mobile fractions in soil

Chemical and biological reactions can change Hg speciation
and binding to different chemical species in the soil addition
of Se, which in turn changes the solubility and bioavailability
of Hg-bound chemicals (Reis et al. 2010; Xu et al. 2017). The
results of our recent study on pak choi under dryland cultiva-
tion conditions demonstrated that the application of SeO3

2−

and SeO4
2− in soil with concentration from 0.5 to 2.5 mg/kg

reduced Hg bioavailability and plant uptake (with reduce Hg
10.7–77.7% in root and 5.8–59.2% in shoot) by enhancing Hg
binding in soils via changes in soil Hg fractions (Tran et al.
2018a). This transformation was accompanied by a large in-
crease in the proportions of residual Hg fractions (as HgSe)
and a dramatic reduction in the proportions of water-soluble
Hg fraction (Tran et al. 2018a), as shown in Fig. 3.

Under flooded soil conditions, Wang et al. (2014) reported
that SeO3

2− application at low dose (1 μg/g) and high dose (5
μg/g) reduced Hg concentrations in water-soluble fractions,
thereby reducing Hg bioavailability. Tang et al. (2017) also
indicated that Hg2+ levels in soil solution are significantly
reduced (P > 0.05) during rice (Oryza sativa L.) growth with
soil SeO3

2− and SeO4
2− application 3.0 and 6.0 mg/kg–1. Xu
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et al. (2019) demonstrated that the water-soluble fraction and
human stomach acid soluble fraction were reduced with addi-
tion Se concentrations of 20−500 mg/kg under anoxic condi-
tions, because HSe− and Se2− can react with bioavailable Hg
in these mobile fractions to form a stable and insoluble Hg-Se
complex in the rhizosphere or on the root surface of rice
plants. Moreover, Se may displace S in the ReSH, R-SSH,
and R-SS-R groups to form more stable chemical forms, such
as ReSeH, R-SeSeH, and R-SeSe-R. As a result, humic acid
fractions are converted into strong-complexed fractions (Xu
et al. 2019). Humic acid fraction is composed of Hg bound to
the non-RSH functional groups in humic acid, which can be
readily released. The strong-complexed fraction includes ele-
mental Hg, Hg bound up to organo-sulfurs, Hg-Ag amalgams,
and Fe/Mn oxides (Shoham-Frider et al. 2007), as shown in
Fig. 3.

The water-soluble Hg fraction is the most mobile and bio-
available fraction and can be easily transported by natural
processes and absorbed by plants (Issaro et al. 2009). The
reduced bioavailability of Hg in soils after Se application is
reflected by the increase in IR value (reduced partition index),
which is used to describe the relative binding strength and
fractional redistribution of Hg in soils (Tran et al. 2018a).

Prevention of methyl Hg production in soil after Se
application

Despite numerous studies on the interaction between Hg2+

and Se in soil, the mechanisms by which CH3Hg
+ interacts

with Se are not well understood. Selenium can serve as a
mediator to prevent CH3Hg+ production through the

formation of Hg–Se complexes, thereby decreasing the
amount of available Hg2+ to methylating bacteria.

Methyl Hg processes in soil

Under reducing conditions that occur in many permanently or
periodically flooded soils, Hgmay be biogeochemically trans-
formed into organo-Hg forms, of which CH3Hg

+ is the most
prevalent form (Boszke et al. 2006; Kerin et al. 2006; Frohne
et al. 2012). CH3Hg

+ is also the most toxic Hg species because
of its high mobility and bioavailability (Boening 2000; Li
et al. 2009). The most mobile Hg fractions are the most sus-
ceptible to Hg methylation, whereas the direct conversion of
insoluble HgS species to CH3Hg

+ in anaerobic soils is insig-
nificant (Boszke et al. 2002; Covelli et al. 2009; Gray et al.
2015). The potential mechanism for Hg2+ uptake by methyl-
ating microorganisms is the energy-dependent uptake of Hg2+

by active transport (Zhang et al. 2010; Thomas et al. 2018).
SRB is considered the primary methylator of Hg2+, whereas
Fe-reducing bacteria also methylate Hg (Rothenberg et al.
2014; Wang et al. 2016a).

Prevention of methyl Hg processes in soil

Limiting the amount of bioavailable Hg2+ decreased or at least
considerably prevented the production CH3Hg

+ in the soil
rhizosphere. Wang et al. (2014) reported that SeO3

2− applica-
tion restricts the amount of bioavailable Hg2+ in paddy soils
by decreasing microbial CH3Hg

+ production (reduce 13−44%
CH3Hg

+ concentration in soil), which is primarily mediated
by SRB (Yang et al. 2008; Truong et al. 2014), and suppresses
Hg methylation, and reduces CH3Hg

+ concentrations in soil

Fig. 3 Reducing Hg
bioavailability in soil-plant
systems
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(Wang et al. 2014; Zhang 2014a). Wang et al. (2016a) sug-
gested that CH3Hg

+–Se antagonism in soil results in reduction
of soil CH3Hg

+ levels under anoxic or suboxic conditions
(CH3Hg

+ levels reduced 10−87% in low-Se soil with addition
Se concentrations of 0.5−6.0 mg/kg; and CH3Hg

+ levels de-
creased 13−46% in high-Se soil with addition Se concentra-
tions of 0.5−2.0 mg/kg). In addition, CH3Hg

+–Se antagonism
may be predominantly governed by microbial processes, spe-
cifically by strains of SRB. Soil CH3Hg

+ concentrations were
consistently lower after Se treatments under anoxic and
suboxic conditions independent of sulfate input (Wang et al.
2016b), as shown in Fig. 3.

In addition, Se may also directly affect the microbes that
regulate Hg methylation. Hg and Se co-exposure reportedly
decreases the growth of SRB in comparison with Hg exposure
alone (Truong et al. 2013). Selenium addition also enhanced
the demethylation and evaporation of CH3Hg

+ (Khan and
Wang 2010; Dang et al. 2019), leading to the reduction in soil
CH3Hg

+ production.

Reduction of Hg availability on the interface
of soil–plant root after Se application

Besides decreases of Hg bioavailability in soil after Se appli-
cation, decline of Hg availability on the interface of soil–plant
root also was identified by directly tracking inert HgSe or/and
HgSe-containing proteinaceous complexes in the roots. These
complexes reduced Hg accumulation in plants by inhibiting
Hg uptake and transport. In addition, the restriction of Hg
access into the root of plants, due to the promotion of the
formation of Fe plaques outside plant roots after Se applica-
tion, may also be important for reducing the accumulation of
Hg in roots and shoots.

Reduction of Hg availability by formation of insoluble
HgSe precipitate in root

Formation of insoluble HgSe precipitate in root

Formation of inert insoluble HgSe precipitate The formation
of HgSe insoluble complexes within plants cannot be
completely ruled out, although HgSe insoluble precipitate
likely dominates in the soil. Hypothetical pathways for Hg
uptake in plants involve cellular entry through ionic channels
and competition with the closest chemical relatives of essen-
tial metals for Hg2+ transporters (Blazka and Shaikh 1992;
Clemens 2006). Hg2+ and CH3Hg

+ are the principal chemical
forms of Hg taken up by roots from the soil (Clemens 2013),
and Hg2+ accumulates in roots (Meng et al. 2014; Zhao et al.
2014). Selenium is primarily taken up from the soil by plants
as SeO4

2− or SeO3
2− (Zhu et al. 2009). After absorption by the

plant root, SeO4
2− is reduced to SeO3

2−, reacts with

glutathione (GSH), and is reduced to Se2− in the rhizosphere
(Zhu et al. 2009; Han et al. 2015).

