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Abstract
This study first attempts to use the parameterized quadratic directional distance function (DDF) approach to calculate China’s
provincial carbon abatement cost and carbon reduction potential (CRP) under different scenarios from 2000 to 2017. Afterward,
considering three different scenarios, we analyze the spatio-temporal characteristics and the dynamic evolution pattern of CRP.
We also employ spatial Durbin model (SDM) to investigate the influencing factors of CRP. The results are obtained as follows:
(1) CRP across the three scenarios varies considerably across provinces and different-located groups. CRP higher areas are
mainly located in the economically developed eastern coastal regions, while most provinces with low CRP are concentrated in the
western region. (2) Provinces with a similar CRP showed a significant geographic agglomeration, and the agglomeration effect
was strengthened first and then weakened. Simultaneously, the local spatial distribution of moderation carbon reduction potential
(MCRP), fairness carbon reduction potential (FCRP), and efficiency carbon reduction potential (ECRP) shows a slight spatial
polarization feature. (3) Through the SDM analysis and spillover effect decomposition, we find that improvement of regional
CRP not only depends on economic development, industrial structure adjustment, and energy efficiency elevation, but also
involves energy structure optimization, low-carbon innovation, and population. The low-carbon innovation provides critical
support for local CRP under the efficiency scenario but restrains the local CRP under the fairness scenario. Therefore, the central
government should emphasize local conditions and the ex-ante scenario assessment, strengthen regional interactive governance,
optimize energy efficiency, and promote the application of clean energy to enhance CRP.
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Introduction

Economic development has always been closely related to
natural resource consumption (Song et al. 2019). Extensive
resource utilization has brought about serious ecological dam-
age and environmental consequences. Over the past 40 years,
China has experienced rapid economic growth and the speedy
growth of energy demand, but the contradiction between re-
source environmental constraints and economic development
has become increasingly prominent (Wei et al. 2020; Zhang

et al. 2020b). Faced with the severe challenge of environmen-
tal sustainability, the Chinese government has taken many
measures to promote green low-carbon development. For ex-
ample, China has pledged to reduce CO2 emissions per unit
GDP by 60–65% in 2030 compared with 2005 levels at the
2015 Paris climate conference (Chen et al. 2019).
Furthermore, the government reiterated that China would in-
crease its nationally determined contribution, strive to reach
the carbon peak by 2030, and achieve “carbon neutrality” by
2060 at the 75th UN General Assembly. Innovation-driven
and green, zero-carbon-oriented industrial changes have be-
come the vane of China’s modern economic system.
However, China has a vast territory, and there are significant
interregional differences in resource endowments, industrial
structures, and economic development, which will inevitably
lead to differences in the spatial distribution of carbon reduc-
tion potential (CRP) in the process of green low-carbon de-
velopment (Guo et al. 2011; Wang et al. 2019; Liu et al.
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2020). Understanding regional heterogeneity in air pollution
management is critical to field-oriented governance (Choi
et al. 2020). Therefore, to provide a theoretical basis for
achieving high-efficiency carbon emission reduction in
China, it is imperative to accurately grasp the evolutionary
characteristics of CRP and its driving factors.

In fact, exploiting carbon emission reduction potential and
exploring new green low-carbon development paths are com-
mon concerns worldwide. A low CRP would construct a sig-
nificant barrier to environmental sustainability in developed
and developing countries. Considerable existing studies have
analyzed the carbon reduction potential on energy efficiency
improvement in individual or a small number of regions,
which is mainly in a single nation (Zuberi and Patel 2017),
the region with high energy demand (Wei et al. 2015) and
heavy industrialization (Liu et al. 2020; Huang and Wu
2021), or the specific industrial sector characterized by high
carbon emissions (An et al. 2018; Chen and Chen 2019; Xia
et al. 2020). Those studies all found that enormous energy-
efficiency potential can be increased through technology im-
provement and encourage policy implementation. Among all
of them, several studies revealed that it is better to implement
differentiated emission reduction policies in different areas
according to the local energy resource endowment and facil-
itate regional cooperation (Zhang et al. 2016; Chen et al.
2021). In the current study, there is still a knowledge gap
about how to make effective emission reduction policies and
increase regional carbon emission potential from the perspec-
tive of policymakers. Thus, analyzing the spatial-temporal
evolution of CRP at the provincial level is critical to help
policymakers formulate reasonable mitigation policies for car-
bon emissions by considering regional situations. However,
little literature has shed light upon the spatial-temporal evolu-
tion features and the key driving factors of CRP in a develop-
ing country. With the improvement of status in the world
economy and fossil energy field (Wei et al. 2020), China’s
CRP spatio-temporal evolution characteristics and influencing
factors are a vital epitome for other developing countries.
Under such a circumstance, it is critical to estimate the pro-
vincial CRP and explore energy efficiency improvement path
in China.

This paper attempts to use the parameterized quadratic
function of the directional distance function (DDF) approach
to estimate the carbon abatement costs and evaluate the pro-
vincial CRP through setting three different scenarios. This
paper contributes to current literature in 3 ways. First, this
study innovatively evaluates the provincial CRP from the per-
spective of policymakers’ preferences. Few studies have ex-
amined the carbon emission reduction potential in China from
the perspective of policymakers’ preferences against this
background up to now. Moreover, differing from the existing
literature about the carbon emission reduction potential (Wei
et al. 2012; An et al. 2018), the purpose of this paper is to

analyze each province’s CRP and help the government make
appropriate regional environmental policies aimed at increas-
ing carbon emission reduction potential, rather than how to
allocate CO2 abatement responsibility among provinces or
how much CO2 should be reduced. Second, we analyze the
spatial-temporal evolution characteristics and the dynamic
evolution pattern of CRP and clarify the heterogeneous char-
acteristics of CRP under three different scenarios. Third, we
employ the spatial econometric model to investigate the
CRP’s influencing factors in China, while spatial econometric
models are rarely used to study the influencing factors of CRP.
The previous study generally assumed that inter-jurisdiction
regions were cross-section independent so that spatial interac-
tion effects were ignored (Wang et al. 2019). In addition,
LeSage (2008) argued that a local province’s characteristics
might depend on its neighbors; econometric models without
considering the spatial dependence of variables often lead to
inaccurate results. Therefore, our research evaluates the
changes in Chinese provinces’ CRP and the effects of related
factors on CRP more accurately since 2000, which can pro-
vide more reference for policymakers to stimulate the poten-
tial of regional low-carbon transformation.

The rest of the paper is structured as follows. “Literature
review” presents the related literature. “Methodology and da-
ta” describes the CRP measurement approach, the DDF, spa-
tial economic models, variable selection, and data sources.
“Spatio-temporal evolution characteristics of carbon reduction
potential” presents the spatio-temporal characteristics and the
dynamic evolution pattern of CRP under different scenarios.
The empirical results are reported in “Empirical results” sec-
tion. “Conclusions and policy implications” summarizes and
provides the corresponding policy implications.

Literature review

Since scholars have gradually realized the importance of re-
sources and the environment for human survival and sustain-
able economic development, they have incorporated the envi-
ronment as an essential factor into the economic research
framework (Yang et al. 2021). In the subsequent research,
many early studies mainly investigated energy-related carbon
emissions and its influencing factors (Zhang and Da 2015;
Shen et al. 2018), the law of spatio-temporal evolution (Shi
et al. 2014; Ding et al. 2019; Wu et al. 2021b), and driving
mechanism (Tian et al. 2013; Jiang et al. 2017). In recent
years, an increasing number of studies have discussed the
carbon emission reduction cost and reduction potential world-
wide (Guo et al. 2011; Chen and Xiang 2019; Raza and Lin
2020).

This section reviews the existing literature on the carbon
emission reduction potential from the three aspects: measure-
ment of the abatement cost, the concept of the carbon emission
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reduction potential, and evaluation of the carbon emission
reduction potential.

