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Abstract
This study aims to examine the relationship between daily temperature and mortality in the Klang Valley, Malaysia, over the
period 2006–2015. A quasi-Poisson generalized linear model combined with a distributed lag non-linear model (DLNM) was
used to estimate the association between the mean temperature and mortality categories (natural n=69,542, cardiovascular n=
15,581, and respiratory disease n=10,119). Particulate matter with an aerodynamic diameter below 10 μm (PM10) and surface
ozone (O3) was adjusted as a potential confounding factor. The relative risk (RR) of natural mortality associated with extreme
cold temperature (1st percentile of temperature, 25.2 °C) over lags 0–28 days was 1.26 (95% confidence interval (CI): 1.00, 1.60),
compared with the minimum mortality temperature (28.2 °C). The relative risk associated with extremely hot temperature (99th
percentile of temperature, 30.2 °C) over lags 0–3 days was 1.09 (95% CI: 1.02, 1.17). Heat effects were immediate whereas cold
effects were delayed and lasted longer. People with respiratory diseases, the elderly, and women were the most vulnerable groups
when it came to the effects of extremely high temperatures. Extreme temperatures did not dramatically change the temperature-
mortality risk estimates made before and after adjustments for air pollutant (PM10 and O3) levels.
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Introduction

Climate change is likely to have a significant impact, both
directly and indirectly, on human health (Costello et al.
2009; Guo et al. 2017; Deng et al. 2020). The effects of cli-
mate change on human health have received more attention in
recent years as extreme temperatures have been found to be

associated with temperature-related mortality risk (Anderson
and Bell 2009; Yu et al. 2012). Previous studies, undertaken in
a large multi-country study, showed that the percentage of
total deaths was around 8% with cold accounting for more
deaths than heat (Gasparrini et al. 2015). Generally, exposure
to extremely high temperatures (heat effects) produces an im-
mediate effect and an acute event, causing health problems
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and clinical syndromes such as heat cramps, exhaustion,
stroke, syncope, and even death (Kovats and Hajat 2008;
Patz et al. 2014; Mallen et al. 2019). In contrast, low temper-
atures (cold effects) showed a more delayed effect with an
increase in the number of deaths several days after exposure
(Rocklöv and Forsberg 2008; Anderson and Bell 2009).

In many studies over the last two decades, temperature-
mortality relationship curves have typically been found in
common shapes such as V-, U-, or J-shaped exposure-
response functions (Baccini et al. 2008; Anderson and Bell
2009; Hajat and Kosatky 2010). The temperature with the
lowest risk of mortality is defined as the optimum temperature
and is typically known as the minimum mortality temperature
(MMT) (El-zein et al. 2004; Basu and Malig 2011). The
temperature-mortality risk increases when the temperature be-
comes lower or higher than the MMT threshold temperature
(El-zein et al. 2004; Basu and Malig 2011; Egondi et al.
2012). The MMT threshold varies among countries and re-
gions with different climate conditions (Guo et al. 2014;
Honda et al. 2014; Yin et al. 2019) and is also affected by
time of day (Todd and Valleron 2015). The temperature-
mortality relationship is also modified by gender and age,
and by specific causes of death, which affect the relative risks
(RR) (Medina-Ramón et al. 2006; Madrigano et al. 2013).
Most of the studies adjusted seasonality and time trends as a
way to control potential confounding factors. Seasonal varia-
tions in temperature cause changes in the daily number of
respiratory and cardiovascular diseases (CVD) as well as in
total and cause-specific mortality (Braga et al. 2002). For en-
vironmental hazards, there are a few studies where air pollut-
ant parameters such as particulate matter (PM) and surface
ozone (O3) were adjusted. Some of the results from these
studies showed that temperature effects were generally inde-
pendent or less influenced by air pollution (Yang et al. 2012;
Guo et al. 2014) but others have indicated that air pollution
could aggravate the effect of temperature on health outcomes
(Buckley et al. 2014; Li et al. 2015).

