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Abstract
Drinking water treatment techniques are used globally in the context of water security and public health, yet they are not
applicable to antibiotic resistance gene (ARG) contamination. Using high-throughput quantitative PCR, we analyzed the prev-
alence and diversity of ARGs and mobile genetic elements (MGEs) in water supplies. A total of 224 ARGs and MGEs were
detected in all sampling sites. Absolute abundance and detected number of ARGs decreased significantly (P < 0.05) in sand filter
water after drinking water treatment and increased thereafter at point-of-use (household tap water). Changes in the composition
and diversity of the bacterial community were observed in water samples at different steps. A significant correlation (P < 0.001)
between microbial communities and ARG profiles was observed, and variance in ARG profiles could be primarily attributed to
community composition (11.9%), and interaction between community composition, environmental factors and MGEs (30.7%).
A network analysis was performed, and the results showed eight bacterial phyla were significantly correlated with nine different
classes of ARGs, suggesting the potential bacterial host for ARGs. This study suggested that although the absolute abundance of
ARGs decreased after treatment of drinking water treatment plants (DWTPs), the rebounded of ARGs in the water distribution
system should not be neglected.
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Introduction

The contamination of the aquatic environment with antibiotic
resistance genes (ARGs) is considered deleterious to human
health (Witte 1998; Chee-Sanford et al. 2009; Marshall and
Levy 2011). Although the presence of ARGs in the

environment is known (Wellington et al. 2013), anthropogenic
activities and recalcitrant antibiotic residues promote the distri-
bution of ARGs. Selection pressure on antibiotics results in the
distribution of ARGs and propagation of antibiotic-resistant
bacteria (ARB), which further contaminate the natural environ-
ment (Pruden et al. 2006; Zhu et al. 2013). The overuse of
antibiotics has resulted in the detection of ARGs in water
sources and the other surface waters (Bai et al. 2015) which
have potential to be enriched at drinking water treatment plants
(DWTPs) (Guo et al. 2014; Sanganyado and Gwenzi 2019).

DWTPs improve drinking water quality and reduce the
incidence of waterborne diseases (Li et al. 2016). However,
conventional DWTPs are not designed to eliminate ARGs and
ARB (Xu et al. 2016). Several studies have suggested the
ARGs and ARB are prevalent in effluent from conventional
DWTPs, even after disinfection using techniques such as chlo-
rination (Jia et al. 2015; Liu et al. 2018). The ARGs are per-
sistent in water source and cannot be completely eliminated in
the conventional drinking water processes (Ouyang et al.
2015; Xu et al. 2016), posing a potential risk to human health.
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Water distribution infrastructure also provides an opportu-
nity for the spread of ARGs and propagation of ARB (Garner
et al. 2018; Tan et al. 2019). For example, biofilms are an ideal
environment for ARGs and ARB survival (Zhang et al. 2019).
Although water pipelines provide a harsh environment lack-
ing in nutrients, biofilms with high densities of microorgan-
isms are common (Yang et al. 2011). It has been reported that
the abundance and diversity of the resistome observed in wa-
ter distribution systems are higher than in water treatment
plant effluent, potentially due to biofilm growth (Xi et al.
2009). Additionally, chlorine residues on water pipes may
be responsible for the enrichment of ARGs (Bai et al. 2015).
Previous studies have also highlighted that heavy metals such
as copper in water accelerate the spread of ARGs and ARB,
while promoting horizontal gene transfer (HGT) (Baker-
Austin et al. 2006; Seiler and Berendonk 2012). On the basis
of previous studies, heavy metals used in the construction of
distribution pipeline are also considered to have the same ef-
fect after metal corrosion (Baker-Austin et al. 2006; Khan
et al. 2019).

Nevertheless, information on ARGs associated with the
drinking water source, conventional DWTPs and residential
areas is relatively sparse. Although antibiotics and ARGs are
frequently detected in DWTPs and their distribution systems
may be important reservoirs of ARGs (Benotti et al. 2008; Xi
et al. 2009), the dynamics and underlying mechanisms of
ARGs throughout the water supply from the source to the
point-of-use have not been well studied. More importantly,
the number and diversity of ARGs detected in previous stud-
ies are not sufficient to provide a comprehensive understand-
ing of ARG dynamics. In the current study, we investigated
the ARG dynamics from the drinking water source to DWTPs.
On the other hand, we compared the differences in ARGs
betweenDWTP effluent and the tap water. The absolute abun-
dance of ARGs is fully quantified by linking the water source
to the tap water. Thanks to the high-throughput quantitative
PCR (HT-qPCR), we targeted 295 individual ARGs, which
represent the major classes of ARGs. Combining the Illumina
sequencing, in this study we aimed to (1) characterize ARG
profiles along the whole water supply, (2) evaluate any shift in
water microbiota at different points of the water supply, (3)
characterize the interactions, if any, between the among anti-
biotic resistome, environmental factors and bacterial
community.