Research on carbon abatement cost measurement

Shadow prices provide a critical way to estimate the marginal
abatement cost of undesirable outputs (Zhou et al. 2014). In
literature related to the marginal abatement costs, most
existing studies generally focused on estimating shadow
prices at the national (Lee 2011; Molinos-Senante and
Guzmán 2018), regional (Tang et al. 2016b; Zeng et al.
2018; Chen and Jin 2020), or sector level (Wang et al. 2017;
Chen and Xiang 2019; Wu et al. 2021c). In previous studies,
various methods were employed to estimate the shadow price
of pollutants. Färe et al. (1993) first derived the shadow price
of undesirable outputs based on the Shephard output distance
function. Lee et al. (2002) estimated the shadow prices of
sulfur oxides (SOx), nitrogen oxides (NOx), and total
suspended particulates (TSP) by formulating the non-
parametric production model specific to the directional dis-
tance function for the case of a single good output and
pollutant. Ke et al. (2008) used the linear programming (LP)
approach to compute the shadow prices of SO2 emissions in
China during the 1996–2003 period and found that the
shadow price in the west region is the highest. Wei and
Zhang (2020) estimated the shadow price of CO2 and SO2

by developing a novel partial frontier construction approach
that allows the frontier to be differentiable and measured the
cost of joint reduction of multiple undesirable outputs by
using directional derivatives instead of partial derivatives
firstly. Zhang et al. (2020a) applied the dual non-radial DDF
to measure the shadow price of the three main atmospheric
pollutants (PM2.5, SO2, and NO2) for the three major urban
agglomerations in China. Wu et al. (2021a) adopted the non-
oriented DDF and slack-based measure (SBM) models to es-
timate the shadow prices of SO2 and chemical oxygen demand
(COD).

The estimation of the carbon shadow price shares the same
shadowing pricing procedure as other greenhouse gases,
which shifted scholars’ attention to estimating carbon shadow
price (Zhou et al. 2014). As for literature concerning the car-
bon abatement cost measurement, there are, for instance, Choi
et al. (2012) who employed the dual model of the slack-based
data envelopment analysis (DEA)model to estimate the abate-
ment costs of CO2 emissions.Wang et al. (2011) estimated the
marginal CO2 abatement costs in China with the framework of
the non-parametric method. Nevertheless, the non-parametric
DEA technique is not well-suited to derive the shadow prices
due to its non-differentiability (Färe et al. 2005; Yang et al.
2017). By contrast, the DDF is thought to provide a more
flexible method to evaluate the CO2marginal abatement costs.
The related studies include Tang et al. (2016a), Zhang et al.
(2019b), and Ji and Zhou (2020), among others. Furthermore,

the quadratic DDF model might be more suitable for a sample
that faces mandatory CO2 emission reduction or prefers to
conduct voluntary CO2 emission reduction (Zhou et al.
2015). Therefore, the quadratic DDF model has been widely
employed to evaluate carbon abatement costs in recent years.

Research on carbon emission reduction potential

The CRP has different connotations. The existing studies on
defining the carbon dioxide reduction potential from different
perspectives can be mainly classified into three categories
according to their results. The first strand of literature mainly
focuses on the differences in emission reduction of different
electricity structure vehicles in the transportation sector. For
example, Ketelaer et al. (2014) explored the CO2 mitigation
potential of German commercial transport based on the differ-
ence of CO2 emissions from conventional to electric light
commercial vehicles. Zhang et al. (2019a) used the backward
analysis to calculate the proportion limit of coal power con-
sumption by urban rail transit and then analyze the emission
reduction potential of rail transit under different combinations
of electricity consumption structures.

The second strand of literature defines the gap between the
CO2 emissions for the base year and the estimated year under
different scenarios as the CO2 emission reduction potentials of
various sectors. For instance, Lin and Xie (2014) calculated
the carbon mitigation potential in China′s transport industry
under moderate and advanced emission-reduction scenarios.
Lin and Ouyang (2014) investigated the reduction potential of
CO2 emissions in the Chinese non-metallic mineral product
industry by setting three scenarios. Yu et al. (2016) estimated
the carbon abatement potential of China’s 43 economic sec-
tors by describing two scenarios, business as usual (BAU) and
planned policy. An et al. (2018) relied on four scenario anal-
yses with the aim to estimate the potential of CO2 emission
reduction in the iron and steel industry in China.

The third strand of literature defines the inefficiency level
or excesses of carbon dioxide emissions as the CO2 emission
reduction potentials. For example, Choi et al. (2012)
employed the non-radial SBM framework to measure the ex-
cesses of undesirable output, and they defined the room for
improvement in carbon emissions as the CO2 emission
reduction. Wei et al. (2012) established that the abatement
potential of CO2 reflects the inefficiency level of carbon diox-
ide emission during the production process; the study expect-
ed that the richer provinces are normally accompanied by
lower CO2 abatement potential.

There exists enormous potential for China to improve its
atmospheric environment (Choi et al. 2020). Several scholars
have devoted themselves to evaluate the carbon emission re-
duction potential in China by using the non-parametric DEA
approach. For example, using the DEA model, Guo et al.
(2011) evaluated the carbon emission reduction potential in
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Chinese provinces, revealing that energy conservation tech-
nology promotion and inter-regional technical cooperation
can reduce carbon emissions in technically inefficient regions.
Further, various extensions of the basic DEA models have
been proposed for estimation. Bian et al. (2013) took non-
fossil energy as a fixed input and proposed a non-radial
DEA approach combining energy structure adjustment and
DEA-based target setting together to measure potential CO2

emission reductions. Choi et al. (2012) employed the SBM of
the non-radial DEA model to develop the potential CO2 emis-
sion reduction (PCR) index. In addition, one special case is
Wei et al. (2012), who take both equity and efficiency princi-
ples into account in evaluating CO2 abatement capacity.
However, it is different from our research. Specifically, we
estimate CRP depends on the policymakers’ preferences to
analyze each province’s CRP, rather than how to allocate
CO2 abatement among regions or how much CO2 should be
reduced.

As discussed above, scholars have conducted extensive
studies on the concept and evaluation of CRP and found that
many regions/sectors have the potential to reduce carbon emis-
sions (Akimoto et al. 2010; Zhu et al. 2020), but still need
further exploration. First, existing literature mainly focuses on
the excesses of carbon emissions, rather than a comprehensive
evaluation system that includes policymakers’ preferences,
which may lead to an incomplete understanding of the regional
CRP. Thus, it must be further explored with additional dimen-
sions and based on the policymakers’ preferences. Second,
there is a lack of discussion on the spatial-temporal character-
istics of CRP and its influencing factors. Finally, scholars main-
ly focus on the difference between the CO2 emissions for the
base year and the estimated year, but ignore the spatial factors.

Therefore, this paper attempts to provide a comprehensive
evaluation of the CRP in 30Chinese provinces by setting three
different scenarios based on Wei et al. (2012) and clarify its
determinants. This study also analyzes the spatio-temporal
evolution characteristics of CRP under three scenarios.
Then, we use the Moran I index to test whether there is spatial
autocorrelation of CRP in various provinces. Lastly, based on
the theoretical basis of the STIRPAT model, this study con-
structs the spatial econometric model of regional development
factors to investigate the effects of each factor on CRP and
estimates the spatially divergent features, with the purpose of
providing theoretical support for making policy of promoting
regional carbon reduction.

Methodology and data

Measuring the carbon reduction potential

This paper uses a two-step approach to estimate the CRP
under three scenarios from 2000 to 2017 in the study. First,

we apply the parameterized quadratic function of the DDF
method to estimate the carbon shadow price in 30 Chinese
provinces from 2000 to 2017. Second, considering three dif-
ferent scenarios differentiated by different policy preferences,
we evaluate CRPs (MCRP, FCRP, and ECRP) since 2000.
Following the idea of Wei et al. (2012), the calculation of
the CRP index is shown in formula (1):

CRP ¼ w� Equityit þ 1−wð Þ � Efficiencyit ð1Þ
where w is weight reflecting the policymakers’ preferences;
provincial CRP are evaluated via three scenarios differentiated
by policy preferences,w = 1/2 under moderation scenario,w =
2/3 under fairness scenario, and w = 1/3 under efficiency sce-
nario. Equityit and Efficiencyit are the index of the develop-
ment equity and carbon abatement efficiency of province i in
year t, respectively. In terms of the development equity index,
per capita regional carbon emissions and per capita GDP in-
dicators are both highly recognized fair distribution indicators
(den Elzen and Lucas 2005; Pan et al. 2017), in which the
former can reflect the equal development rights of the region,
and the latter can reflect the ability of the region to pay. Thus,
we calculate Equityit by weighting per capita regional carbon
emissions and per capita GDP indicators. These two indicators
are given equal importance. In terms of the carbon abatement
efficiency index, this paper selected carbon emission intensity
and carbon abatement cost to reflect the overall efficiency of
carbon emission reduction, in which carbon emission intensity
is often used to reflect carbon emission efficiency (Sun 2005;
Zhang and Wei 2015), and the carbon marginal abatement
cost reflects the difficulty level of pollutant reductions (Färe
et al. 2006). These two indicators are given equal importance.
Areas with high carbon emission intensity and low marginal
emission reduction costs can be identified as key pollution
reduction areas in practice. All variables are normalized by
the “Min–Max” method.1