The association between temperature and mortality in dif-
ferent regions should be explored individually because of
adaptive population capabilities and weather patterns which
vary in each region (Basu 2009; Yu et al. 2012). The majority
of the extensive literature describing the effects of temperature
on mortality is from developed countries or regions with tem-
perate and cold climates, such as the USA and Europe
(Medina-Ramón and Schwartz 2007; Analitis et al. 2008;
Anderson and Bell 2009; Hajat and Kosatky 2010; Guo
et al. 2011). Meanwhile, only a few studies have been under-
taken in developing countries, particularly in tropical and sub-
tropical regions (McMichael et al. 2008; Xie et al. 2013).
Developing countries, however, are affected more by climate
change and more prone to health threats as they have more
vulnerable populations and limited public health infrastruc-
tures (McMichael et al. 2008). It is especially interesting to

study associations between temperature and mortality in trop-
ical and sub-tropical cities because a previous study in Hue,
Vietnam, showed an unusual L pattern with a 0–21 lag period
(Dang et al. 2016). This unusual pattern contrasts with the
usual U, V, or J shapes associated with temperate and cold
climate regions (Baccini et al. 2008; Anderson and Bell 2009).
In some instances, it has been found that the temperature and
mortality relationship in tropical and sub-tropical climates re-
sults in an immediate increase in mortality for both high and
low temperatures (Hashizume et al. 2009; Guo et al. 2012).

In the Southeast Asian region, studies on associated
temperature-mortality have been conducted in Vietnam,
Thailand, and the Philippines (Guo et al. 2012; Xuan et al.
2014; Seposo et al. 2015; Dang et al. 2016). The effect of
temperature on human health, especially on mortality, has
received more attention in Malaysia in recent years. This is
largely as a response to 200 cases and 2 deaths, relating to
heatwave events, being reported by the Malaysian Ministry of
Health in 2016 (MOH Malaysia 2016). In this study, we ex-
amined the effects of temperature on all mortality categories
(natural, cardiovascular and respiratory) in the Klang Valley,
Malaysia, during the period 2006 to 2015. We used a quasi-
Poisson regression in the generalized linear model (GLM) to
analyse the association between temperature and mortality,
combined with DLNM to investigate the delayed effect of
temperature on mortality. The association between tempera-
ture and mortality was also adjusted for the potential con-
founding effects of air pollution with an aerodynamic diame-
ter of less than 10 μm (PM10) and surface O3. These two
parameters were chosen due to being pollutants which abun-
dantly exceeded both the Malaysian Ambient Air Quality
Standard (MAAQS) and the United States National Ambient
Air Quality Standards (NAAQS) when compared to other
major air pollutants between 2005 and 2015 as stated in the
study by Mohtar et al. (2018).

Material and methods

Study area

The Klang Valley is located on the Malaysian Peninsula and
consists of the states of Selangor, Putrajaya, and Kuala
Lumpur (Fig. 1). It has a relatively high population density
and had a population of around 8.1 million in 2016
(Department of Statistics Malaysia 2017). The Klang Valley
has grown rapidly and become the most urbanized and popu-
lated region inMalaysia (Jamal et al. 2004). The climate is hot
and humid throughout the year with a uniform temperature,
h igh humidi ty, and copious ra infal l (Malaysian
Meteorological Department 2009). The annual climate vari-
ability is closely tied to the Southwest (June–September) and
the Northeast Monsoons (November–March). The Southwest
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Monsoon typically features drier weather with less rainfall
compared to the Northeast Monsoon which brings more pre-
cipitation (Kwan et al. 2013). The average annual temperature
varies from 21 to 32°C. In the last decade, the daily mean
temperature increased by 0.07°C year-1 in Klang Valley
(Yatim et al. 2019). The average total annual rainfall is around
250 cm a year (Malaysian Meteorological Department 2009).
The major ambient pollutants in this region are particulate
matter (PM) and surface O3, which are predominantly influ-
enced by regional tropical factors as well as local pollutant
emissions and dispersion characteristics (Latif et al. 2012).

Mortality, meteorological, and air pollutant data

Daily mortality data from ten hospitals were collated by the
Health Information Centre, Putrajaya (PIK) from 2006 to
2015 (Fig. 1). Approval from the Medical Research Ethics
Committee, Ministry of Health, was obtained prior to the data
collection. The mortality data was classified into three cause-

specific categories: natural mortality (A00–R99) (n=69,542),
cardiovascular mortality (I00–I99) (n=15,581), and respirato-
ry mortality (J00–J99) (n=10,119) based on the Tenth
Revision of the International Classification of Diseases and
Related Health Problems (ICD-10).