The combination of Se2− with Hg2+ forms the HgSe com-
plexes in roots, as follows:

Hg0 + Se0 → HgSe
and/or Hg2+ + Se2− → HgSe, which may drastically in-

crease the accumulation of Hg in roots (Zhang et al. 2012;
Li et al. 2015).

Under flooded soil conditions, over 90% of Hg was re-
stricted to rice roots after SeO3

2− application of 0.01−0.5 μg/
mL in Hg-contaminated soil, and 27.8% of Hg was present as
the HgSe complex (Li et al. 2015). Zhao et al. (2013) analyzed
the speciation of Hg (with Hg L3-edge XANES) in garlic
(Allium sativum L.) tissues under hydroponic solution condi-
tions, and they concluded that the direct binding of Se and Hg
as HgSe only occurs in roots (<10%) and bulbs (<1%). Zhang
et al. (2012) reported that the molar ratio of Hg:Se in the roots
was approximately 1:1, which was not found in the aerial
shoots. Zhao et al. (2014) suggested that rice exposure to both
Se and Hg may lead to the formation of a HgSe complex in
rice roots that is easily absorbed, as indicated by the signifi-
cant correlation between Se and Hg in rice roots. Synchrotron
radiation X-ray fluorescence (SRXRF) technique revealed
that Se and Hg is concentrated in the epidermis and pericycle
of rice roots (Zhao et al. 2014), as shown in Fig. 4.

However, Zhou et al. (2013) demonstrated that Hg concen-
tration in rice shoots decreased by approximately 50%, where-
as the transfer coefficient of Hg from roots to shoots did not
drastically change after SeO3

2− amendment of 14.6−100 g/L.
These results indicated that an insoluble HgSe complex
formed in the rhizosphere and not in the root. Therefore, the
presence of insoluble HgSe and/or proteinaceous complexes
in plant roots is still unknown and requires further study.

Formation of Se- and Hg-containing proteinaceous complex
In addition to the inert insoluble HgSe precipitate in the roots,
a high molecular weight Se- and Hg-containing proteinaceous
complex also forms in the root extract of plants under hydro-
ponic conditions (Afton and Caruso 2009; McNear et al.
2012).

When taken up by plant cells, Hg2+ exhibits high affinity
and can react intensely with the sulfhydryl (–SH) groups of
proteins in the root cell walls (Carrasco-Gil et al. 2011;
Azevedo and Rodriguez 2012). SeO3

2− could replace S in
essential S metabolites (Cys and Met) by physicochemical
similarity and be converted quickly to SeCys and SeMet
(Aborode et al. 2016; Bluemlein et al. 2009). Then, SeCys
and SeMet can be incorporated into selenoenzymes and
selenoproteins by replacing Cys and Met (Montesbayon
et al. 2002; Navarro-Alarcon and Cabrera-Vique 2008).

In biological systems, selenols can readily replace thiols in
amino acids because of the chemical resemblance of selenols
to thiols, thereby leading to the complexation of Hg2+ and
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CH3Hg
+ with selenol-containing biomolecules. Compared

with thiols, binding between Hg and selenols was stronger.
Therefore, Hg2+ and CH3Hg

+ complexes with selenols were
more stable than their thiol analogs, thereby showing Hg–Se
antagonism, resulting in the effective reduction of Hg2+ and
CH3Hg

+ in plant with the addition of Se into the soil (Wang
et al. 2014; Zhang et al. 2012).

Size exclusion chromatography and proteolysis revealed
that water-soluble Hg was localized in the roots in association
with Se in the form of a high molecular weight entity, which
was difficult to be translocated and metabolized. Yathavakilla
and Caruso (2007) found that water-soluble Hg associated
with Se and formed a high molecular weight (>600 kDa)
proteinaceous complex in the roots of soybean (Glycine max
L.) grown in soil containing both Hg and Se. Mounicou et al.
(2006) found a high molecular weight (>70 kDa) compound
containing Se and Hg in the root extract of Indian mustard
(Brassica juncea L. Czern.) grown in hydroponics. This com-
pound was associated with either a polysaccharide or a protein
(Mounicou et al. 2006). Afton and Caruso (2009) identified a
possible Se–Hg association in a plant-root protein in green
onion (Allium fistulosum L.) grown in perlite media by apply-
ing size exclusion and capillary-reversed phase chromatogra-
phy coupled with inductively coupled plasma mass spectrom-
etry (ICPMS). McNear et al. (2012) used capillary-reversed
phase chromatography coupled with ICPMS, μ-XANES, and
micro-synchrotron X-ray fluorescence and found that Hg may
bind to –SH groups of the cell wall or plasma membrane
proteins in green onion roots and may react with reduced
Se2− to form a HgSe–BSS complex. However, Se2− reacted
with an abundant amount of free Hg2+ to form a solid HgSe
precipitate outside the root in the perlite media. HgSe–BSS
comprised a Hg2+ and Se2− core to which GSH was appended
via a Se–S or Hg–S bond (McNear et al. 2012). Compared
with Hg-containing proteins with small molecular weights,
the formation of Hg-Se-containing proteins with high

molecular weights can more effectively inhibit the transloca-
tion of CH3Hg

+ to the aboveground parts of rice plants (Fig.
4).

Wang et al. (2016a) also proposed that a CH3Hg
+–Se in-

teraction can exist within rice roots through the formation of
CH3Hg

+–Se complexes, when CH3Hg
+ distribution in roots

was enhanced under the SeO3
2− and SeO4

2− fertilization. They
concluded that CH3Hg

+–Se antagonism within plants was
likely sufficient to induce such a reduction (Wang et al.
2016a).

Reduction of Hg uptake by plant root by formation
of insoluble HgSe precipitate

The reduction in the Hg bioavailability in the rhizosphere can
drastically inhibit Hg2+ uptake from soil by roots. Tang et al.
(2017) reported that Hg2+ concentrations in rice roots de-
creased by 22−48% after 3.0 and 6.0 mg/kg SeO3

2− and
SeO4

2− application to flooded soil. Zhao et al. (2014) also
speculated that Se (after SeO3

2− application of 1 and 5 mg/kg)
inhibits Hg2+ uptake through a substantial decrease of Hg2+

concentrations in rice tissues. Previous pot experiments found
that SeO3

2− and SeO4
2− application of 0.5−6.0 μg/mL de-

creased root Hg concentrations by approximately 90% in to-
mato (Shanker et al. 1996a) and > 90% in radish (Shanker
et al. 1996b) and by approximately 80% in pak choi with
SeO3

2− and SeO4
2− application of 0.5−2.5 mg/kg under dry-

land cultivation conditions (Tran et al. 2018a). Under hydro-
ponic conditions, the formation of insoluble HgSe complexes
in the rhizosphere resulted in the reduction of root Hg accu-
mulation. Hg2+ accumulation in rice roots decreased by 10.3
−53.0% at Hg concentration of 100 μg/L with SeO3

2− appli-
cation of 14.6−100 g/L (Zhou et al. 2013) or at high Hg ex-
posure (1 and 10 mg/L) with SeO3

2− application of 1.0−10
mg/L (Zhao et al. 2014).
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Forming complex in root
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Hg2+-GS
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Fig. 4 Reducing Hg accumulation and toxicity within plant
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Reduction of Hg availability to root by promotion of
the formation of Fe plaques after Se application

The reduction in Hg bioavailability in the rhizosphere under
flooded conditions can also be explained by another hypoth-
esis; the promotion of Fe plaques on root surfaces after Se
application may sequester Hg through adsorption and/or
coprecipitation.