Scenarios analysis assumption

The CRP is a kind of objective reflection related to regional
economic development and resource endowments, as well as
policymakers’ own subjective constraints, as the
policymakers’ tolerance of regional inequity in carbon emis-
sions impacts carbon emission reduction pressure (Chen et al.
2016). Most existing literature has constructed a comprehen-
sive indicator system encompassing capability, equity, and
responsibility (Qin et al. 2017; Dong et al. 2018; Ma et al.
2020), which results in a new research angle that includes both
fairness and efficiency simultaneously. Thus, this paper con-
ducts the evaluation of provincial CRP via three scenarios

1 The “Min–Max” normalization method converts zi to si by Si = (zi −min z)/
(maxz − min z). The variable of the carbon shadow price is reverse
transformed.
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differentiated by policy preferences. In line with Wei et al.
(2012), we set three scenarios as follows: (i) moderation
scenario, of which fairness and efficiency of carbon emission
reduction responsibilities are equally important. A moderation
scenario reflects the possible situation; however, the purpose
of a moderation scenario is not to provide precise estimates of
the regional reduction potential conditions but to clarify the
significant factors that contribute to regional carbon emission
reduction in the future. Besides, it is the benchmark for setting
the other two scenarios; (ii) fairness scenario, of which
policymakers more focus on the fairness of allocating respon-
sibilities for carbon reduction; and (iii) efficiency scenario, of
which policymakers pay more attention to carbon reduction
efficiency; the province has a higher (lower) capacity to un-
dertake more (less) reduction burden. The main advantage of
the scenario analysis is that we can have a relatively accurate
examination and a comprehensive analysis on the spatio-
temporal distribution of CRP. These features could yield valu-
able information to policymakers, helping them design better
regional environmental policies compatible with low-carbon
development.

Measuring the carbon shadow price

The DDF, developed initially by Shephard (1970) and applied
by Färe et al. (1993) in empirical fields, has gained tremen-
dous popularity in measuring the abatement cost of pollutants
owing to its flexibility. The distance function does not require
any assumptions concerning cost minimization or revenue
maximization and information on input or output prices. The
DDF method allows researchers to simultaneously expand
desirable outputs and reduce undesirable outputs based on a
given direction vector (Chung et al. 1997). Thus, this paper
uses the parameterized quadratic function of the DDF to esti-
mate the carbon shadow price before calculating the CO2

abatement efficiency index. Following the idea of Chung
et al. (1997) and Färe et al. (2005), the directional output
distance function can be defined as follows:

D
!

x; y; b; gy;−gb
� �

¼ max β : yþ βgy; b−βgb
� �

∈F xð Þ
n o

ð2Þ

where (gy, −gb) is the direction vector that indicates the direc-
tion by which the output combination is scaled. Moreover, we
assume a joint-production process in which each observation
uses a non-negative vector of inputs denoted as x to produce a
non-negative vector of desirable outputs denoted as y and a
non-negative vector of undesirable outputs denoted as b.
Then, production technology can be represented by the output
possibility set F(x)={(y, b): x can produce y, and b} describing
the set of feasible input-output vectors.

In line with Chung et al. (1997), this paper chooses g = (1, ‐
1) as the direction vector to simplify the parameter estimation
and satisfies the translation property of the DDF. In addition,
we assume that there are i = 1,…, 30 provinces in t = 1,…, T
years, three inputs (capital, energy consumption, and labor),
one desirable output (GDP), and one undesirable output (car-
bon emissions). The parametric quadratic directional output
distance function form can be shown as follows:
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Following Aigner and Chu (1968), this study uses a deter-
ministic linear programming model to estimate the parameters
(α0;αn;αnn0 ; δn; νn;β2; γ2;μ ). The constraint conditions
cover the feasibility, monotonicity, translation property, and
symmetry property of distance function (Färe et al. 2006),
which takes the following Eq. (4):
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where the restriction (i) ensures the input-output production
set is feasible. The constraint conditions (ii), (iii), and (iv) are
due to the monotonicity property for undesirable outputs, de-
sirable outputs, and all inputs, respectively. The parameter
restrictions given by (v) are due to the translation property.
The last restriction (vi) imposes the symmetry property.

Once the parameters are estimated, we can apply Shepard
derivation to derive the relationship between the undesirable
output price q and the desirable output p (see Eq. (5)).

q
p
¼ −

∂D! x; y; b; gy; gb
� �

=∂b

∂D! x; y; b; gy; gb
� �

=∂y

¼ −
γ1 þ γ2bþ ∑3

n¼1νnxn þ μy

β1 þ β2bþ ∑3
n¼1δnxn þ μb

ð5Þ
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Measuring the carbon emission

Carbon emissions of Chinese provinces need to be calculated
before calculating the CO2 abatement efficiency index.
According to the IPCC Guidelines for the national reduction
potential of pollutant inventories (IPCC 2006), the total fuel-
based carbon emissions are estimated according to the follow-
ing formula (6):2

CEi ¼ ∑
17

m¼1
ECim � NCVim � CCim � Oim � 44

12
ð6Þ

where CEi denotes energy-related carbon emissions by fossil
fuel’s category m in province i, ECimis the consumption of
fossil fuels m, NCVim, CCim, and Oim respectively denote net
calorific value3, carbon content, and oxygenation efficiency
(Liu et al. 2015).

Measuring the dynamic evolution characteristic

Kernel density estimation (KDE) is an essential non-
parametric estimation method used for point data density vi-
sualization, which can describe the actual data distribution
based on the data’s intrinsic attributes without needing any
prior information. Therefore, this paper employs KDE to an-
alyze the dynamic evolution of CRP in China. The KDE can
be defined as:

bf ¼ 1=nhð Þ∑n
i¼1K r−Rið Þ=hð Þ ð7Þ

where bf denotes the kernel density value; h denotes the band-
width of KDE; K(r) represents the Gaussian kernel function,
which is expressed in Eq. (8); r represents the estimating site;
and Ri represents the number i sample site.

K rð Þ ¼ 1=
ffiffiffiffiffiffi
2π

p� �
� exp −r2=2

� � ð8Þ

Spatial econometric model

Spatial autocorrelation model at the global level

To test whether there is a spatial autocorrection in provincial
CRP, we adopt the global Moran I index to examine the

spatial correction of CRP in 30 Chinese provinces. The spatial
autocorrelation index is calculated by Eqs. (9) to (11):

I ¼
∑
n

i¼1
∑
n

j≠i
Wij Y i−Y

� �
Y j−Y

� �

S2 ∑
n

i¼1
∑
n

j¼1
Wij

ð9Þ

S2 ¼ 1

n
∑
n

i¼1
Y i−Y

� �2
ð10Þ

Y ¼ 1

n
∑
j

i¼1
Y ð11Þ

where I represents the index of global spatial autocorrelation;
Yi and Yjrepresent the values of CRP in province i and j; n
represents the total number of provinces; and Wij represents
the spatial weight matrix; this paper sets 30 provinces with
neighbors that could be adjacent; Wij=1 if two provinces are
neighbors; otherwise,Wij=0. The value range of Moran I is [-
1,1], I < 0 indicates that there is a negative spatial autocorre-
lation, and I > 0 indicates that there is a positive spatial
autocorrelation.

Spatial autocorrelation model at the local scale

This paper uses the local spatial autocorrelation proposed by
Anselin (1995) to explore the statistically significant spatial
clusters and dispersion of the provincial CRP. The local
Moran I index can be calculated using Eq. (12):

I i ¼ Y i−Y
S2

∑
n

j¼1 j≠i
Wij Y j−Y

� �
ð12Þ

whereIirepresents the local Moran I, and the other symbols
represent the same as in Eqs. (9) to (11). When Ii is signifi-
cantly positive, it indicates that there exists local positive spa-
tial autocorrelation, and the province is surrounded by prov-
inces with similar properties. When the province and its adja-
cent provinces are all found with a high value of CRP, it is
called high-high (H-H) agglomeration; otherwise, it is called
low-low (L-L) agglomeration. When Ii is significantly nega-
tive, it indicates that there exists spatial discretization. When
the province with a high value of CRP is surrounded by prov-
inces with low value, it is called high-low (H-L) agglomera-
tion; otherwise, it is called low-high (L-H) agglomeration.