Material and methods

Sampling sites, sample collection and DNA extraction

The sampling sites for this study were located in Zhangzhou
City, Fujian Province, in the southeast of China. The drinking
water source was located on the Jiulongjiang River, whereas

both the DWTP and residential area were located within the
city (Fig. 1).

River water (RW), influent water of coagulation-
flocculation-sedimentation tank (IW), effluent water from
the coagulation-flocculation-sedimentation (SW), sand filter
water (SFW), finished water (FW), household tap water
(HTW) were collected from the drinking water source (River
Water, RW), DWTP and residential area, respectively (Fig. 1).
Sterile plastic bottles were used for water sample collection.
Tominimize sampling variation, three replicate water samples
(5 L per sample) were collected simultaneously at each sam-
pling site (18 water samples in total) in July 2017. Samples
were immediately transported to the laboratory in ice coolers
within 6 h. Water samples were filtered using 0.22 μm nitro-
cellulose ester membranes (Toyo Roshi Co., Ltd., Japan), and
the membrane filters were placed in tinfoil bags at −20 °C.
The membranes were subsequently cut into small pieces using
sterilized scissors. A FastDNA® SPIN Kit for Soil (MP
Biomedicals, USA) was used for DNA extraction following
the manufacturer’s protocol. The concentration and purity of
DNA were measured by microspectrophotometry (NanoDrop
ND-1000, Thermo Scientific, USA). DNA (80 μL) was stored
at −20 °C prior to use.

The determination of physicochemical parameters
and heavy metals

Water samples were acidified prior to heavy metal determina-
tion (Vu et al. 2017; Wijesiri et al. 2019). The water samples
(100 mL per sample) were filtered through glass filter paper
(pore size 0.45 μm) (Haiyan China). Metal determination was
done by Inductively Coupled Plasma-Mass Spectrometer or
ICP-MS (Agilent 7500cx, Agilent Technologies, USA). A
Shimadzu TOC-V cph analyzer instrument (Wijesiri et al.
2019) was used to determine total nitrogen (TN) and total
organic carbon (TOC). Turbidity of water samples was deter-
mined by a turbidimeter (HACH 2100AN, USA).

ARG and MGE quantification using high-throughput
quantitative PCR

The Wafergen SmartChip Real-time PCR system (WaferGen
Bio-systems, Inc., USA) was used for high-throughput qPCR
analysis. A total of 296 of primer sets (Genscript, China)
(Table S1) and PCR conditions were as previously described
(Chen et al. 2017). A threshold cycle (Ct) of 31 was used as
the detection limit for this study. Three technical replicates
were conducted in all sampling sites. Results only adopted if
three replicates were positive after HT-qPCR. Relative abun-
dance of ARGs was calculated as previously (Zhu et al. 2013),
and the absolute abundance of ARGs was normalized to 16S
rRNA gene copy number (Ouyang et al. 2015). The
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mechanisms of antibiotic resistance genes were classified ac-
cording to the previous study (Chen et al. 2017).

Illumina sequencing, data processing and analysis

The V4–V5 region of the 16s rRNA gene was used to char-
acterize the composition and structure of bacterial community.
PCR reactions followed (Zhou et al. 2019). Purification of
PCR products used a TIANGEN DNA purification kit
(TIANGEN Biotech, China), and products were brought to
equal concentration prior to sequencing (Illumina Hiseq
2500 platform; Novogene, Beijing, China). Data processing
was performed by Quantitative Insights Into Microbial
Ecology (QIIME) (Caporaso et al. 2010). Open-reference op-
erational taxonomic units (OTU) were set at 97% of similarity
level by UCLUST clustering (Edgar 2010). Taxonomic char-
acterization of OTUs used the Greengenes (version 13.8) da-
tabase (McDonald et al. 2012).