Formation of Fe plaques on root surfaces

Iron plaque is a layer of crystalline or amorphous Fe
(hydr)oxides formed through the reaction of oxygen and sol-
uble reductive Fe2+ (Fu et al. 2018). Flooded soils present a
strongly reducing environment, in which SO4

2−, Fe3+, and
Mn4+ can be reduced to S2−, Fe2+, and Mn2+ by S2−, thereby
promoting the formation of Fe plaques on root surfaces
(Murase and Kimura 1997). Previous studies showed that
wetland plants with more soluble reductive Fe2+ in the medi-
um can readily form thicker Fe plaques (Cheng et al. 2014),
and Fe plaque formation can contribute to less metal accumu-
lation in the roots of plants (Wang et al. 2011; Sebastian and
Prasad 2016). Iron plaques on root surfaces can sequester Hg
through adsorption and/or coprecipitation and reduce the
amount of bioavailable Hg in the rhizosphere.

Reduction of Hg uptake by plant root via promotion
of the formation of Fe plaques

The addition of Se enhanced the development of Fe plaque of
root, which hindered both Hg2+ and CH3Hg

+ uptake (Li et al.
2014b; Zhou et al. 2014). Specifically, Se2− exhibited en-
hanced reducing ability and increased Fe2+ and Mn2+ concen-
trations in the soil solution by reducing high-valence Fe and
Mn in the soil (Huang et al. 2019). These changes dramatical-
ly enhanced the Fe content of Fe plaque on root surfaces and
likely blocked the entry of Hg2+ into root tissues because Hg
enters root cells under the mediation of essential element
transporters (Zhou et al. 2017). In addition, Fe oxide and Fe
plaques on roots had a high affinity for SeO3

2−, thereby re-
ducing the probability of contact between Fe bacteria and
Fe(OH)3 (Zhou and Shi 2007). This phenomenon possibly
further blocked the dissolution of Fe(OH)3 in Fe plaques to
Fe2+ by the action of Fe bacteria (Qu et al. 2003) and increased
root surface areas (Ding et al. 2014). Therefore, Se addition
can promote amount of Fe plaque on the root surface, thereby
acting as a natural barrier that blocked Hg uptake in plant root.
For example, the adsorption capacity of Hg on Fe plaque of
rice roots surface increased by 1.42 times with Se application,
which markedly restricted the translocation of Hg from root to
the shoot under hydroponics condition (Zhou and Li 2019), as
shown in Fig. 3.

Reduction of Hg translocation within plant
after Se application

The reduction of Hg translocation from root to aerial part of
plant after Se application was due to the conversion of labile
Hg species to insoluble HgSe and/or proteinaceous complexes
in the rhizosphere and/or roots. These complexes reduced
Hg2+ bioavailability in soil, suppressed Hg methylation in
the rhizosphere, and decreased Hg accumulation by the plant
root and shoot. However, insoluble HgSe and/or proteina-
ceous complexes were not detected in stem and leaf extracts.
The reduction in Hg bioavailability in aerial part of plant after
Se application can also be explained by transformation of Hg
into less toxicity speciation and sequestration of Hg in the
vacuoles of root cell.

Restrict HgSe and/or proteinaceous complexes in
roots of plant

A high molecular weight Se- and Hg-containing proteina-
ceous complex was not detected in stem and leaf extracts.
Mounicou et al. (2006) and Afton and Caruso (2009) sug-
gested that the interaction between Hg and Se is primarily
restricted to plant roots. The interaction of root-bound Hg
and Se resulted in the production of a putative high molecular
weight proteinaceous complex that was not metabolized or
translocated to plant shoots, leaves, or fruits (Mounicou
et al. 2006; Afton and Caruso 2009). In line with this finding,
Zhang et al. (2012) reported a 1:1 molar ratio of Hg:Se in rice
roots with none bound in the aerial shoots, indicating that a
HgSe insoluble complex formed in the roots (Zhang et al.
2012). Tang et al. (2017) also found that Hg uptake was re-
duced only after soil SeO3

2− and SeO4
2− application but not

after foliar application (Table 1).

Reduction Hg translocation within plant by insoluble
HgSe and/or proteinaceous complexes in the root

The conversion of labile Hg species to insoluble HgSe and/or
proteinaceous complexes in the root may act as an effective
barrier for the translocation of Hg from the root to the above-
ground tissues. Under hydroponic conditions, the reduction of
Hg accumulation in plant stems and leaves after SeO3

2− ap-
plication of 1−5 mg/L (Mounicou et al. 2006) or in plant
leaves after SeO3

2− application of 30 mg/L (Afton and
Caruso 2009) resulted in the formation of HgSe complex,
which was unavailable to plants because of its high stability.
The upward translocation of Hg through the root vessel to the
leaf tip may be obstructed after SeO3

2− and SeO4
2− application

by using μ-SRXRF, thereby resulting in the absence of Hg2+

in garlic leaves (Zhao et al. 2013) or in rice stalks and leaves
(Zhao et al. 2014).
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In addition, the reduction of Hg uptake in the soil–root
systems may also be the cause of the inhibition of Hg trans-
location to the aerial parts of the plant. Zhou et al. (2013)
found that Hg concentration in rice shoots decreased by ap-
proximately 50% after SeO3

2− application of 14.6−100 g/L in
hydroponics, whereas the translocation factor (TFs) of Hg
from the roots to shoots did not drastically change. Zhang
et al. (2012) found a consistent reduction in the translocation
of Hg2+ to aerial shoots of rice (i.e., stem, leaf, husk, and
grain) with increasing Se levels under flooded soil conditions.
They also found that Se concentrations in soil had significant
negative correlations with the TFs of Hg2+ in different aerial
shoots (Zhang et al. 2012). Tang et al. (2017) also reported
that the concentrations of Hg2+ in straw and brown rice tissues
were reduced by 15–58% and 26–74% by soil-applied SeO3

2−

and SeO4
2− of 3.0 and 6.0 mg/kg, respectively. Rice grains

exhibited the lowest Hg accumulation (decreased by 30%)
when 0.5 μg SeO3

2− mL−1 was applied (Li et al. 2015).
Similar results were also reported in another research; Hg
levels were reduced by 90% in tomato (Shanker et al.
1996a), 90% in radish (Shanker et al. 1996b), and 60% in
pak choi (Tran et al. 2018a) after SeO3

2− was applied to up-
land soil (Table 1).