Spatial panel model

The spatial panel model predominantly includes the spatial lag
model (SLM), spatial error model (SEM), and spatial Durbin
model (SDM). As a general form of SLM and SEM, SDM
considers the spatial correlation of dependent variables and
independent variables simultaneously. SLM mainly explores

2 Different from considering 7 energy types, it is found that the measurement
accuracy is significantly improved after supplementing ten types of energy
consumption data by constructing the accuracy improvement rate index; the
results are presented as supplementary material.
3 Liu et al. (2015) pointed out that the carbon emission factor in the IPCC
report is approximately higher than the value in China’s “United Nations
Framework Convention on Climate Change (UNFCCC)” report. Therefore,
we use the net calorific value provided in the China Energy Statistical
Yearbook, which is more suitable for China’s national conditions.
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whether the independent variables in a region are affected by
the dependent and independent variables in adjacent regions.
Therefore, this study chooses SDM to examine the geograph-
ical space feature of CRP under moderation, fairness, and
efficiency scenarios. The model is constructed as follows:

CRPit ¼ αþ ρ ∑
n

j¼1
WijCRPjt þ βX it þ θ ∑

n

j¼1
WijX jt þ εit ð13Þ

where Xit represents the independent variables;Wij is the spa-
tial weight matrix; ∑n

j¼1WijCRPjt,∑n
j¼1WijX jt denote the spa-

tial lag terms of the dependent variableCRPitand independent
variables, which allows us to investigate the spillover effects
of different variables;ρ is the spatial lag autoregressive coeffi-
cient; β is the estimated coefficient of the independent vari-
able; θ represents the coefficient of the space-lag term of the
independent variable; and εit is a random perturbation term.

Variables and data

Variable selection in measuring carbon reduction potential

In terms of the variables in measuring carbon shadow price,
input indicators are capital, labor force, and energy consump-
tion. Besides, the actual GDP was adopted as a desirable out-
put indicator, and carbon emissions were determined as an
undesirable output indicator (see Table 1). In terms of the
variables in measuring the CRP, we select per capita regional
carbon emissions and per capita GDP to construct the devel-
opment equity index. Besides, we select carbon emission in-
tensity and carbon shadow price to construct the carbon abate-
ment efficiency index (see Table 2).

Influencing factors of carbon reduction potential

Many factors influence CRP. Existing studies combined
with the STIRPAT model show that population, eco-
nomic development, industrial structure, research and
development (Dietz and Rosa 1994; Cheng et al.
2020), energy structure (Yu et al. 2018), and energy

efficiency are the main factors influencing carbon emis-
sion. On the basis of the work of Shahbaz et al. (2016),
the increase in domestic openness will attract more for-
eign investments and high energy demand for produc-
tion (Wang and Zheng 2020), so we also consider open-
ness and employ the ratio of total import and export to
GDP to represent it, in which the total import and ex-
port volumes are converted into RMB. Thus, we select
population size, economic development, industrial struc-
ture, low-carbon innovation, energy structure, energy ef-
ficiency, and economic opening rate as explanatory var-
iables to analyze the influencing factors of CRP (see
Table 3).

It is worth noting that low-carbon innovation plays a vital
role in the process of carbon reduction (Zhang et al. 2017; Du
et al. 2019). The government could realize the emission re-
duction target by deploying clean energy technologies and
encouraging investments in low-carbon projects (Jordaan
et al. 2017). Considering patent data provide a number of
valuable information on the patent’s technological content
and citations, patents are still the most commonly used proxy
for studying innovation activities in the scientific literature
(Park 2014; Albino et al. 2014). Besides, combined patent
classification (CPC), jointly promulgated by the European
Patent Office and the United States Patent Office, has become
one of the most popular patent classification systems since
2013 (Wang et al. 2020). The Y02 section in the CPC system
includes patents for technologies or applications that mitigate
or adapt to climate change. Thus, here, we use the number of
CPC-Y02 patent applications to represent low-carbon innova-
tion in different Chinese provinces; then, we collect the data of
patent applications from the IncoPat database4. To avoid
heteroscedasticity and consider the low amount of low-
carbon innovation applications in some regions, this study
takes the logarithm of the number of patent applications plus
one as the proxy variable.

Table 1 Input-output indicators
Indicators Category Specific indicators

Input indicators Labor Total number of the year-end employees

Energy
consumption

Total energy consumption and is converted into standard coal
equivalent

Capital Fixed asset investment*

Output
indicators

Desirable output The actual GDP and is converted into the 2000 base period price

Undesirable output Carbon emissions calculated by Eq. (6)

* The capital input variable was calculated by the perpetual inventory method based on the 2000 base period fixed
asset investment of each province

4 http://www.incopat.com
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Data sources

We collect data frommany official sources. Such as the China
Statistical Yearbook (2001-2018), the China Energy
Statistical Yearbook (2001-2018), the China Environmental
Statistics Yearbook, the Statistical Yearbook of each province
(2001–2018), and the National Bureau of Statistics official
website database (2001–2018). The number of patent applica-
tions was obtained from the Incopat patent search platform,
and the search scope is in the low-carbon field applied for in
the China Patent Office (SIPO) from 2000 to 2017. Based on
data availability, this paper excludes Hong Kong, Macao,
Taiwan, and Tibet due to its data that are missing. In summa-
ry, the data sample comprises panel data from 30 provinces
and 18 years, which produces a balanced panel with 540
observations.

Spatio-temporal evolution characteristics
of carbon reduction potential

Temporal characteristics of carbon reduction
potential

Time series characteristics of carbon reduction potential

This paper conducts a temporal analysis of data to explore the
Spatio-temporal differences and changes of CRP. We use
MATLAB software to classify and summarize the CRP and
ranking of various provinces in China. We select 2001, 2006,
2008, 2011, and 2017 as typical years5. In addition, the
Chinese mainland is divided into three groups (eastern, cen-
tral, and western) to analyze the regional variations of average
CRP under moderation (Table 4), fairness (Table 5), and effi-
ciency (Table 6) scenarios.

There are differences in the CRP among different
provinces/regions under three different scenarios:

(i) Moderation scenario. The average MCRP in all regions
decreased from 0.334 in 2001 to 0.312 in 2017, decreased

significantly from 2006 to 2008, but volatility increased
between 2008 and 2017. In terms of subregions, the
MCRP in the three regions has been increasing first and
then gradually decreasing. The average MCRP in the
eastern region is higher than that of the other two regions.
The average growth rate of MCRP was found the lowest
in the eastern region, followed by the central and the
western regions, with average annual growth rates of
0.10%, 1.40%, and 1.80%, respectively. In terms of prov-
inces, the provinces Shanxi, InnerMongolia, and Ningxia
were ranked as the top three places for the averageMCRP
with values of 0.534, 0.431, and 0.418, respectively.
However, the bottom three provinces for the average
MCRP were Guangxi, Hainan, and Jiangxi, with values
of 0.213, 0.221, and 0.222, respectively.

(ii) Fairness scenario. The average FCRP in all regions in-
creased from 0.251 in 2001 to 0.331 in 2017, decreased
quickly from 2006 to 2008, and increased from 2008 to
2017. In terms of subregions, the FCRP in the three
regions showed a fluctuating upward trend. The FCRP
in the eastern region was found the highest, followed by
the central and the western regions. The eastern region
had the fastest average growth rate of the three regions,
with average annual growth rates of 2.09%, 0.69%, and
0.52%, respectively. In terms of provinces, the provinces
Shanxi, Inner Mongolia, and Shanghai were ranked as
the top three places for the average FCRP with values of
0.471, 0.404, and 0.398, respectively. However, the bot-
tom three provinces for the average FCRP were
Guangxi, Jiangxi, and Yunnan, with values of 0.167,
0.175, and 0.180, respectively.