Statistical analysis

Excel 2016 was used for calculating means and standard de-
viations. Principal coordinate analysis (PCoA), redundancy
analysis (RDA), variation partitioning analysis (VPA),
Heatmap, Procrustes and Mantel test were analyzed in R
Studio with the following packages: vegan (version 2.2.0)
(Dixon 2003), labdsv (version 1.8.0) (https://CRAN.R-
project.org/package=labdsv) and pheatmap (version 0.7.7)
(https://CRAN.R-project.org/package=pheatmap). Prior to
the network analysis, pair wise Spearman rank correlations
between detected ARGs were calculated. Only when the
correlation coefficient (ρ) was > 0.8 and P < 0.01 was
network construction generated (Li et al. 2015). Network vi-
sualization was provided by Cytoscape (version 3.3.0) soft-
ware (Smoot et al. 2011). SPSS 21 was conducted for statis-
tical assessments. Only when P <0.05 is considered signifi-
cant in all statistical test.

Results

The profiles of antibiotic resistance genes

A total of 214 ARGs and 10 MGEs were detected in all water
samples. Nine classes of ARGs were identified as aminogly-
coside, beta-lactams, chloramphenicol, Macrolide-
Lincosamide-Streptogramin B (MLSB), multidrug, sulfon-
amide, tetracycline, vancomycin and others. The detected
number of ARGs and MGEs range from 38 to 173 (Fig. 2a).
Those ARGs detected were classified into 4 major mecha-
nisms: antibiotic deactivation (40.9%), cellular protection
(15.2%), efflux pumps (35.5%) and others/unknown (8.3%)
(Fig. 2b). A PCoA of ARGs based on the Bray-Curtis distance
separated sample sites into three groups (Fig. 2c). The group
which consisted of RW, IW and SW separated from the group
that consisted of SFW, FW, along the first coordinate (P <
0.05, PERMANOVA). The composition of ARGs from the
residential area (HTW) was significantly different to all sam-
pling sites (P < 0.05, PERMANOVA) in both PC1 and PC2.
The total absolute abundance of ARGs ranged from 2.1 × 105

to 1.9 × 1010 copies L−1. The absolute abundance of ARGs
was highest at RW (P < 0.05), while samples from SFW had
the lowest abundance compared to other sample points (P <
0.05). The total absolute abundance of ARGs in each sam-
pling point was 1.9 × 1010 (RW), 5.1 × 109 (IW), 3.7 × 109

(SW), 2.1 × 105 (SFW), 5.3 × 105 (FW) and 1.8 × 107 (HTW)
respectively. The absolute abundance of aminoglycoside,
multidrug, tetracycline was significantly greater than beta-
lactams, chloramphenicol, MLSB, others, sulfonamide and
vancomycin in samples of RW respectively (P < 0.05) (Fig.
2d). Three chloramphenicol resistance genes (cmlA1-01,
cmlA1-02 and cmx (A)) were detected in the study. The abso-
lute abundance of chloramphenicol resistance genes was
highest in SW and lowest in SFW. In HTW, the absolute
abundance of cmlA1-01, cmlA1-02 and cmx (A) was signifi-
cantly higher than FW and SFW respectively. The absolute
abundance of 9 classes of ARGs and MGEs from household
tap water (HTW) was significantly greater (P < 0.05) than

Fig. 1 Schematic diagram showing the overall water supply and sampling points
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SFW and FW. Overall, the absolute abundance of ARGs was
significantly reduced (P < 0.05) throughout the water treat-
ment and supply process (Fig. 3).

The profiles of bacterial community

A total of 1,639,725 high-quality sequences were detected in
water samples from all sites, which ranged from 26,561 to
146,444. At the OTU level, SFW samples had the greatest
bacterial diversity, followed by RW, IW, SW and HTW
(Fig. 4a). Samples from FW had the lowest bacterial diversity,
which was further confirmed by PD whole tree, Shannon in-
dex and chao1 analyses (Fig. S1). Proteobacteria,
Actinobacteria, Bacteroidetes, Firmicutes, Cyanobacteria,
Acidobacteria and Unassigned were the dominant phyla,
which accounted for > 85% of recovered from water samples
(Fig. 4b). A PCoA analysis of bacterial OTUs indicated a
significant shift of bacterial communities during DWTP (P <

0.05, PERMANOVA) (Fig. 4c). DWTP effluent was separat-
ed from influent along PC1, which accounted for 40.32% of
the variation (P < 0.05, PERMANOVA), while PC2
accounted for 19.61% of the variation.