However, increasing shoot Hg concentration was observed
under SeO4

2− and Hg co-exposure; shoot Hg concentration
was threefold greater at the highest Se and Hg co-exposure
treatment levels in our previous study (Tran et al. 2018a). The
relatively high shoot Hg accumulation in plants may be due to
the presence of Hg0 in the soil (Kocman et al. 2004), which
may have volatilized from the soil and condensed on the leaf
surface or enter inner leaf tissues through stomata openings
(Patra and Sharma 2000; Martínez-Trinidad et al. 2013).

Reduction of Hg translocation within plant by
transformation of Hg into less toxic speciation

Mercury phytotoxicity can be mitigated by changes in the
localization patterns and speciation of Hg in plant tissues treat-
ed with exogenous Se; Hg species are transformed into low-
toxicity species through the reduction of the Hg–protein com-
plex. Zhao et al. (2013) suggested that the percentage of high-
toxicity Hg–S binding species, i.e., Hg(GSH)2, decreased,
whereas that of low-toxicity Hg–S binding species, i.e.,
Hg(Met)2, increased in garlic tissues treated with SeO3

2− and
SeO4

2−. Selenium can compete with Hg in binding with –SH
groups, such as the thiol groups of Cys in membrane proteins
(Feng et al. 2013a). A SeO3

2− can enter the root and be quick-
ly converted into organic forms or other biomolecules (de
Souza et al. 1998; Zhu et al. 2009). As a result, Hg phytotox-
icity was reduced, because GSH is a tripeptide that comprises
glutamic acid, Cys, and glycine; these substances protect cells
from oxidative stress by binding with oxidizing agents (Patty
et al. 2009), as shown in Fig. 4.

Reduction of Hg translocation within plant by
sequestration of Hg in the vacuoles of root cell

Huang et al. (2017) proposed another hypothesis for the re-
duction in HM translocation to the aboveground tissues of
plants, as follows: Se decreases HM transport from the roots
to the shoots by changing HM speciation and distribution in
the root. Selenium application increased GSH and
phytochelatin (PC) synthesis in plant tissues through the trans-
formation of SeO3

2− into organic Se (SeCys or SeMet) (Han
et al. 2015; Abd-Allah et al. 2016). After the chelation of Hg2+

and GSH and PC in the cytoplasm of root cells, Hg–PCs or
Hg–GS complexes were sequestered in vacuoles via the me-
diation of ATP-binding cassette (ABC) transporters (Park
et al. 2012; Sharma et al. 2016). Thus, the increase of GSH
and PC concentrations after Se application led to the reduction
in Hg mobility in the root (Park et al. 2012; Sharma et al.
2016). Moreover, Krupp et al. (2009) identified Hg2+-PC,
but no CH3Hg

+ PC complexed in the rice roots, suggesting
that the binding to PCs may inhibit the translocation of Hg2+

from rice roots to stems, but not CH3Hg
+ (Fig. 4).

In addition, the amendment of Se can enhance the devel-
opment of apoplastic barriers in the root endodermis and exo-
dermis, which can mediate the uptake of Hg through the
apoplastic pathway or reduce the activity of membrane trans-
porters and thereby reduce the uptake of Hg by roots (Meyer
et al. 2009; Wang et al. 2014). Selenium addition also de-
creased the absorption of Hg into root cells through the
symplastic pathway, because Se induced a lower activity of
membrane transporters (Wang et al. 2014). The recent study
also demonstrated that the main detoxification mechanism for
plants in Hg-contaminated soil is the sequestration of Hg into
inactive compartments, such as the epidermis, the vacuole,
and the cuticle (Geng et al. 2019).

Reduction of oxidative stress induced by Hg
in plants after Se application

The possible mechanisms of Hg phytotoxicity can be induced
by change of the permeability of the cell membrane, Hg’s high
affinity to react with the –SH groups, Hg’s affinity to react
with phosphate groups and active groups of ADP or ATP, the
replacement of essential ions metalloproteins, and Hg’s ability
to disrupt functions involving critical or nonprotected proteins
(Patra and Sharma 2000; Patra et al. 2004). Mercury inhibits
the activity of plasma membrane–localized aquaporins, which
are water channel proteins that enhance water permeation,
thereby causing a physical obstruction to the water flow and
reducing plant water uptake and transpiration rate (Sas-
Nowosielska et al. 2008; Clemens 2013). The substitution of
the central atom of chlorophyll (Chl) and magnesium (Mg) by
Hg in vivo prevents photosynthetic light harvesting in the

46863Environ Sci Pollut Res  (2021) 28:46852–46876



affected Chl molecules, resulting in a breakdown of photosyn-
thesis (Patra et al. 2004; Tangahu et al. 2011). The strong
interaction with –SH groups disrupts the stability of the group,
resulting in the overproduction of ROS and free radicals (Patra
et al. 2004; Clemens 2013), triggering oxidative stress (Shiyab
et al. 2009), modifying nucleic acids, oxidizing proteins, and

inducing LPO (Cho and Park 2000; Moreno-Jimenez et al.
2009). These interactions influence the antioxidant defense
system (Israr and Sahi 2006) by interfering with the modula-
tion of the nonenzymatic antioxidants and the enzymatic an-
tioxidants (Sparks 2005; Ortega-Villasante et al. 2005; Israr
et al. 2006). Both organic and inorganic Hg accumulation in
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root may block the entry or binding of ions, such as potassium,
magnesium, andmanganese, ion carriers, thereby reducing the
uptake and transport of some mineral nutrients and inducing
nutrient deficiency (Boening 2000). Mercury can bind with
DNA, thus causing damage to chromosomes and inducing
genotoxicity (Sharma et al. 1990; Cenkci et al. 2009).

The application of appropriate levels of Se significantly
balances ROS production by increasing the activity of enzy-
matic and nonenzymatic antioxidant systems, reducing the
amount of lipid peroxidation products, and increasing the con-
centrations of photosynthetic pigments and essential elements
and the level of DNAmethylation. However, Se application in
excess concentration is toxic to plants and may trigger oxida-
tive stress and reduce crop yields (Hartikainen 2005; Kolbert
et al. 2016) (Fig. 5).

Balance ROS production after Se application

The stability of –SH groups is disrupted through their strong
interactions with Hg (Patra et al. 2004; Clemens 2013). The
disruption of –SH group stability results in ROS and free
radical overproduction, which triggers oxidative stress
(Shiyab et al. 2009). Accordingly, Hg stress interferes with
the modulation of nonenzymatic antioxidants, such as GSH,
PCs, ascorbic acid (AsA), proline, carotenoids (Cars), and α-
tocopherol, and enzymatic antioxidants, such as superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase
(APX), glutathione reductase (GR), peroxidase (POD), gluta-
thione peroxidase (GSH-Px), and nitrate reductase (NR)
(Sparks 2005; Ortega-Villasante et al. 2005; Israr et al.
2006). Moreover Hg stress induces LPO (Cho and Park
2000; Moreno-Jimenez et al. 2009), as shown in Fig. 6.

Scavenging ROS species overproduction

The enhanced production of ROS is the precursor of oxidative
stress and cell damage (Shahid et al. 2014a; Shahid et al.
2014b; Natasha et al. 2018), and O2

− and H2O2 are the two
most important ROS species in plants under metal stress
(Shahid et al. 2013). In plants, O2− can first be catalyzed to
H2O2 by SOD with remarkably high reaction rates and then is
further degraded into H2O by CAT and APX. APX utilizes
ascorbate as a specific electron donor to reduce H2O2 to H2O.
A highH2O2 content exerts toxic effects on plants by inducing
electrolyte leakage, plasmolysis, and membrane damage
(Singh et al. 2018). Mercury exposure can induce reactive
oxygen species production and lead to oxidative damage to
biological macromolecules.