Daily meteorological data covering the same period for the
maximum, mean, and minimum temperature as well as rela-
t ive humidi ty was obtained from the Malaysian
Meteorological Department (MetMalaysia) and the
Department of Environment, Malaysia (DOE). The daily av-
erages of the meteorological variables (n=3652) were calcu-
lated using all available records from 14 monitoring stations
(Fig. 1). In the instances where a meteorological station had a
missing value, observations from other stations were used to
calculate the average value for that day (Tong et al. 2012; Al-
Taiar and Thalib 2014; Alahmad et al. 2019). For air pollution
parameters, daily air pollution data (PM10) (μg/m

3) and sur-
face O3 (ppb) were obtained from DOE continuous air quality
monitoring stations (Fig. 1). The daily concentrations of PM10

Fig. 1 a Peninsular Malaysia
map. b Klang Valley map for the
study area. Crosses represent
meteorological and air pollutant
stations from DOE. Circles
represent meteorological station
from MMD, and squares
represent hospital location
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and surface O3 (n=3652) were averaged from the data collect-
ed from the seven air quality monitoring stations within the
Klang Valley. Detailed information on PM10 and O3 measure-
ments can be obtained from Latif et al. (2014).

Statistical analysis

We used a quasi-Poisson regression in the generalized linear
model (GLM) combined with a distributed lag non-linear
model (DLNM) to examine the impact of temperature on
mortality. The DLNM employed a cross-basis function
allowing us to predict the possible non-linear effects of tem-
perature (temperature-mortality dimension) and lag (lag-
mortality dimension) concurrently (Gasparrini et al. 2010).
In this study, we fitted quasi-Poisson regression models
adjusting them for potential confounders such as long-term
and seasonal trends (time), days of the week (DOW), relative
humidity (RH), and air pollutants such as PM10 and O3. The
general model for this study is as follows:

LogE Ytð Þ ¼ αþ βTt;l þ DOWt

þ ns time; df ¼ i=yearð Þ
þ ns RHt; df ¼ 3ð Þ þ ns PM10t; df ¼ 3ð Þ
þ ns O3t; df ¼ 3ð Þ ð1Þ

where t is the day of observation; Yt is the number of daily
deaths on day t; α refers to the intercept; β is the vector of
regression coefficients for the cross-basis function where (Tt,l)
is a matrix obtained by applying the t temperatures, and l
refers to the lag days; DOWt is a day of the week on day t
represented as categorical variables; ns represents the smooth-
ing parameter set to the natural cubic spline; time was used to
control long-term trends and seasonality with i degrees of
freedom (df) per year; RHt, PM10t, and O3t are the daily rela-
tive humidity, daily particulate matter and daily ozone on day
t, respectively. According to previous studies, three degrees of
freedom (df) were used to smooth RH, PM10, and O3

(Stafoggia et al. 2008; Anderson and Bell 2009; Guo et al.
2012; Dang et al. 2016). It is crucial in the modelling proce-
dure to adjust important pollutants such as PM10 and O3 which
are prevalent in the Klang Valley. The challenge in this study
with using the time series method is to obtain a good estimate
of β for temperature. It was therefore necessary to control
those factors in the model that change daily and are highly
seasonal, such as the level of pollutants which always has a
strong relationship with mortality.

Various parameters can be used in Eq. 1 due to the flexible
choice of the smoothing parameter in DLNM functions for
modelling the nonlinear temperature effect and the lagged
effect, as well as the choice of df for controlling seasonality
and long-term trends and potential confounders. We used a

natural cubic spline—natural cubic spline DLNM—as a
smoothing parameter that models both the nonlinear temper-
ature effect and the lagged effect. Akaike’s information crite-
rion for quasi-Poisson (Q-AIC) with the lowest value was
used as a criterion to choose the df for temperature and lag
(Peng et al. 2006; Gasparrini et al. 2010; Guo et al. 2011). For
controlling seasonality and long-term trends, we used 8 df per
year for the time variable (i value) based on the lowest Q-AIC
value (Supplementary S1). We found that using 3 df for tem-
perature and 4 df for lag with a maximum lag of up to 21 days
in the cross-basis function produced the best fitting model
based on the Q-AIC values (Supplementary S2). Knots of
the mean temperatures were placed at equally spaced quantiles
and the knots of the lag calculations were set at equally spaced
values on the log scale of the lags. We chose the mean tem-
perature as the best predictor of mortality compared to the
maximum temperature and minimum temperature since the
mean temperature gave the lowest Q-AIC values based on
our data (Supplementary S3). In addition, the mean tempera-
ture represents exposure throughout the whole day and night
and can be easily interpreted for decision-making purposes
(Yu et al. 2012). We plotted the overall effect of temperature
on all mortality categories over 21 lag days. We also plotted
the relative risks against temperature at different lags (0–3, 0–
7, 0–14, and 0–28 lag days) and calculated the cumulative risk
to show the entire relationship between hot and cold temper-
atures on mortality. To examine the hot and cold effects on
cause-specific mortality, we calculated the relative risk for all
mortality categories associated with extreme cold (1st percen-
tile of temperature or less) and extreme heat (99th percentile of
temperature and more) relative to the minimummortality tem-
perature (MMT), respectively (Curriero et al. 2002). In order
to check the robustness of our findings, we performed sensi-
tivity analysis by investigating the effect of extreme tempera-
tures before and after adjustments for air pollution levels at
different lags (0–3, 0–7, 0–14, and 0–21 lag days). All statis-
tical analyses were conducted using R statistical software (ver-
sion 3.4.3) and the dlnm package version 2.3.4 (Gasparrini
2011). Spearman’s correlation coefficients were used to sum-
marize the similarities in daily weather and air pollution con-
ditions. The correlation results with p < 0.05 were considered
statistically significant.