(iii) Efficiency scenario. The average ECRP in all regions
decreased from 0.417 in 2001 to 0.296 in 2017. In terms
of subregions, the ECRP in the three regions showed a
fluctuating downward trend. The ECRP in the eastern
region showed relatively lower degrees from 2000 to
2006, while it increased sharply and became the highest
after 2008. The average growth rate of ECRP was found
the highest in the eastern region, while the central and
the western regions exhibited negative growth, with av-
erage annual growth rates of 1.58%, − 2.94%, and −
3.56%, respectively. In terms of provinces, the prov-
inces Shanxi, Ningxia, and Inner Mongolia were ranked
as the top three places for the average ECRP with values

Table 2 Variables in measuring the CRP

Indexes Category Specific indicators

Development equity Per capita regional carbon emissions The ratio of carbon emissions to population

Per capita GDP The real GDP per capital

Carbon abatement efficiency Carbon emission intensity The ratio of carbon emissions to GDP

Carbon shadow price Carbon shadow price calculated by Eqs. (2)–(5)

5 The change trend plots of carbon reduction potential under moderation,
fairness, and efficiency scenarios between 2000 and 2017 are presented in
supplementary material.
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Table 4 China’s regional MCRP and ranking in 2001, 2006, 2008, 2011, and 2017

Region Province 2001 Rank 2006 Rank 2008 Rank 2011 Rank 2017 Rank Mean

Eastern Beijing 0.355 8 0.386 8 0.292 10 0.262 14 0.273 15 0.305

Tianjin 0.375 5 0.417 6 0.318 7 0.349 7 0.362 8 0.365

Hebei 0.337 12 0.378 9 0.315 8 0.346 8 0.295 12 0.335

Liaoning 0.382 4 0.418 5 0.350 5 0.389 3 0.375 6 0.384

Shanghai 0.395 3 0.441 4 0.375 3 0.381 4 0.417 3 0.396

Jiangsu 0.281 23 0.325 20 0.295 9 0.345 9 0.371 7 0.313

Zhejiang 0.273 27 0.328 18 0.285 11 0.305 11 0.308 10 0.284

Fujian 0.281 24 0.322 21 0.235 19 0.251 17 0.276 14 0.269

Shandong 0.293 19 0.345 14 0.328 6 0.373 6 0.381 5 0.336

Guangdong 0.256 30 0.311 25 0.283 12 0.317 10 0.324 9 0.283

Hainan 0.273 28 0.297 28 0.200 28 0.146 30 0.168 27 0.221

Mean 0.318 - 0.361 - 0.298 - 0.315 - 0.323 -

Central Shanxi 0.506 1 0.605 1 0.473 1 0.470 2 0.570 1 0.534

Jilin 0.335 13 0.359 12 0.254 16 0.255 16 0.234 18 0.284

Heilongjiang 0.345 11 0.369 10 0.282 13 0.288 12 0.261 16 0.309

Anhui 0.315 15 0.316 23 0.222 22 0.218 20 0.212 19 0.257

Jiangxi 0.286 22 0.302 27 0.193 29 0.171 27 0.168 26 0.222

Henan 0.301 17 0.330 17 0.259 14 0.284 13 0.243 17 0.284

Hubei 0.299 18 0.319 22 0.223 21 0.228 19 0.211 20 0.252

Hunan 0.280 25 0.311 24 0.211 26 0.205 22 0.192 23 0.235

Mean 0.333 - 0.364 - 0.265 - 0.265 - 0.261 -

Western Chongqing 0.291 20 0.307 26 0.211 27 0.204 23 0.207 21 0.238

Sichuan 0.269 29 0.294 29 0.213 25 0.214 21 0.200 22 0.238

Guizhou 0.360 7 0.386 7 0.248 17 0.194 24 0.187 24 0.281

Yunnan 0.290 21 0.333 16 0.216 23 0.182 26 0.151 30 0.230

Shaanxi 0.306 16 0.334 15 0.236 18 0.246 18 0.295 13 0.282

Gansu 0.350 9 0.351 13 0.231 20 0.191 25 0.173 25 0.259

Qinghai 0.320 14 0.327 19 0.214 24 0.162 29 0.161 29 0.234

Ningxia 0.499 2 0.484 2 0.357 4 0.378 5 0.382 4 0.418

Xinjiang 0.348 10 0.367 11 0.258 15 0.258 15 0.300 11 0.305

Inner Mongolia 0.369 6 0.442 3 0.383 2 0.480 1 0.468 2 0.431

Guangxi 0.277 26 0.292 30 0.179 30 0.169 28 0.161 28 0.213

Mean 0.334 - 0.356 - 0.250 - 0.243 - 0.244 -

All Mean 0.334 - 0.373 - 0.294 - 0.311 - 0.312 -

Table 3 Influencing factors of CRP

Explanatory variables Abbreviation Unit Remarks

Population size POP - The logarithm of population

Economic development GDP 100 million yuan Real GDP

Industrial structure IND % The proportion of the secondary industry to the tertiary industries

Low-carbon innovation GREEN - The logarithm of the number of patent applications plus one

Energy structure ES % The ratio of coal consumption to energy consumption

Energy efficiency EE % The GDP created by the energy consumption per unit.

Economic opening rate OPEN % The ratio of total import and export to GDP
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of 0.598, 0.466, and 0.459, respectively. However, the
bottom three provinces for the average ECRP were
Hainan, Guangxi, and Jiangxi, with values of 0.257,
0.259, and 0.268, respectively.

Overall, the eastern region’s economy is more devel-
oped, and its average CRP is obviously higher than that
of the other two regions, indicating that there is still a
lot of space for reducing carbon emissions in the eastern
region; meanwhile, the relatively underdeveloped econ-
omy makes carbon reduction potential very low in most
provinces in the central and western regions. In terms of

provinces, the above analysis demonstrates that the top
two provinces for the average CRP are Shanxi and
Inner Mongolia; while Guangxi and Jiangxi have been
the bottom two provinces in China, indicating that the
CRP shows a slight polarization in the central and west-
ern regions, the polarization may result from various
factors such as the level of economic development, the
proportion of heavy industries, the consumption of high-
carbon energy, and production technology. Hence, it is
necessary to research how to enhance carbon reduction
capacity effectively in most provinces and make more
room for carbon emission reduction.

Table 5 China’s regional FCRP and ranking in 2001, 2006, 2008, 2011, and 2017

Region Province 2001 Rank 2006 Rank 2008 Rank 2011 Rank 2017 Rank Mean

Eastern Beijing 0.298 5 0.345 7 0.290 7 0.278 12 0.316 11 0.298

Tianjin 0.304 4 0.372 4 0.319 5 0.380 6 0.426 4 0.361

Hebei 0.247 10 0.301 8 0.269 9 0.311 9 0.289 15 0.284

Liaoning 0.296 6 0.352 6 0.322 4 0.380 4 0.395 6 0.35

Shanghai 0.347 3 0.413 2 0.381 2 0.401 3 0.478 3 0.398

Jiangsu 0.212 19 0.272 15 0.266 10 0.327 8 0.391 7 0.286

Zhejiang 0.210 21 0.276 14 0.260 11 0.291 10 0.327 10 0.261

Fujian 0.206 22 0.255 18 0.209 17 0.244 15 0.303 14 0.241

Shandong 0.217 16 0.287 10 0.290 8 0.343 7 0.387 8 0.299

Guangdong 0.196 26 0.258 16 0.249 12 0.289 11 0.327 9 0.253

Hainan 0.190 29 0.218 28 0.166 28 0.143 30 0.185 24 0.186

Mean 0.248 - 0.304 - 0.275 - 0.308 - 0.348 -

Central Shanxi 0.376 1 0.502 1 0.424 1 0.442 2 0.581 1 0.471

Jilin 0.244 12 0.280 12 0.221 14 0.246 14 0.255 17 0.246

Heilongjiang 0.254 8 0.292 9 0.245 13 0.270 13 0.273 16 0.267

Anhui 0.220 15 0.231 24 0.175 24 0.188 21 0.206 21 0.204

Jiangxi 0.197 25 0.219 27 0.152 29 0.149 28 0.167 28 0.175

Henan 0.211 20 0.249 20 0.210 16 0.243 16 0.232 18 0.229

Hubei 0.213 17 0.240 23 0.183 20 0.205 19 0.216 20 0.208

Hunan 0.194 27 0.228 26 0.168 26 0.177 23 0.189 23 0.188

Mean 0.239 - 0.280 - 0.222 - 0.240 - 0.265 -

Western Chongqing 0.205 23 0.229 25 0.176 23 0.192 20 0.223 19 0.201

Sichuan 0.185 30 0.214 29 0.167 27 0.181 22 0.192 22 0.188

Guizhou 0.246 11 0.278 13 0.191 19 0.164 25 0.183 25 0.218

Yunnan 0.200 24 0.242 21 0.169 25 0.156 27 0.149 30 0.18

Shaanxi 0.213 18 0.250 19 0.195 18 0.224 18 0.304 13 0.236

Gansu 0.244 13 0.257 17 0.183 21 0.167 24 0.169 27 0.205

Qinghai 0.225 14 0.241 22 0.178 22 0.160 26 0.176 26 0.194

Ningxia 0.368 2 0.382 3 0.315 6 0.380 5 0.417 5 0.37

Xinjiang 0.254 9 0.284 11 0.220 15 0.243 17 0.313 12 0.263

Inner Mongolia 0.269 7 0.367 5 0.361 3 0.490 1 0.517 2 0.404

Guangxi 0.190 28 0.209 30 0.139 30 0.148 29 0.160 29 0.167

Mean 0.236 - 0.268 - 0.208 - 0.228 - 0.255 -

All Mean 0.251 - 0.305 - 0.264 - 0.298 - 0.331 -
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Dynamic evolution analysis of carbon reduction potential

The dynamic evolution analysis results provide information
for the current distributions of CRP and the variation in the
provincial gap. Thus, we employ KDE to reveal the dynamic
evolution of provincial CRP for 2001, 2006, 2008, 2011, and
2017. Figures 1, 2, and 3 show the Kernel density estimations,
drawn by Stata 15.0, for MCRP, FCRP, and ECRP,
respectively.