The ameliorative effects of Se on metal-induced oxidative
stress responses may be partly attributed to the improvement
of ROS scavenging capability and the change in membrane
physicochemical characteristics, such as O2

− and H2O2.
Under hydroponic conditions, the pretreating rice with

SeO3
2− decreased metal-induced growth inhibition, recovered

root cell viability, and dramatically depressed O2
− and H2O2

accumulation in rice tissues (Lin et al. 2012). Huang et al.
(2019) also showed that the addition of SeO3

2− greatly re-
duced H2O2 concentrations in rice tissues (roots and shoots)
under two different water management regimes, i.e., flooded
and unflooded.

Increasing enzymatic antioxidants

The Hg-induced generation of ROS triggers the activation of
components of the antioxidative defense system of plants.
Plants contain various types of enzymatic antioxidants to re-
spond to oxidative stress, such as SOD, APX, CAT, GR,
GSH-Px, POD, and NR. SOD can protect plant cells from
harmful peroxidation reactions (Zhao et al. 2019) and is the
first line of intercellular defense against ROS because it cata-
lyzes O2

−. CAT and APX are involved in H2O2 detoxification
and its conversion to nonphytotoxic H2O and O2 (Alscher
et al. 2002; Dinakar et al. 2008). GSH-Px plays an important
role in maintaining the cellular antioxidant to pro-oxidant ratio
by scavenging H2O2 with the help of GSH (Feng et al. 2013a).
NR catalyzes the first step in nitrate assimilation and enhances
nutrient metabolism (Beauvais-Flück et al. 2018). GR is cru-
cial for maintaining optimal GSH levels, which is required for
the synthesis of PCs, for the function of the GSH–AsA cycle,
and as a reductant in numerous biochemical reactions (Pawlik-
Skowronska et al. 2007).

The formation of Hg–Se precipitates may equilibrate ROS
production and scavenging by restricting Hg2+ to the roots
(Liu et al. 2015; Wang et al. 2015), thereby limiting the asso-
ciation between Hg2+ and –SH groups and enhancing shoot
GSH translocation (Patra and Sharma 2000). Therefore, Se
supplementation can improve the efficiency of antioxidant
defense systems and protect the plant against oxidative stress
under Hg contamination. The dramatic increase in the activi-
ties of antioxidant enzymes, such as SOD, CAT, POD, and
GSH-Px in pak choi shoots (Tran et al. 2018b) or NR and
POD in common bean leaves (Phaseolus vulgaris L.)
(Shrivastava et al. 2016), was observed after SeO3

2− applica-
tion. Moreover, Se markedly increased the efficiency of the
GSH–AsA cycle, which is involved in modulating the con-
centrations of GSH and AsA and the activities of GR and
DHAR in Chinese cabbage (Brassica rapa subsp. pekinensis)
tissues (Wu et al. 2016). Huang et al. (2019) also suggested
that SeO3

2− application increased SOD, CAT, APX, GSH-Px,
and GR activities in rice grown in flooded and unflooded soil
(Fig. 6).

Increasing nonenzymatic antioxidants

Glutathione and phytochelatin Glutathione (GSH) is one of
the most important antioxidants in plants that efficiently plays
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a role in counteracting the adverse effects of heavy metals
(Gratao et al. 2005; Asgher et al. 2017). Under metal stress
conditions, GSH is converted to a GSSG, disulfide bridge; the
increase of the ratio of GSH/GSSG is an indicator of oxidative
stress (Jozefczak et al. 2012; Hernandez et al. 2015). The
balance between GSH and GSSG is a central component in
maintaining the redox state of the cell (Sharma et al. 2012).
GSH functions as an indicator of oxidative stress and can react
directly with ROS. This reaction promotes the regeneration of
AsA, which also plays a crucial role in protecting cells against
oxidative stress in plants (Aravind and Prasad 2005). PCs are
the oligomers of GSH, produced by the enzyme PC synthase.
PCs are a group of novel heavy metal-binding polypeptides
(Cobbett 2000) that act as chelators and are important for
heavy metal detoxification in plants. They belong to a family
of cysteine-rich polypeptides that are produced in plants under
Hg stress (Yadav 2010).

The SeO3
2− ion is reduced to Se2− byGSH and subsequent-

ly chelated by PC (Cui et al. 2008; Bluemlein et al. 2009). The
formation of the intermolecular Se–S bond between Se–
cysteinyl-serine and GSH indicates that Se2− can bind to –
SH groups present in GSH and PCs and reduce the number
of free –SH groups necessary for Hg detoxification. Limiting
the association between Hg2+ and –SH groups and enhancing
shoot GSH translocation (Patra and Sharma 2000) results in
direct chelation of PCs with Hg ions to reduce toxicity through
the synthesis of metal-binding peptides of GSH (Mishra et al.
2006; Jozefczak et al. 2012). This response may directly de-
grade ROS-like OH− and reduce the translocation of Hg in the
plants. The reactions are as follows (Bluemlein et al. 2009):

4GSH + SeO3
2−+ 2H+ → GSSG + GS–Se–GS + 3H2O,

GS–Se–GS + 2H+ → 2GSH + Se–PC2

In addition, GSH content drastically increases the synthesis
of several important substances, such as GSH-Px, which pro-
tects cells by reducing and counterbalancing intracellular per-
oxide levels (Han et al. 2015). Under hydroponic conditions,
Han et al. (2015) found that increasing SeO3

2− levels en-
hanced the GSH and AsA contents in leaves of flue-cured
tobacco (Nicotiana tabacum L.). The addition of SeO4

2− in-
creased GSH concentrations in Chinese brake fern (Pteris
vittata L.) fronds, and this effect intensified with prolonged
exposure period to Se (Srivastava et al. 2009) (Fig. 6).

Ascorbic acidAscorbic acid (AsA) is an important antioxidant
that maintains the GSH pool in a plant system and acts as a
substrate in the AsA–GSH cycle. AO and APX can catalyze
the oxidation of AsA to dehydroascorbate (DHA) (Ohkawa
et al. 1989). The hydrolyzed DHA is recycled to AsA, and the
reaction is catalyzed by dehydroascorbate reductase (DHAR),
which also involves the conversion of GSSG toGSH (Hossain
et al. 2010; Yin et al. 2010), thereby regulating the redox state
of the cell (Chen and Gallie 2004). GR and DHAR play im-
portant roles in keeping the metabolic balance between GSH

and AsA contents in the GSH-AsA cycle (Sharma and Dietz
2009).

The response of AsA to Hg accumulation in plants has
been observed in many plants in different studies. Cui et al.
(2014) demonstrated that alfalfa (Medicago sativaL.) exposed
to Hg-induced oxidative stress enhanced concentrations of
AsA to mitigate the oxidative stress and reestablish the redox
homeostasis. Kováčik et al. (2017) studied the effect of AsA
on the Hg-induced oxidative damage in green algae
(Coccomyxa subellipsoidea). Singh et al. (2018) treated rice
plants treated with 10 μM SeO4

2− and increased the AsA
content by 14.7% compared to those not treated with Se
(Fig. 6).