Co-occurrence patterns between ARGs and bacterial
phyla

Correlations between ARGs and bacterial taxa were evaluated
by theMantel test and Procrustes analysis. ARGswere strong-
ly correlated (P < 0.0001, r = 0.818, Mantel test;M2 = 0.2809,
P < 0.0001, r = 0.848, Procrustes analysis) with bacterial taxa
at all sampling sites (Fig. 5a). Furthermore, a network analysis
consisted of 55 nodes and 123 edges (Fig. 5b) and showed that
Bacteriodetes had the most correlations with different ARGs
including resistance genes for all 9 classes of antibiotic and
MGEs.
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Relationship among environmental factors, bacterial
communities, MGEs and ARGs

The concentration of As in household tap water (HTW) was
significantly higher than DWTP effluent (FW) (P < 0.05,
Table S2). Most ARG classes significantly (P < 0.05,
Table S2) correlated with Integron, Transposon and total ab-
solute abundance of MGEs respectively (Table S3).

Redundancy analysis (RDA, Fig. 6a) identified that con-
tributors to ARG profiles along the whole water supply were
different. TOCs, MGEs and Cyanobacteria were major con-
tributors in river water (RW); Cu and Actinobacteria contrib-
uted mainly in the first steps of drinking water treatment,
while Acidobacteria, Firmicutes and Proteobacteria were key
contributors during the second half of drinking water

treatment (SFW, FW) and tap water. Environmental factors,
bacterial community and MGEs jointly accounted for 92.7%
of the total variation of ARGs (Fig. 6b). Bacterial community
contributed 11.9% to the shift in ARGs, which was higher
than environmental factors (1.3%) and MGEs (2.8%).

Discussion

Impact of drinking water treatment on dynamics of
ARGs

In the current study, the ARG profile was assessed by HT-
qPCR, describing the full dynamics and changes in ARG at
different stages from drinking water sources, through DWTP
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to residential areas. The absolute abundance of ARGs in water
samples was calculated and provided reference for further risk
assessment. A total of 224 ARGs and MGEs out of 295
targeted genes were detected in all water samples. The detect-
ed number of ARGs was greatest in raw water (RW) and the
first half of the water treatment process (IW and SW) (P
<0.05). Post sand filtration, water samples (SFW) had the
lowest detected number and absolute abundance of ARGs,
which suggested a positive impact of the first half of DWTP.
However, numbers and absolute abundance of ARGs in-
creased after chlorination disinfection, suggesting that current
disinfection methods may have a limited effect in reducing
ARGs. It has been reported that the dosage rate of chlorine
was critical in disinfection of ARGs and antibiotic-resistant
bacteria (ARB), as low doses may facilitate the permeability
of bacterial membranes, promoting gene transfer between bac-
teria (Zhang et al. 2020a). Furthermore, the enlarged number
of ARB under a low dose of chlorine may trigger secondary
pollution of ARGs after treatment (Huang et al. 2011). Similar
to this result, the detected numbers and absolute abundance of
aminoglycosides, beta-lactam and tetracycline resistance
genes and MGEs were significantly higher (P <0.05) in this
study after chlorination than in the sand filtered (SFW) efflu-
ent, which may be attributed to the change of bacterial com-
munity in the water samples. And it further suggested that the
effluent water after the sand filtration step was contaminated.
Therefore, a more effective and cost-friendly method is need-
ed for removal of ARGs in DWTP effluent.

The final step of the drinking water supply, household tap
water, links water supply infrastructure to human residences
and thus is critical to human health. However, the total detect-
ed number and absolute abundance of ARGs, even the “last-
resort” vancomycin, detected in HTW were significantly
higher than in DWTP effluent, suggesting that ARGs may
be transmitted through drinking water distribution systems
(Chen et al. 2020). The significant increase of chlorampheni-
col resistance genes in HTW suggests that chlorine residues in
pipes may contribute to the enrichment of ARGs in tap water
(Shi et al. 2013). One alternative, similar to that found associ-
ated with heavy metal concentration, is the effect of nocturnal
water stagnation in pipes (Zietz et al. 2003). Co-selection of
heavy metal was considered to enrich ARGs in water samples
(Seiler and Berendonk 2012). For example, arsenic and cop-
per pollution can accelerate the enrichment of ARGs (Zhang
et al. 2018; Zhang et al. 2020b). Biofilms are known to have
considerable biomass in drinking water distribution systems
(Waak et al. 2018) and may facilitate ARG enrichment
through horizontal gene transfer due to the high cell density
and close proximity in pipe systems (Flemming et al. 2002;
Król et al. 2013). Also, water retention time in pipes may
faci l i ta te the potent ial r isk of ARG distr ibut ion
(Lautenschlager et al. 2010). Besides, in combination with
the possible contributors mentioned above, the water resi-
dence time in the pipe system may facilitate the enrichment
and distribution of ARGs (Lautenschlager et al. 2010). The
enrichment of ARGs in HTW, suggesting the secondary