According to Figs. 1, 2, and 3, the following features are
evident by comparing the dynamic evolution of the MCRP,
FCRP, and ECRP. Firstly, as seen from the trend of the KDE

curve, the curves and their centers of three scenarios moved
slightly to the right from 2001 to 2006 and then moved to the
left after 2006, suggesting that the CRP gradually increased
first and then gradually decreased during the study period.
Secondly, as seen from the kurtosis of the KDE curve, the
peaks and ranges of three different scenario curves experi-
enced varying degrees of change. The modes where the
MCRP and ECRP were low evolved from a wide to sharp
one from 2001 to 2006, with the height ascending, revealing
that the regional gap of MCRP and ECRP was shrinking at
this stage. Furthermore, the dispersion range slightly widened
after 2006, with the height descending, indicating that the gap

Table 6 China’s regional ECRP and ranking in 2001, 2006, 2008, 2011, and 2017

Region Province 2001 Rank 2006 Rank 2008 Rank 2011 Rank 2017 Rank Mean

Eastern Beijing 0.411 15 0.426 13 0.294 16 0.246 21 0.229 17 0.312

Tianjin 0.446 7 0.463 7 0.317 10 0.318 11 0.298 10 0.368

Hebei 0.426 12 0.455 8 0.361 7 0.381 5 0.301 9 0.386

Liaoning 0.469 4 0.484 5 0.378 4 0.399 4 0.354 5 0.417

Shanghai 0.443 8 0.469 6 0.368 5 0.361 8 0.357 4 0.395

Jiangsu 0.349 28 0.377 26 0.325 8 0.363 7 0.350 6 0.340

Zhejiang 0.336 29 0.379 25 0.310 12 0.318 12 0.288 11 0.306

Fujian 0.356 25 0.389 22 0.261 23 0.257 17 0.249 16 0.298

Shandong 0.368 22 0.403 18 0.367 6 0.402 3 0.375 3 0.374

Guangdong 0.316 30 0.365 30 0.316 11 0.345 9 0.322 8 0.314

Hainan 0.356 26 0.376 27 0.234 29 0.150 30 0.151 29 0.257

Mean 0.289 - 0.417 - 0.321 - 0.322 - 0.298 -

Central Shanxi 0.637 1 0.708 1 0.523 1 0.498 1 0.560 1 0.598

Jilin 0.427 11 0.437 12 0.287 17 0.263 16 0.213 19 0.321

Heilongjiang 0.435 10 0.447 10 0.318 9 0.305 13 0.249 15 0.351

Anhui 0.411 14 0.402 19 0.269 20 0.249 19 0.217 18 0.309

Jiangxi 0.376 21 0.385 24 0.234 28 0.194 27 0.169 26 0.268

Henan 0.391 17 0.410 17 0.309 13 0.324 10 0.254 14 0.338

Hubei 0.386 18 0.398 20 0.263 22 0.251 18 0.206 21 0.296

Hunan 0.365 23 0.393 21 0.253 25 0.233 22 0.195 22 0.283

Mean 0.428 - 0.448 - 0.307 - 0.290 - 0.258 -

Western Chongqing 0.377 20 0.385 23 0.245 27 0.216 24 0.191 24 0.276

Sichuan 0.353 27 0.374 29 0.260 24 0.248 20 0.209 20 0.288

Guizhou 0.474 3 0.494 4 0.306 14 0.224 23 0.191 23 0.345

Yunnan 0.380 19 0.424 14 0.263 21 0.208 26 0.154 28 0.281

Shaanxi 0.399 16 0.419 15 0.277 19 0.268 15 0.286 13 0.328

Gansu 0.455 6 0.445 11 0.279 18 0.215 25 0.176 25 0.314

Qinghai 0.415 13 0.412 16 0.249 26 0.163 29 0.145 30 0.273

Ningxia 0.629 2 0.587 2 0.398 3 0.376 6 0.347 7 0.466

Xinjiang 0.441 9 0.450 9 0.296 15 0.272 14 0.287 12 0.348

Inner Mongolia 0.469 5 0.516 3 0.405 2 0.469 2 0.419 2 0.459

Guangxi 0.364 24 0.375 28 0.220 30 0.190 28 0.162 27 0.259

Mean 0.433 - 0.444 - 0.291 - 0.259 - 0.233 -

All Mean 0.417 - 0.441 - 0.325 - 0.324 - 0.293 -
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among CRPs of different provinces was enlarging. Thirdly, as
seen from the shapes of the KDE curve, the curves of fairness
and efficiency scenario for 2001, 2006, and 2008 were bi-
modal and showed a rise at the right end, while those for
2011 and 2017 were unimodal. Besides, the curve of the mod-
eration scenario was unimodal and with several lumps in the
long right tail, which means that the CRP shows slight
polarization.

Overall, provincial CRPs in China were enhancing from
2001 to 2008, with the provincial gap of MCRP and ECRP
enlarged from 2001 to 2008 and bi-polarization tendency was
weakened during 2011 and 2017. The peak of the curve in
2017 was the lowest and smoothest, which means that inter-
provincial CRP level disparity in China was the narrowest in
2017.

Spatial characteristics of carbon reduction potential

Global spatial autocorrelation

This study tests the spatial correlation of MCRP, FCRP, and
ECRP from 2000 to 2017. Table 7 presents the results of the
global Moran index; the global Moran indices of CRP are
positive at least at the 5% level of significance, indicating a

significant positive spatial autocorrelation among the 30 prov-
inces over time. The spatial dependence ofMCRP, FCRP, and
ECRP has shown a significant growth trend since 2000, but
after 2011, the Moran I index began to decline fluctuating,
indicating that the spatial autocorrelation of regional CRP
has weakened after 2011. Moreover, the spatial correlations
in 2009, 2010, and 2011 were relatively large, which indicates
that the spatial dependence of CRP has an inverted “U” pat-
tern, which first increases and then weakens.

Specifically, (i) the global Moran I index of MCRP in-
creased from 0.136 in 2000 to 0.296 in 2010 and then showed
a downward trend, which proves the strong geographic

Fig. 1 Kernel density plot of China’s MCRP in selected years

Fig. 2 Kernel density plot of China’s FCRP in selected years

Fig. 3 Kernel density plot of China’s ECRP in selected years

Table 7 The Moran’s I index of CRP in China (2000–2017)

Year MCRP P value FCRP P value ECRP P value

2000 0.136** 0.032 0.166** 0.016 0.135** 0.030

2001 0.149** 0.022 0.183*** 0.010 0.145** 0.021

2002 0.143** 0.026 0.180** 0.011 0.140** 0.026

2003 0.100* 0.066 0.123** 0.042 0.107* 0.056

2004 0.138** 0.027 0.191*** 0.007 0.126** 0.035

2005 0.187*** 0.006 0.248*** 0.001 0.156** 0.013

2006 0.189*** 0.005 0.253*** 0.001 0.152** 0.013

2007 0.203*** 0.004 0.255*** 0.001 0.171** 0.011

2008 0.286*** 0.000 0.317*** 0.000 0.249*** 0.001

2009 0.294*** 0.000 0.321*** 0.000 0.260*** 0.001

2010 0.296*** 0.000 0.317*** 0.000 0.265*** 0.001

2011 0.295*** 0.000 0.304*** 0.000 0.278*** 0.001

2012 0.285*** 0.000 0.294*** 0.000 0.268*** 0.001

2013 0.232*** 0.001 0.245*** 0.001 0.217*** 0.002

2014 0.251*** 0.001 0.257*** 0.001 0.239*** 0.001

2015 0.221*** 0.003 0.225*** 0.003 0.214*** 0.003

2016 0.256*** 0.001 0.257*** 0.001 0.250*** 0.001

2017 0.234*** 0.002 0.257*** 0.001 0.222*** 0.003

Note: *, **, and *** represent the passing significant level of 10%, 5%,
and 1%, respectively
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dependence and spatial autocorrelation in provincial CRP; (ii)
the global Moran I index of FCRP had been fluctuant increas-
ing from 2000 to 2009 and then showed a fluctuant downward
trend after 2009; and (iii) the global Moran I index of ECRP
increased fluctuant from 0.135 in 2000 to 0.278 in 2011 and
then showed a fluctuant downward trend.