Proline Proline is an antioxidant amino acid used in protein
biosynthesis. Proline tends to accumulate in the cytosol of the
plants under metal stress (Matysik et al. 2002; Aslam et al.
2017). Proline can scavenge free oxygen radicals (Alia et al.
2001) by promoting GSH synthesis in plant cells (Pavlikova
et al. 2007). Thus, proline is considered a ROS scavenger
under Hg stress conditions. In addition, an increased level of
proline in plants enhances the production of glutamate kinase
and may increase the glutamic acid level due to the synthesis
of GSH and PCs in the plant cell (Pavlikova et al. 2007). This
process leads to further chelation with metals and reduces
metal toxicity by vacuolar sequestration (Chandrakar et al.
2016).

Thus, exogenous applied SeO3
2− reduced proline accumu-

lation in pak choi shoots through GSH regulation under Hg
stress (Tran et al. 2018b). Moreover, high proline accumula-
tion is an important adaptive mechanism for plants under HM
stress, because proline acts as an osmolyte and reduces osmot-
ic potential (Pandey and Gupta 2015). The supplementation of
SeO3

2− through seed priming reduced the total phenolic con-
tent of rice seedlings (Moulick et al. 2016). Phenolics have a
well-known protective role in plants, and the synthesis and
accumulation of proline in plant tissues increases under vari-
ous biotic and abiotic stresses (Khaliq et al. 2015), as shown in
Fig. 6.

Carotenoids Carotenoids (Cars) are plant pigments that func-
tion as nonenzymatic antioxidants (Strzalka et al. 2003). Cars
play an important role in the protection of chlorophyll pig-
ments under stress conditions. Carotenoids are produced in
response to metal stresses (Hale et al. 2001) and increase the
antioxidant response of plants to protect regular physiological
status against biotic or abiotic stresses (Neill et al. 2002). The
role of Cars during Hg stress seems to be limited since their
content decreased with increasing Hg concentration (Baek
et al. 2012). However, an increase in Car concentrations is
reflective of the beneficial effect of Se supplementation on
HM stress in cucumber (Cucumis sativus L.) (Hawrylak-
Nowak et al. 2014) or tomato (Alyemeni et al. 2018),
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indicating that Se plays a protective role in Chl and ROS
elimination (Han et al. 2012) (Fig. 6).

α-Tocopherol Tocopherol nonenzymatic antioxidants are also
known as vitamin E. Naturally, there are four types of tocoph-
erols (α, β, γ, and δ-tocopherol), which differ in the position of
their methyl group (Li et al. 2012). α-Tocopherol is the main
form of tocopherol in the green organs of plants (Munné-Bosch
and Alegre 2002). It is a membrane-associated nonenzymatic
antioxidant that helps in the scavenging of single oxygen and
lipid peroxidases (Stahl and Sies 2003). Narang et al. (2008)
determined the antioxidant response of α-tocopherols to Hg-
induced oxidative stress. The concentration of α-tocopherol in-
creased after 10 days of SeO3

2− treatment in broccoli leaves
(Brassica oleracea L. var. italica) of metal-enriched plants
(Pedrero et al. 2008) (Fig. 6).

Decreasing lipid peroxidation

Free radicals and H2O2 are widely reported to cause damage to
the lipid bilayer, which mostly results in lipid peroxidation
(LPO) (Shahid et al . 2017; Abbas et a l . 2018) .
Malondialdehyde (MDA) is an index of LPO that rapidly
increases when membrane lipids are damaged under ROS
overproduction (Mishra et al. 2011; Sharma et al. 2012). The
production of MDA to protect lipid membranes against Hg
stress has been well documented (Alfanie et al. 2015;
Cabrita et al. 2019). Lipid peroxidation and loss of membrane
integrity increased linearly with increasing accumulation of
Hg in the leaf tissues of Hg-stressed plants (Ansari et al.
2009; Chen and Yang 2012; Cui et al. 2014).

The ameliorative effects of Se on Hg-induced oxidative
stress responses may be partly attributed to the improvement
of the scavenging capability of ROS, the decrease in LPO, and
the change in membrane physicochemical characteristics,
such as O2

−, H2O2, and MDA levels. Tran et al. (2018b)
demonstrated that MDA content decreased in pak choi shoots
after SeO3

2− application in unflooded soil (Fig. 5).

Increase in photosynthetic pigment content after Se
application

Photosynthesis is a key metabolic process of autotrophs that is
sensitive to toxicmetals. In plants during photosynthesis, Hg ions
may substitute for other essential metal ions and thereby disturb
the photosynthetic electron transport chain (Patra et al. 2004;
Azevedo and Rodriguez 2012). The substitution of Mg as the
central atom of Chl with Hg in vivo prevents photosynthetic light
collection in affected Chlmolecules and results in the breakdown
of photosynthesis (Patra et al. 2004; Tangahu et al. 2011).

Restricting Hg uptake and translocation within plants
through Se application may prevent Hg2+ from replacing met-
al ions (Mg2+), which ultimately balances the photosynthetic

electron transport chain and increases photosynthesis rates.
Thus, Se helps maintain the integrity of membrane systems
in chloroplasts (Vinit-Dunand et al. 2002; Patra et al. 2004;
Azevedo and Rodriguez 2012). The SPAD values (represent
for Chl content) increased in pak choi leaves after SeO3

2−

application in unflooded soil because of the amelioration of
Chl deficiency under Hg stress (Tran et al. 2018b). Similarly,
Mozafariyan et al. (2014) showed that Chl a and Chl b con-
centrations significantly increased in Cd-exposed peppers
(Capsicum annuum L.) after SeO3

2− application (Fig. 5).

Reduction of genotoxic effects after Se application

Mercury is considered genotoxin. Most of the DNA damage
caused by Hg stems from ROS formation or by its interaction
with the proteins associated with DNA replication systems
(Kültz 2005; Angelé-Martínez et al. 2017). These ROS have
the potential to interact and damage the purine and pyrimidine
bases of the DNA strand, which may lead to strand breakage
(Fracasso et al. 2002; Sallmyr et al. 2008). The dramatic change
in genomic template stability values suggested that the presence
of SeO4

2− effectively reduced the toxic effect of HMs on the
DNA of rice seedlings grown in solution (Pandey and Gupta
2015). Specifically, the reduction in genomic template stability
indicated that DNA repair and replication were effective in the
presence of low levels of DNA alteration (Pandey and Gupta
2015). Selenium addition induced methylenetetrahydrofolate re-
ductase, which was repressed in rice roots subjected to Se and
CH3Hg

+ co-exposure, suggesting that Se supplementation alle-
viated the effect on DNA damage and DNA synthesis induced
by Hg treatment (Li et al. 2018).

Moreover, the accumulation of free radicals produced from
methylation stress and the direct attack of DNA cytosine by
methyl radicals increased DNA methylation level in leaves
(Parra et al. 2001). Selenium supplementation to hydroponi-
cally grown plant under HM stress protected ramie tissues
from abnormal methylation by reducing the level of DNA
methylation (Wang et al. 2014). The protective role of Se
against changes in DNA methylation patterns may be attrib-
uted to the removal of ROS and/or the elimination of HMs
from enzymes (Fig. 5).