Fig. 6 (a): Redundancy analysis (RDA) of the quantitative correlations
between major bacterial phyla (> 1% in any sample) (Proteobacteria,
Actinobacteria, Bacteroidetes, Firmicutes, Cyanobacteria,
Acidobacteria), mobile genetic elements (MGEs) and antibiotic resistance

genes (ARGs). (b): Variation partitioning analysis (VPA) differentiating
effects of bacterial community, environmental factors and MGEs on
changes of the antibiotic resistome
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pollution of ARGs in the drinking water distribution system,
should not be neglected (Huang et al. 2011). The assessment
of the potential impact of ARGs to human health is urgent and
critical in the near future.

The correlation among environmental factors,
microbiome and resistome

In the current study, the ARGs were significantly correlated
with environmental factors and microbial communities respec-
tively, suggesting that environmental variables may be respon-
sible for the transmission of ARGs in the water samples. TOC
and TN were positively correlated with ARGs in RW, indicat-
ing both of the factors were one of the important contributors in
distribution of ARGs in that sampling site. The nutrient levels
in water decreased after the treatment of DWTPs, and therefore,
the contributors changed. The environmental variables such as
carbon, nitrogen and other essential nutrients not only facilitate
the growth of bacteria or ARB but also promote horizontal
transfer of ARGs (Yuan et al. 2018; Zhang et al. 2020c).
However, based on the VPA analysis, the contribution of envi-
ronmental factors solely to ARGs was relatively low compared
to the joint contribution of both environmental variables and
bacteria community, suggesting the environmental factors may
affect the ARGs indirectly through bacterial communities.

The contribution of phyla to ARGs changed with different
sampling sites, likely due to differences in the composition of
the bacterial community. The shift of bacterial community ex-
plained 11.9% of the variation of ARGs, higher than environ-
mental variables and MGEs. These results were consistent with
previous studies, which suggested the bacterial phylogeny was
the major contributor to profile of ARGs (Forsberg et al. 2014;
Zhou et al. 2019). Furthermore, the network analysis indicated
co-occurrence between bacterial phyla and ARGs, suggesting
that some bacteria are the potential host of ARGs. Notably, the
dominant phyla in the current study may serve as the hosts for
multipleARGs. For instance, the aminoglycoside resistance gene
(aphA1.aka.kan), MLSB resistance genes (ermx and mphA_02)
and tetracycline resistance genes (tetQ and tetM_01) were strong-
ly and significantly correlated with Bacteroidetes, which de-
served further study to investigate potential risks.

MGEs are critical to horizontal gene transfer of ARGs be-
tween disparate groups of microorganisms (Gaze et al. 2011).
In the present study, the major classes of ARGs were signifi-
cantly associated with total MGEs, integrons and transposons,
respectively, and suggest that MGEs may play an important
role in shaping the characteristics of ARGs in water samples
(Marshall and Levy 2011). Similar to environmental factors,
the contribution of MGEs to ARGs was low. However, a
combination of factors (bacterial community, environment
and MGEs) rather than a single factor may drive the major
changes in ARGs in water samples. In this study, factors that
may affect ARGs in tap water, such as chlorine, were not

monitored, which is one of the limitations of our work.
Further evaluation is needed in the future to better assess the
risk of ARG to human health.

Conclusion

In this study, the ARG profiles were evaluated by HT-qPCR
and a total of 224 ARGs and MGEs out of 295 targeted resis-
tance genes were identified from water sources, DWTP and
household tap water samples. Although drinking water treat-
ment from source to finished water reduced ARG number and
absolute abundance, an increase was noted in tap water sam-
ples. Environmental factors, MGEs and bacterial community
were the main drivers of ARG profiles. New treatment tech-
nologies, such as the treatment of powdered activated carbon,
are needed to eliminate ARGs in drinking water. This study
presents a dynamic distribution profile of ARGs from raw
water source to tap water thus providing a baseline reference
for subsequent risk assessment.
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