Local spatial autocorrelation

To reveal the spatial local auto-correlation and distribution
pattern of China’s provincial CRP, we draw Moran scatter
plots for only 2009 and 2017 owing to the limited space avail-
able (see Figs. 4, 5, and 6). The first and the third quadrants,
with H-H-type provinces and L-L-type provinces, respective-
ly, indicate the province with high/low CRP is surrounded by
provinces with high/low CRP, while the second and the fourth
quadrants, with L-H-type provinces and H-L-type provinces,
respectively, show the polarization characteristics.

It can be seen from the figure that most provinces with high
CRP are located mainly in the eastern and central region
(quadrant I) under three scenarios, such as Shanxi, Tianjin,
Liaoning, and other provinces. These provinces possess abun-
dant natural resources and increasingly close regional cooper-
ation mechanisms, all of which have a positive effect on the
surrounding province (Chen et al. 2020). Cluster provinces
with low CRP are concentrated in the western region (quad-
rant III), including Guansu and Yunnan, and other provinces,
as may result frommost provinces in the western region which
have underdeveloped economies and lower emission efficien-
cy. L-H type was mainly distributed in Anhui, Jilin, and
Henan. For these provinces, technical exchanges and

cooperation with neighboring provinces could be strength-
ened to improve CRP. H-L type was prevalent in
Guangdong and Jiangsu. These provinces are relatively rich
in economy and energy technology, so that they could help
their neighboring areas to increase carbon reduction capability
through regional cooperation.

Specifically, (i) the sum of H-H-type and L-L-type prov-
inces accounts for 73.3% (22 provinces) of the provinces in
2017, up from 63.3% (19 provinces) in 2009, which means
that the spatial clustering is increasing, and the spatial polari-
zation feature of provinces’ MCRP appeared. For instance,
Shanghai transformed from H-L type in 2009 to H-H type in
2017, as may result from Shanghai which has a positive radi-
ative effect and its neighboring developing new sustainable
clean technologies to increase CRP. (ii) The sum of H-H-type
and L-L-type provinces accounts for 60% (18 provinces) of
the provinces in 2017, down from 70% (21 provinces) in
2009, which means that the spatial clustering of provinces’
FCRP is decreasing, and the spatial polarization feature weak-
ened. (iii) The sum of H-H-type and L-L-type provinces ac-
counts for 73.3% (22 provinces) of the provinces in 2017,
down from 76.6% (23 provinces) in 2009, indicating that the
spatial clustering of provinces’ FCRP is increasing slightly.

Empirical results

Model selection

Before conducting spatial analysis, the first step is to focus
attention on the selection of spatial econometric models.

Fig. 4 Moran scatter plots of MCRP in 2009 and 2017
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Firstly, we employed the Lagrange multiplier (LM) test to
examine whether a spatially lagged dependent variable (LM
spatial lag) or a spatially autocorrelated error term (LM spatial
error) should be included in the model. According to the LM
test results (Table 8), the LM-lag and LM-error test statistics
are significant at the 1% level of significance, which indicates
that the spatial model is a more appropriate specification than
the non-spatial model. Then, the robust LM-lag and the robust
LM-error statistics are significant, with a significance level of

at least 1%, indicating that the factors affecting CRP include
not only independent variables and their lag terms but also
some unobservable error terms. Secondly, this paper conduct-
ed the likelihood ratio (LR) test to test further the existence of
spatial effects. According to Table 8, the LR test results show
that the SDM is estimated as this study preferred specification.
Finally, it is essential to judge whether the correct panel data
specification is a random effect or a fixed effect model through
the Hausman test. The Hausman test statistics is significant at

Fig. 5 Moran scatter plots of FCRP in 2009 and 2017

Fig. 6 Moran scatter plots of ECRP in 2009 and 2017
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the 1% level of significance, which indicates that this paper
should use the SDM of fixed effect (Table 8).

Results of spatial Durbin estimation

For a spatial econometric model, the estimated coefficients of
independent variables are not of great significance. What re-
ally needs to be explained are the direct effects and indirect
effects of independent variables in space. As the estimation
coefficients of explanatory variables do not represent the mar-
ginal effects of the independent variables on the dependent
variable, we estimate the direct and indirect effects of inde-
pendent variables on the dependent variable following LeSage
and Pace (2009). Table 9 reports on the results of the estimated
coefficients of the influencing factors affecting CRP under
various scenarios, in which columns (1)–(3), columns
(4)–(6), and columns (7)–(9) represent the result under mod-
eration, fairness, and efficiency scenario, respectively.

According to Table 9, the regression coefficients of GDP
on MCRP, FCRP, and ECRP are positive at the 1% level of
significance; W_GDP has a negative and significant effect.
The direct effects of GDP are significantly positive, and the
indirect effects of GDP are significantly negative, which indi-
cates that economic development has significant spatial spill-
over effects. Improving regional economic development in
local provinces can significantly increase local CRP, but it
may inhibit neighboring provinces’ CRP, which may result
from economic growth promoting the local accumulation of
various resource, and then, siphon effect has caused the neigh-
boring province to face the pressure of losing resources and
innovative elements, leading to the potential space for carbon
emission reduction that has been compressed. Thus, economic
development is the main factor for enhancing the local CRP.

The regression coefficient of IND is negative at the 1%
level of significance, and the direct and indirect effects of
IND on MCRP, FCRP, and ECRP are negative and signifi-
cant. We can conclude that adjusting the industrial structure in
local provinces can increase local and neighboring provinces’
carbon reduction potential. Most Chinese provinces’ develop-
ment mode is relatively rough and their industrial structure is

relatively backward for a long time. Furthermore, many
scholars established that the secondary industry is the leading
producer of carbon emissions (Cole et al. 2008; Cheng et al.
2018). Due to many companies in the secondary industry that
are generally characterized by high energy consumption and
high carbon emission, improvement of industrial structure fa-
cilitates the flow of various factors from low-efficiency sectors
to high-efficiency sectors (Zhou et al. 2013), which addition-
ally increases the potential of carbon emission reduction.
Therefore, industrial structure optimization is an effective
way to improve provincial carbon emission reduction poten-
tial and reduce regional carbon emissions.

From the spillover effect decomposition analysis, GREEN
has a negative effect on FCRP in local provinces, while
GREEN has a positive effect on ECRP in local and neighbor-
ing provinces. These results indicate that improving low-
carbon technologies can contribute to the local carbon emis-
sion reduction and provide critical support for local CRP un-
der the efficiency scenario; in contrast, enhancing low-carbon
innovation capability could restrain the local CRP under the
fairness scenario. Low-carbon innovation can bring about an
improvement in energy factor utilization and rapid develop-
ment in new products. Especially in the process of increasing
CRP by low-carbon technological progress, it is the
efficiency-driven policy that plays the primary role.
Therefore, we conclude that low-carbon innovation is a criti-
cal path that the province uses to increase local CRP and
promote low-carbon transformation in the adjacent provinces
from the perspective of efficiency.

The regression coefficient of ES is positive at the 1% level
of significance, and direct effect coefficients of ES on MCRP,
FCRP, and ECRP are positive at the 1% level of significance,
indicating that energy structure optimization has significant
spatial spillover effects. However, only under the efficiency
scenario the indirect effect coefficient is 0.197, which is not
significant, suggesting that adjustment of energy structure in
local provinces has only marginally contributed to adjacent
provinces’ ECRP. The energy consumption structure in
China is dominated by coal (Lin and Wang 2020); coal con-
sumption is the major source of greenhouse gas emissions and

Table 8 The test of the spatial
measurement model Model Test type MCRP FCRP ECRP

Spatial error Lagrange multiplier 197.168*** 245.450*** 183.139***

Robust Lagrange multiplier 21.281*** 34.657*** 41.232***

Spatial lag Lagrange multiplier 228.789*** 288.402*** 158.570***

Robust Lagrange multiplier 52.902*** 77.609*** 16.663***

LR-SDM-SAR 42.280*** 56.180*** 37.400***

LR-SDM-SEM 49.380*** 52.990*** 48.830***

Hausman 12.260* 17.390*** 20.220***

Note: *, **, and *** represent the passing significant level of 10%, 5%, and 1%, respectively
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environmental problems (Wang et al. 2012). The higher con-
sumption of the province will provide more room for carbon
emission reduction. Hence, switching to renewable energy
and improving the coal-based energy structure would provide
essential support for local carbon emission reduction.