Reduction of the toxicity of Hg to plant proteins after
Se application

The cellular toxicity of Hg2+ ions is considered to be associ-
ated with its binding with –SH groups in functional proteins
because Hg2+ ions have high affinity for S ligands (Chen et al.
2012b). Hg2+ or CH3Hg

+ exposure can form Hg-binding pro-
teins (15–25 kDa) in rice roots (Li et al. 2016). Similar to other
heavy metals, Hg interacts with plant proteins (Sheng Zhou
et al. 2009; Krishna Sahu et al. 2012). The ability of Hg to
change cell membrane permeability with its high affinity for –
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SH groups, replace essential ion metalloproteins, and disrupt
functions involving critical or unprotected proteins, phosphate
groups, and active ADP or ATP groups can cause protein
precipitation (Patra and Sharma 2000; Patra et al. 2004). The
abundance of 49 proteins changed significantly in the roots of
Hg-stressed knotgrass (Paspalum distichum L.); 32 proteins
were up-regulated, and 17 were down-regulated (Ding et al.
2019).

The reduced disturbance of functional proteins in roots
with Se treatment is an important mechanism for the protec-
tive effects of Se against Hg. Selenium can regulate the ex-
pression of proteins associated with stress response, sulfur and
GSH metabolism, DNA replication and the cell cycle, and
energy and carbohydrates, suggesting that these proteins par-
ticipate in the protective effects of Se on Hg toxicity (Li et al.
2018). Considering the thermodynamically higher stability of
Hgsenols than Hg-thiols, the formation of Hg-Se complexes
in rice roots can prevent the binding of Hg to functional pro-
teins (Feng et al. 2013a). High molecular weight proteina-
ceous complexes in the rhizosphere are formed under Se ad-
dition (Mounicou et al. 2006; Yathavakilla and Caruso 2007)
(Fig. 5).

Sun et al. (2016) applied two-dimensional gel electropho-
resis (2-DE) coupled with mass spectrometry to perform pro-
teomic analysis and found that the expression of 21 of the 26
identified HM-associated proteins in cucumber tissues in-
creased after the addition of SeO3

2−. Selenium can also effec-
tively influence ATPase synthesis by maintaining membrane
lipid integrity, modulating pH and Ca2+ homeostasis, and
competing with HMs for entrance to root cells via ion chan-
nels. Thus, the addition of SeO3

2− sharply alleviates HM tox-
icity in rice tissues by increasing root H+-ATPase and Ca2+-
ATPase activities (Lin et al. 2012). Li et al. (2018) also found
that Se addition induced the formation of additional Hg-
containing proteins in the range of 55–70 kDa (high molecular
weight) but decreased the Hg content of functional proteins of
15–25 kDa (small molecular weight), and protected the pro-
teins and enzymes from Hg destruction (Fig. 5).

Toxic effects of Se application with excess
concentration to plants

Selenium doses need to be specifically monitored given the
narrow range between deficiency and toxicity in plants.
Others have applied high levels Se and showed synergistic
toxic effect with Hg and inhibited plant growth as a pro-
oxidant (Han et al. 2013; Zhao et al. 2013; Feng et al. 2013a).

Under hydroponic conditions, the study of Han et al.
(2015) reported that the addition of Se (5 mg/L) decreased
concentration of HM but decreased the fresh weights of
leaves and roots in flue-cured tobacco and increased the
MDA content (Han et al. 2015). In the roots of faba bean
(Vicia faba L.) exposed to 50 μM Pb, the addition of a

higher level of Se (6 μM) greatly enhanced the O2
− level

and decreased the cell viability and total –SH content
(Mroczek-Zdyrska and Wójcik 2011). High doses of Se
(>2 mg/L) exerted toxic effects on growth of spinach
(Spinacia oleracea L.) plants because of its interaction
with different nutrients (Saffaryazdi et al. 2012). In rye-
grass (Lolium perenne L.), 1 mg/kg SeO4

2− added to soil
was believed to be marginally toxic (Hartikainen et al.
2000), which is similar to the Se level considered to be
toxic to paddy rice in a hydroponic system (0.8 mg/L
SeO3

2−) (Feng et al. 2013a). Under unflooded soil condi-
tions, a significant growth improvement of pak choi was
only found at low Se treatment (1.0 mg/kg) because of the
synergistic toxic effect of Se with Hg when applied at a
high Se rate (2.5 mg/kg) in our previous study (Tran et al.
2018b). In addition, excess Se (≥11.1 mg/kg) also inhibited
the growth of flue-cured tobacco (Han et al. 2013).

When Se was added in soil at an excessive rate, inorganic
Se strongly transformed into organic species led some vital
substances (for example GSH) might not satisfy the metabo-
lism demands, caused GSH deficient (Han et al. 2015). An
imbalance in the levels of GSH by excessive Se gives rise to
ROS production because GSH are not sufficient to quench
ROS and result in a ROS burst. Thus, oxidative stress ap-
peared and plant growth was inhibited (Hartikainen et al.
2000; de la Luz Mora et al. 2008; Feng et al. 2013a). In
addition, the toxicity of Se is thought to be due to its chemical
similarity to S, leading to the non-specific replacement of S by
Se in proteins and other S compounds (Cheng et al. 2016).
The photosynthetic performance may be decreased by Se re-
placing S amino acids in photosynthetic proteins (Freeman
et al. 2010). Specifically, higher exogenous Se levels caused
an inhibition in the chlorophyll contents in lettuce (Lactuca
sativa L.) (Abbas 2013; Abbas 2012; Chen et al. 2005; Xue
et al. 2001). Besides, high Se concentrations may also be
incorporated as SeCys and SeMet into selenoenzymes and
selenoproteins, which replace Cys and Met and induce Se
toxicity in plants (Montesbayon et al. 2002; Navarro-
Alarcon and Cabrera-Vique 2008). Moreover, Hawrylak-
Nowak (2008) suggested that reduction in maize (Zea mays
L.) plant biomass at higher Se concentration might have been
a result due to the accumulation of phosphorus in the shoot
tissues.

Effects of different Se application approaches
on Hg detoxification

Selenium application has been demonstrated to reduce the
accumulation of Hg in plants. However, its mechanism is
clarified by exploring the potential effects of Se species
(SeO3

2− and SeO4
2−), Se doses, and Se application methods
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(soil or foliar application) on Hg2+–Se and CH3Hg
+–Se antag-

onistic interactions in soil–plant systems (Fig. 2).