Results

A total of 69,542 deaths for natural mortality were recorded
during the study period 2006 to 2015, including 15,581 and
10,119 deaths from cardiovascular disease and respiratory
disease, respectively. Table 1 shows the descriptive statistics
for daily mortality, weather, and air pollution conditions. On
average, the daily mortality count for natural death was 18.9;
cardiovascular deaths, 4.3; and respiratory deaths, 2.9. The

60212 Environ Sci Pollut Res (2021) 28:60209–60220



daily mean, maximum and minimum temperatures, and rela-
tive humidity were 27.7°C (23.5–30.9°C), 32.1°C (24.7–
36.5°C), 24.7°C (21.5–27.8°C), and 78.2% (50.2–97.1%), re-
spectively. The daily mean concentrations of PM10 and O3

were 61.5 μg/m3 (range 23.2–426.8 μg/m3) and 40.2 ppb
(range 7.2–101.1 ppb), respectively.

Figure 2 shows the overall cumulative effects and three-
dimensional plots of the daily mean temperature on cause-
specific mortality (natural, cardiovascular and respiratory)
over 21 lag days. The relationship between the daily mean
temperature and all-cause mortality was non-linear with rela-
tive risks (RR) being higher at both a very hot or cold temper-
ature. From the graph, we identified that the minimum mor-
tality temperature (MMT) during the study period was 28.2 °C
which is close to the temperature at the 68th percentile for all-

cause mortality. The three-dimensional plots show that the
effects of high temperatures on cause-specific mortality
peaked within 0–1 days whereas the effects of low tempera-
tures (i.e., 1st percentile) occurred at about 12–14 days and the
excess risks persisted for more than 1 week. We did not ob-
serve any apparent harvesting effects, such as a short-term
forward shift in mortality rate (mortality displacement)
(Supplementary S4).

Based on the lag structures, we presented the cumulative
effects of the mean temperature on all of the causes of mor-
tality categories at different lags: 0–3, 0–7, 0–14, 0–21, and 0–
28 (Fig. 3). The shape of the temperature and mortality cate-
gory curves changed at different lag points. For lags 0–3, the
results showed that only high temperatures increased the risk
of mortality for all mortality categories (J shape). During lags
0–7 and 0–14, high temperatures continually increased the
mortality risk and reached a peak for risk at lag 0–14 before
declining at lags 0–21 for all-cause mortality. Meanwhile, low
temperatures increased the risk at lag 0–14 for all-cause mor-
tality. There was an increase in the risk of death for low tem-
peratures at longer lags, reaching a peak at lag 0–28 for all-
cause mortality. The overall cumulative effects of the mean
temperature on natural, cardiovascular, and respiratory mor-
tality were calculated at a lag of 0–3, 0–7, 0–14, 0–21, and 0–
28 days with the temperature effects varying with different lag
periods (Table 2). Compared with the MMT, the overall RRs
associated with extremely low (1st percentile) temperatures
were found to be non-significant for all tested lag periods,
except for natural mortality. Overall, the cold effects were
the strongest during extreme cold for natural mortality with
a risk of 1.26 (95%CI: 1.00,1.60) at lag 0-28. In contrast, the
effects of extremely high temperatures (99th percentile) rela-
tive to the MMT were found to be significant for cause-
specific mortality. Respiratory mortality had the highest risk
of death related to extreme heat at lags 0–14, with RRs of 1.42
(95%CI:1.04, 2.36) compared with other mortality causes.
Table 3 shows the relative risk of extremely high and low
temperatures on total mortality associated with temperature
with variations for gender and age. We only observed signif-
icant effects of extremely high temperatures among the fol-
lowing two categories: women and the elderly. In general, the
effects of high temperatures are generally more pronounced
than the low temperatures for all-cause mortality. The results
also showed that the effect of extreme heat and cold did not
dramatically alter the relative risk effects before or after ad-
justments for PM10 and surface O3. Table 4 shows that air
pollution slightly increased the extreme heat-related risk lead-
ing to an increased risk from 1.31 to 1.33 and from 1.33 to
1.36 for CVD and respiratory mortality risks, respectively.
Overall, we observed that adjusting air pollutants (PM10 and
O3) in the model did not aggravate the temperature-related
mortality risk as the rate of increase was less than 4%.