According to Table 9, it can be seen that the increase in
energy efficiency will significantly increase (1% significance
level) local CRP under three scenarios, while only under the
fairness scenario the indirect effect coefficient is 0.009, which
is not significant. The results show that energy efficiency has a
significantly positive impact on the surrounding areas’ CRP
except for the fairness scenario. The main reason is that the

improvement of energy efficiency brings effective energy uti-
lization (Jin et al. 2017). Due to the demonstration effect on
neighboring areas, provinces with low energy efficiency usu-
ally strive to bring in technology promotion strategies, practi-
cal experiences of local policies of provinces with high effi-
ciency (Song et al. 2018). Therefore, energy efficiency can be
regarded as the vital factor of enhancing carbon reduction
potential.

The direct effects of OPEN and POP on MCRP, FCRP,
and ECRP were not significant; the indirect effects of POP are
significantly positive under three scenarios, indicating that
openness cannot significantly increase CRP, especially the

Table 9 The spatial effect estimation results

Scenarios MCRP FCRP ECRP

SDM Direct effects Indirect effects SDM Direct effects Indirect effects SDM Direct effects Indirect effects

(1) (2) (3) (4) (5) (6) (7) (8) (9)

GDP 0.164*** 0.155*** -0.207*** 0.219*** 0.205*** -0.279*** 0.110*** 0.103*** -0.147*

(6.232) (5.840) (-2.638) (9.015) (8.276) (-3.509) (3.642) (3.441) (-1.741)

IND -0.067*** -0.067*** -0.027*** -0.057*** -0.057*** -0.030*** -0.078*** -0.077*** -0.025**

(-7.292) (-7.435) (-2.582) (-6.666) (-6.779) (-2.736) (-7.394) (-7.550) (-2.340)

GREEN 0.001 0.002 0.020 -0.007* -0.007* 0.006 0.009* 0.010** 0.034**

(0.246) (0.479) (1.607) (-1.861) (-1.730) (0.474) (1.955) (2.214) (2.444)

ES 0.120*** 0.131*** 0.277** 0.094*** 0.111*** 0.367*** 0.145*** 0.152*** 0.197

(5.162) (5.448) (2.347) (4.383) (4.889) (3.033) (5.444) (5.602) (1.578)

EE 0.025*** 0.026*** 0.018* 0.020*** 0.020*** 0.009 0.030*** 0.031*** 0.026**

(9.640) (9.782) (1.669) (8.278) (8.207) (0.834) (10.196) (10.458) (2.246)

OPEN -0.009 -0.008 0.024 -0.007 -0.005 0.041* -0.011 -0.010 0.009

(-1.301) (-1.073) (1.023) (-1.143) (-0.756) (1.741) (-1.382) (-1.258) (0.363)

POP -0.022 0.005 0.648*** 0.013 0.044 0.654*** -0.055 -0.032 0.646***

(-0.586) (0.133) (6.378) (0.385) (1.237) (6.389) (-1.304) (-0.732) (5.929)

W_GREEN 0.015 0.007 0.025**

(1.534) (0.768) (2.157)

W_GDP -0.205*** -0.270*** -0.148**

(-3.619) (-5.188) (-2.257)

W_ES 0.167** 0.213*** 0.119

(1.992) (2.735) (1.241)

W_EE 0.006 -0.001 0.013

(0.733) (-0.104) (1.399)

W_OPEN 0.019 0.029** 0.008

(1.199) (2.009) (0.456)

W_POP 0.482*** 0.436*** 0.519***

(5.725) (5.493) (5.505)

ρ 0.290*** 0.351*** 0.239***

(4.110) (5.018) (3.352)

δ2 0.001*** 0.001*** 0.001***

(16.303) (16.232) (16.346)

Wald 42.69*** 54.84*** 37.80***

(0.000) (0.000) (0.000)

Note: *, **, and *** represent the passing significant level of 10%, 5%, and 1%, respectively
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openness that deviates from the green development orienta-
tion which is not conducive to regional emission reduction.
Moreover, the effect of population size on CRP is not limited
to local provinces and can enhance carbon reduction potential
across provinces through population movement.

Conclusions and policy implications

Conclusions

This study evaluates the carbon shadow price and the CRP index
under the three scenarios of moderation, fairness, and efficiency.
Based on the evaluation data, we analyze the spatial-temporal
patterns and dynamic evolution of provincial CRP from 2001 to
2017 in China. Then, we employ exploratory spatial data anal-
ysis and SDM to explore the influencing factors of CRP under
three different scenarios. The main conclusions are as follows.

First, there are differences between different provinces/re-
gions’ CRPs under three different scenarios from 2000 to
2017. The average MCRP and average ECRP showed a grad-
ual downward trend, while the average FCRP showed an up-
ward volatility trend. There are also substantial differences
between the regions. MCRP and FCRP in the eastern region
were found the highest, whereas ECRP in the eastern region
was the highest after 2008. Further, there exists a slight polar-
ization in the central and western regions.

Second, the spatial autocorrelation test indicated that the
provinces with a similar CRP showed a significant geographic
agglomeration, and the agglomeration effect was strengthened
first and then weakened over time. Besides, most provinces
with high CRP are located mainly in the eastern and central
regions, such as Shanxi and Inner Mongolia. These provinces
possess abundant natural resources and have a positive effect
on the surrounding province. Cluster provinces with low CRP
are concentrated in the western region. These provinces have
underdeveloped economies.

Lastly, through the SDM analysis and spillover effect de-
composition, we conclude that improvements in regional CRP
not only depend on economic development, industrial struc-
ture adjustment, and energy efficiency elevation, but also in-
volve energy structure optimization, low-carbon innovation,
and population. It is noteworthy that there are differences in
the effects of low-carbon innovation under different scenarios.
The low-carbon innovation provides critical support for local
CRP under the efficiency scenario but restrains the local CRP
under the fairness scenario.

Policy implications

Based on the above conclusions, the policy implications for
regional carbon reduction potential improvement are as
follows.

Firstly, the central government should fully consider the
heterogeneity of factors such as economic development, re-
source conditions, and carbon emission potentials in various
regions when formulating carbon reduction policies. The gov-
ernment must emphasize local conditions, make the ex ante
scenario assessment, pay more attention to areas with high
CRPs, and appropriately control areas with low CRPs. For
example, the leading coal production provinces with low mar-
ginal abatement costs, Shanxi, Inner Mongolia, etc., should
assume higher carbon reduction targets to unlock the carbon
reduction potential, while underdeveloped provinces with
slow energy structure adjustments, such as Hainan and
Qinghai, should assume looser carbon reduction constraints.
Overall, the government should guide innovation and human
resource flow to the central and western regions and high-
carbon areas with high emission reduction potential to im-
prove emission reduction efficiency while reducing total so-
cial costs.

Secondly, emphasize the cross-regional collaboration of
carbon emission control. The “spillover” of social capital, tal-
ents, and low-carbon technology makes it easy to achieve the
goal of inter-regional coordinated development of carbon re-
duction. To break the current situation of low carbon reduc-
tion potential among the western regions, carbon reduction
strategies should be established based on “joint prevention
and control.” Specifically, for H-L agglomeration areas,
strengthening the leading role in developed economic areas,
such as Guangdong and Jiangsu, and reinforcing the spillover
of capital, environmental protection technologies, and other
factors to enhance the radiation effect from the “center” to
the “periphery” should be established. For low-low agglom-
eration areas with underdeveloped economies, such as
Guangxi and Gansu, CRP could be enhanced by encouraging
develop clean energy (e.g., photovoltaic, wind energy, tidal
energy) and increasing special fund support and guarantee to
weaken the siphon effect.

Thirdly, explore the carbon reduction paths characterized
by sustainable and low-carbon development governed in mul-
tiple dimensions. The study shows that improvement in eco-
nomic development, industrial structure, and energy efficien-
cy elevation will not only effectively enhance the local CRP
but also have a significant spatial spillover effect. Therefore, it
is essential to optimize energy efficiency and explore econom-
ic growth paths characterized by sustainable and low-carbon
development. On the one hand, through tax incentives and
low-interest loans, the government can encourage and support
the local research institutes and enterprises in developed areas
to carry out the production, transformation, and application of
low-carbon innovation, which is an indispensable strategy for
advancing energy efficiency. Meanwhile, the government
could introduce voluntary energy efficiency standards for var-
ious sectors, especially high-carbon industries, to stimulate
industrial energy efficiency improvements. On the other hand,
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the government could vigorously promote the application of
clean energy in transport, industry, and construction through
financial subsidies and pollution penalties to get rid of coal
dependence gradually. Simultaneously, we should formulate
relevant policies to guide enterprises to transition toward the
tertiary industry to accelerate de-industrialization progress. In
particular, the government should increase subsidies for out-
standing talents and foster regional knowledge collaboration.
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