Se species

Earlier studies have investigated Se accumulation in plants by
treating plant growth media or soil with SeO3

2− and SeO4
2−,

which are the main Se species taken up by plants (Ellis and
Salt 2003). Both forms of Se can limit the absorption and
bioaccumulation of Hg in plants (Hu et al. 2014; Tang et al.
2017; Huang et al. 2018). The Se species SeO3

2− and SeO4
2−

were equally effective in reducing the Hg content in radish
and tomato plants cultivated in upland soil (Shanker et al.
1996b; Shanker et al. 1996a) and in reducing Hg accumula-
tion in garlic in hydroponic culture (Zhao et al. 2013).
Moreover, SeO3

2− and SeO4
2− were equally effective in re-

ducing the CH3Hg
+ concentrations of high-Se and low-Se

paddy soils (Wang et al. 2016a) or inhibiting sulfate-
mediated CH3Hg

+ production regardless of sulfate input
(Wang et al. 2016b). Tang et al. (2017) demonstrated that
the inhibitory effects of Se application on Hg2+ bioaccumula-
tion in rice depended on Se doses rather than on the Se species
(SeO3

2− and SeO4
2−), given that SeO4

2− is rapidly trans-
formed to SeO3

2− under flooded conditions (Wang et al.
2016a; Wang et al. 2016b; Tang et al. 2017). The conversion
of SeO3

2− and SeO4
2− to other Se species (e.g., Se0 and Se2−)

under anoxic conditions (Martin et al. 2011; Li et al. 2014a;
Wang et al. 2016a) may account for the similar abilities of
SeO3

2− and SeO4
2− to reduce CH3Hg

+ concentrations.
Our recent study demonstrated that SeO3

2− application can
reduce the concentrations of Hg in pak choi roots more than
SeO4

2− for upland soil (Tran et al. 2018a). Selenite treatments
significantly decreased the proportion of Hg in pak choi
shoots, whereas Hg accumulation notably increased in shoots
of pak choi when treated with SeO4

2−. These different phe-
nomena can be ascribed to the differences in Hg tolerance
among various plant species and different experimental con-
ditions. Thus, these results helped identify the Se species that
can be useful for Se amendment in future studies.

In addition, Se may have different effects on the accumu-
lation and translocation of Hg species (Hg2+ and CH3Hg

+) in
plant tissues. The inhibitory effect of Se on Hg2+ uptake rather
than the direct effect of Se on CH3Hg

+ substantially decreased
Hg2+ concentrations and negligibly decreased root CH3Hg

+

concentrations in rice tissues (Zhao et al. 2014). These results
were consistent with those obtained by Zhang et al. (2012),
who suggested that increasing soil Se concentrations can in-
hibit the absorption of Hg2+ in rice roots but not that of
CH3Hg

+. Soil Se levels were negatively correlated with the
TFs of Hg2+ that mediate Hg uptake from the soil to the root,
which were positively correlated with the TFs of CH3Hg

+

(Zhang et al. 2012).

Se doses

Selenium dose is more important than Se speciation in con-
trolling Hg accumulation in plant. The results of our study
showed that the SeO3

2− or SeO4
2− application can inhibit the

absorption and bioaccumulation of Hg in pak choi grown in
dryland soil. Notably, this inhibition may only significantly
occur when SeO3

2− or SeO4
2− application rate is at an appro-

priate level (2.5 mg/kg) (Tran et al. 2018a). Under flooded
conditions, Hg2+ levels of rice root decreased significantly
by 36 to 48% under 6.0 mg/kg SeO3

2− or SeO4
2− treatment,

respectively, which was higher compared with the decrease of
~22% for 3.0 mg/kg SeO3

2− or SeO4
2− (Tang et al. 2017).

Feng et al. (2009) also found that the inhibition and stimula-
tion effects of SeO3

2− on the essential elements depended on
the Se dosage applied. Low SeO3

2− dosages significantly de-
creased essential element contents in Chinese brake fern,
whereas high dosages enhanced the uptake of essential ele-
ments (Feng et al. 2009). Zhao et al. (2013) also found that a
high amount of SeO3

2− or SeO4
2− (100 mg/L) treatment sig-

nificantly increased Hg concentrations in the roots of garlic. In
addition, high concentrations of SeO3

2− or SeO4
2− also

inhibited garlic growth due to the phytotoxicity induced by
Se. High Se application (Se > 5 μg/mL) did not reduce Hg
accumulation in rice plants (Li et al. 2019).

In addition, Se also showed a dose-dependent effect on the
formation of Fe plaques; only low doses of Se (≤ 1.0 mg/kg)
promoted Fe plaque formation (Chang et al. 2013). Thus, the
mechanisms underlying Hg detoxification in soil–plant sys-
tems after Se application resulted in the reduction of the accu-
mulation of Hg in plants and improvement of the growth of
plants. Li et al. (2015) demonstrated that the treatment with
the appropriate level of Se (0.5 μg/mL in this study) is an
efficient way to reduce Hg accumulation in rice and increase
rice yield and quality.

Se application methods

The Hg–Se interactions were found in the rhizosphere (i.e., soil
or rice root) instead of in the aboveground tissues (Wang et al.
2016a; Tang et al. 2017), which is probably be the reason for the
reduced Hg bioaccumulation following Se application.
Therefore, the two Se applications (to soil and leaves) differed
distinctly in terms of their effects on Hg accumulation in plants.
Soil Se application significantly reduced Hg accumulation in
most cases, whereas foliar Se application had insignificant effects
(Wang et al. 2016a). Specifically, the accumulation of CH3Hg

+

in rice grains was largely inhibited (7–73%) after soil SeO3
2− and

SeO4
2− application of 0.5–6.0 mg/kg, whereas no significant

changes were found after foliar application (30 and 80 g/ha).
Similarly, Tang et al. (2017) reported that Hg2+ concentrations
in rice roots decreased after soil SeO3

2− and SeO4
2− application

but not after foliar application, indicating that soil application
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could evidently reduce tissue Hg2+ concentrations by 0–48% in
root, 15–58% in straw, and 26–74% in brown rice, although both
applications resulted in comparable Se accumulation in above-
ground tissues. In addition, foliar application of Se also has no
effect on Hg accumulation in grape berries (Vitis vinifera L.),
while the heavy metal content of Pb, Cr, Cd, As and Ni in grape
berries was reduced under Se fertilizer treatments reduced com-
pared to the control (Zhu et al. 2017).

Conclusion and future perspectives

The applications of Se at the appropriate rate can serve as
potential strategy for Hg detoxification in soil and plant tissues
and can reduce the public health risk. This review showed that
the mechanisms for Hg detoxification by Se application in-
cluded the following:

(1) Selenium application reduced the bioavailability of Hg in
soil through the transformation of Hg into an immobile
speciation and suppression of Hg methylation.

(2) Selenium application led the formation of inert HgSe or/
and HgSe-containing proteinaceous complexes in the
rhizosphere and/or roots results in immobilization of
Hg on the interface of soil–plant root.

(3) Prevention of plant root uptake and translocation of Hg
by increasing Fe plaques on root surfaces and sequester-
ing Hg into the vacuoles of root cells.

(4) Reduction of plant oxidative stress under Hg stress by
activating antioxidant systems, increasing photosynthet-
ic pigment concentrations, decreasing lipid peroxidation
products, alleviating the effect on DNA damage, and
reducing protein participation.

(5) However, application of high rate Se showed synergistic
toxic effect with Hg and inhibit the plant growth.

Besides the Hg bioavailability and the changes of Hg spe-
ciation in soil, Hg uptake, and transport within plants, more
research is needed on the mechanisms associated with the
detoxification of Hg by application of Se better. In addition,
application methods need to be studied to understand the
following:

(1) Selenium bioavailability and speciation transformation
in soil and the combined capacity of Se and Hg to form
stable HgSe complexes need to be clarified.

(2) The changes in Se speciation in plants must also be clar-
ified given their effects on competitive adsorption or
chelation between Se and Hg.

(3) Selenium absorption and transport within plants and the
physiological and biochemical mechanisms underlying
these processes need to be examined.
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