Table 1 Summary of statistics for mortality cases, temperature, relative
humidity, air pollutants, and mortality in the Klang Valley between 2006
and 2015

Variables Mean SD Min Max

Natural mortality (n=69,542) 18.9 7.6 1.0 45.0

Age

Children (0–14) (n=5851) 1.6 1.4 0.0 9.0

Adults (15–60) (n=31,980) 8.8 4.0 0.0 25.0

Elderly (>60) (n=31,711) 8.7 3.9 0.0 26.0

Gender

Men (n=41,341) 11.3 4.8 0.0 31.0

Women (n=28,185) 7.7 3.5 0.0 25.0

Cardiovascular mortality (n=15,581) 4.3 2.6 0.0 17.0

Age

Children (0–14) (n=210) 0.0 0.3 0.0 3.0

Adults (15–60) (n=6612) 1.8 1.5 0.0 9.0

Elderly (>60) (n=8759) 2.4 1.8 0.0 12.0

Gender

Men (n=9387) 2.6 1.9 0.0 13.0

Women (n=6194) 1.7 1.4 0.0 9.0

Respiratory mortality (n=10,119) 2.9 2.1 0.0 14.0

Age

Children (0–14) (n=370) 0.1 3.2 0.0 2.0

Adults (15–60) (n=3556) 1.0 1.1 0.0 8.0

Elderly (>60) (n=6193) 1.7 0.9 0.0 9.0

Gender

Men (n=5974) 1.6 0.9 0.0 9.0

Women (n=4145) 1.1 1.0 0.0 7.0

Max. temperature (°C) (n=3652) 32.1 1.5 24.7 36.5

Min. temperature (°C) (n=3652) 24.7 0.9 21.5 27.8

Mean temperature (°C) (n=3652) 27.7 1.1 23.5 30.9

Relative humidity (%) (n=3652) 78.2 6.1 50.2 97.1

Ozone (ppb) (n=3652) 40.2 12.9 7.2 101.1

PM10 (μg/m
3) (n=3652) 61.5 29.2 23.2 426.8
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Discussion

In this study, our results show that the relationship between
temperature and mortality was non-linear with high tempera-
tures significantly (p<0.05) increasing the risk of mortality in
the Klang Valley. We found that temperature-mortality rela-
tionships in this study were consistent with previous studies
undertaken in other Southeast Asian countries. The MMT
(28.2 °C) in this study was, however, slightly higher than
the other Southeast Asian cities studied, such as Chiang
Mai, Thailand, and Hue, Vietnam, with MMTs between
26.0 and 27.0 °C (Seposo et al. 2015; Dang et al. 2016).
This difference though is consistent with the trend of MMT
distributions globally, where the MMT tends to increase grad-
ually from high latitudes to low latitudes (Tobías et al. 2016;
Yin et al. 2019). We also demonstrated that hot effects ap-
peared to be immediate or acute whereas cold effects were
delayed by 12–14 days for both high and low temperature
effects lasting for several days. Furthermore, our results

suggested that the relative risk from high temperatures on
mortality was far greater than that of low temperatures. The
risk of extreme hot and cold temperature-related mortality in
the Klang Valley tended to barely change before or after ad-
justments for PM10 and O3 concentrations. This may have
been due to the average level of air pollutants being experi-
enced, as would commonly be the case, as opposed to the
occurrence of unusual concentration patterns or worst-case
scenario events such as haze episodes. The concentration of
air pollutants, such as PM10 and surface O3, usually affects
human health when air pollution levels are high (Breitner et al.
2014; Li et al. 2015).

In our analyses, we extended the maximum lag value up to
28 days to capture the effects of both extreme high and low
temperatures. Previous studies found that cold effects could be
underestimated because the cold effect would usually last
more than a week, while hot effects may be overestimated
because potential mortality displacement (or harvesting)
might occur during longer lags (Guo et al. 2011; Zhang

Fig. 2 The estimated overall effect (left) and three-dimensional plot
(right) of the relative risk of the mean temperature (°C) over lags 0–21
days on cause-specific mortality (natural, cardiovascular, and respiratory)
by using a natural cubic spline—natural cubic spline DLNM with 3

degrees of freedom for a natural cubic spline for temperature and 4 de-
grees of freedom for lag. The black lines are the mean relative risks while
the grey regions are 95% confidence intervals
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et al. 2016). As such, we explored the lag effects of tempera-
ture on all mortality categories from 0 up to 28 days.We found
that both high and low temperatures were associated with
increases in all-cause mortality. The cold effect only appears
to have had an effect after day 14. Previous studies also re-
ported similarly delayed and longer cold effects on mortality
(Goodman et al. 2004; Anderson and Bell 2009; Dang et al.

2016). However, this study did not observe any significant
positive associations between low temperatures and cause-
specific mortality except during lags 0–21 and 0–28
(Table 2). The non-significant associations between the cold
effect and mortality in our study might be due to the fact that
less cold spell events occurred in the study area. For high
temperature effects, there was a significant association be-
tween temperature and cause-specific mortality (forming a J
shape) at lag 0–3. This J shape pattern was found to be similar
to research findings for other tropical and subtropical cities
(McMichael et al. 2008; Wu et al. 2013; Dang et al. 2016).
Even though this study found that high temperatures resulted
in immediate increases in mortality, the highest peak effects
from the heat were found at lag 0–14 days. This finding is
unusual and inconsistent with most of the studies from Asian
cities that show an acute and very short lag effect from high
temperatures. According to Gasparrini et al. (2016), varying
seasonal susceptibility to temperature or a change in acclima-
tization may be a possible explanation for this. However, fur-
ther investigation is needed to properly understand this find-
ing. Our results did not identify any mortality displacement in
all-cause mortality data for hot and cold effects. This result
differs from the findings reported by Guo et al. (2012) and
Dang et al. (2016) who found mortality displacement for non-
external and cardiopulmonary mortality in Chiang Mai and
cardiovascular and respiratory mortality in Hui, Vietnam,

Fig. 3 Relative risks of mean temperature (°C) on cause-specific mortality over lags 0–3, 0–7, 0–14, 0–21, and 0–28. The reference value was minimum
mortality temperature. The black lines are the cumulative relative risks while the grey regions are 95% confidence intervals

Table 2 The cumulative effects of extreme cold temperature (25.2 °C)
and extreme hot temperature (30.2 °C) relative to minimum mortality
temperature (28.2 °C) along the lag days. Bold represents statistically
significant data at p<0.05

Lag Natural Cardiovascular Respiratory

Cold 0–3 0.88 (0.82, 0.95) 0.94 (0.81, 1.09) 0.85 (0.70, 1.03)

0–7 0.93 (0.85, 1.03) 0.89 (0.73, 1.08) 0.99 (0.75, 1.29)

0–14 1.03 (0.90, 1.19) 1.02 (0.78, 1.33) 1.16 (0.70, 1.91)

0–21 1.17 (0.97, 1.41) 1.08 (0.79, 1.48) 1.48 (0.77, 2.64)

0–28 1.26 (1.00, 1.60) 1.12 (0.77, 1.63) 1.89 (0.91, 3.94)

Hot 0–3 1.09 (1.02, 1.17) 1.22 (1.07, 1.39) 1.34 (1.13, 1.59)

0–7 1.11 (1.01, 1.22) 1.29 (1.11, 1.51) 1.34 (1.06, 1.68)

0–14 1.12 (0.98, 1.27) 1.33 (1.17, 1.82) 1.42 (1.04, 2.36)

0–21 1.11 (0.93, 1.32) 1.33 (1.16, 1.80) 1.36 (0.84, 2.32)

0–28 1.00 (0.80, 1.26) 1.30 (1.08, 1.79) 1.23 (0.64, 2.36)
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respectively. There could be several reasons for this difference
and one of them is likely to be due to a low number of daily
deaths in this study. It may also depend on several factors
including the baseline health status of the population (pres-
ence of chronic diseases), the population at risk (elderly peo-
ple), and other local factors (Hajat et al. 2005; Basu andMalig
2011).

Some evidence in previous studies demonstrated that the
magnitude of temperature effects varied greatly depending on
climate, geography, and population (McMichael et al. 2008;
Basu 2009; Guo et al. 2011; Gasparrini et al. 2015; Zhang
et al. 2016). Generally, the magnitude of high and low tem-
peratures on mortality risk in this study was comparable with
other studies conducted in countries within the same region.
For instance, we found an increased risk of 33% and 42%
from the hot effect when comparing the 99th percentile of
temperature (30.2°C) to the MMT (28.2 °C) in cardiovascular
and respiratory mortality, respectively. An analysis in Manila,
Philippines, indicated a similar pattern where the hot effect
was associated with a 37% and 52% increase for the 99th

percentile of temperature (32.8°C) to the MMT (30.0°C) over

lag 0–13 days (Dang et al. 2016). In comparison with other
studies in Southeast Asian cities (Guo et al. 2012; Seposo et al.
2015), we have examined both hot and cold effects using the
mean temperature for cause-specific mortality. Our findings
indicate that the mortality risk in the Klang Valley has slightly
lower effects from high and low temperatures. This could be
attributed to better infrastructure development and public
healthcare services.

For cause-specific mortality analysis, we identified stron-
ger associations between high temperatures and respiratory
mortality than for natural and cardiovascular mortality. This
finding is consistent with other studies that reported that ex-
posure to high temperature episodes can exaggerate the lung
function of patients with chronic respiratory diseases and can
lead to death (Guo et al. 2012; Seposo et al. 2015). Despite the
low mortality rate for respiratory disease in this study, our
findings may be of great significance from a public health
point of view. In the sub-group analyses, our results showed
that the elderly are vulnerable for a short period of time (with
significant risk at lag 0–3). Previous research found that the
elderlies were at a higher risk of mortality with high

Table 3 The cumulative relative
risks of extreme cold temperature
(25.2 °C) and extreme hot
temperature(30.2 °C) effects
relative to minimum mortality
temperature (28.2 °C) along the
lag days for natural mortality
stratified by age and gender
groups. Bold represents
statistically significant data at
p<0.05

Lag (days) 0–3 0–7 0–14 0–21

Cold effect

Men 0.92 (0.84, 1.01) 0.98 (0.86, 1.11) 1.06 (0.88, 1.27) 1.04 (0.82, 1.33)

Women 0.83 (0.74, 0.94) 0.87 (0.73, 1.03) 0.98 (0.77, 1.25) 1.35 (0.96, 1.84)

Child 0.84 (0.65, 1.08) 0.95 (0.68, 1.34) 1.08 (0.66, 1.75) 1.07 (0.56, 2.02)

Adult 0.86 (0.77, 0.96) 0.90 (0.78, 1.05) 0.95 (0.76, 1.17) 1.11 (0.83, 1.47)

Old 0.88 (0.79, 0.98) 0.91 (0.78, 1.05) 1.07 (0.87, 1.33) 1.22 (0.92, 1.61)

Hot effect

Men 1.03 (0.94, 1.13) 1.04 (0.92, 1.18) 1.11 (0.93, 1.32) 1.07 (0.85, 1.35)

Women 1.21 (1.08, 1.34) 1.23 (1.07, 1.42) 1.18 (0.96, 1.44) 1.14 (0.87, 1.50)

Child 0.97 (0.76, 1.23) 0.91 (0.67, 1.24) 1.08 (0.69, 1.67) 1.57 (0.87, 2.84)

Adult 1.02 (0.95, 1.10) 1.08 (0.98, 1.19) 1.08 (0.94, 1.24) 1.01 (0.84, 1.23)

Old 1.15 (1.03, 1.27) 1.12 (0.98, 1.29) 1.17 (0.96, 1.41) 1.13 (0.87, 1.47)

Table 4 Relative risk of extreme
cold and extreme hot
temperatures on all-cause
mortality compared with the
minimum mortality temperature,
without and with adjustment for
air pollution levels. Bold
represents statistically significant
data at p<0.05

Confounding factor Natural Cardiovascular Respiratory

Cold effect

Without air pollution 1.15 (0.95, 1.38) 1.09 (0.79, 1.49) 1.46 (0.83, 2.69)

With surface O3 1.16 (0.96, 1.39) 1.09 (0.79, 1.47) 1.46 (0.82, 2.67)

With PM10 1.17 (0.97, 1.41) 1.08 (0.79, 1.47) 1.47 (0.78, 2.55)

With surface O3 and PM10 1.17 (0.97, 1.41) 1.08 (0.79, 1.48) 1.48 (0.77, 2.64)

Hot effect

Without air pollution 1.08 (0.90, 1.29) 1.31 (1.14, 1.79) 1.33 (0.81, 2.20)

With surface O3 1.08 (0.91, 1.90) 1.32 (1.16, 1.80) 1.33 (0.80, 2.18)

With PM10 1.10 (0.92, 1.31) 1.32 (1.15, 1.80) 1.35 (0.85, 2.34)

With surface O3 and PM10 1.10 (0.93, 1.32) 1.33 (1.16, 1.80) 1.36 (0.84, 2.32)
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temperatures (Yu et al. 2012; Thorsson et al. 2014; Li et al.
2019; Kolvir et al. 2020). The elderlies are known to be less
able to adapt physiologically or to respond to changes in en-
vironmental temperatures (Guo et al. 2014; Liu et al. 2020).
Regarding gender-specificity, our study found that women
were more susceptible to high temperatures than cold temper-
atures compared to men, which is similar to the results obtain-
ed from previous studies (Seposo et al. 2015; Liu et al. 2020).
However, there are some studies that have reported that men
either are at greater risk or have the same risk level as women
(Ban et al. 2017; Zhai et al. 2021). These varying results on
gender-specificity may be attributed to socioeconomic factors
and geographical context (Hajat et al. 2005; Ban et al. 2017)

Conclusions

This study examined the effects of temperature on cause-
specific mortality (natural, cardiovascular, and respiratory dis-
eases) in the Klang Valley, Malaysia. Themain findings of the
study are that both high (hot) and low (cold) temperatures
were associated with all mortality categories at a minimum
mortality temperature (MMT) of 28.2 °C. The effects of low
temperatures were delayed (12–14 days), while high temper-
ature effects appeared acute with both high and low tempera-
ture effects lasting for several days. Furthermore, extremely
high temperatures were shown to have greater risks than ex-
tremely low ones. People with respiratory diseases, women,
and the elderly were the most vulnerable to extreme tempera-
tures with heat-related mortality risks increasing by 42%,
23%, and 15%, respectively. Adjustment of the model with
major air pollutants in a tropical environment, PM10, and sur-
face O3 from this study did not influence the mortality risk rate
due to extreme temperature.

These findings may provide strong evidence to aid the rel-
evant agencies and local government in the development of
strategies and policies which effectively tackle and reduce
temperature-related mortality risks. This is especially impor-
tant when countries, such as Malaysia, encounter climate
change events, particularly those relating to extremely high
temperatures or heatwaves. However, our findings must be
interpreted with consideration to the strengths and limitations
of our study. One of the key strengths of this study is that we
used 10 years’ worth of high-quality data (with no missing
data for mortality) and adjusted it for a range of confounders
including relative humidity and air pollution. In addition, we
investigated the temperature-mortality association on individ-
ual characteristics and vulnerable subgroups including the
cause of death (natural, cardiovascular, and respiratory mor-
tality), age-specific groups, and gender. Our study also had
some limitations. One of the main ones being that we only
used data from three locations in the Klang Valley (the central
region of the Malaysia Peninsular) to examine the effects of

temperature on mortality, so the findings may be difficult to
generalize to other rural/urban areas. However, previous stud-
ies suggest that daily average temperatures were highly corre-
lated between the stations and no evidence of a high spatial
variability between temperature monitoring stations in
Malaysia was found (Tangang et al. 2012; Le Loh et al.
2016). Furthermore, while the relatively small number of
deaths due to cause-specific diseases may on the one hand
have limited our ability to identify the different effects of
temperature on cause-specific mortality, they would not have
substantially affected our main findings. Finally, as we de-
rived air pollution data from fixed monitoring sites and cannot
completely represent the actual individual exposure, there
might be inevitable assessment errors. Further investigation
on the influence of these factors, including the use of other
air quality parameters such as fine particle (PM2.5) and other
gases aside from O3 which are influenced by urban transpor-
tation, power plant, and biomass burning, will allow us to
better refine the temperature-mortality relationship in
Malaysia.
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