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Abstract
Honghu Lake, the largest shallow lake in Jianghan Plain of China, is essential for maintaining ecosystem functioning in this
region. However, water pollution and high disturbance are seriously threatening the ecological security of this lake. To explore
the causes of water quality fluctuations in Honghu Lake, the water quality index method (CCME-WQI), multivariate statistical,
and source apportionment techniques were adopted to characterize temporal trends in lake water quality (2004–2017), identify
the main driving factors of water quality indicators, and quantify the contribution of various pollution sources. Besides, the water
periods of the lake have been reclassified due to the seasonal variation of rainfall in the study area. The results of CCME-WQI
showed that the water quality in Honghu Lake initially improved over 2004–2011, with better water quality in the wet period than
in the dry periods, while the results over 2012–2017 were found to be opposite. Correlation analysis identified untreated
industrial wastewater (UIW) as the main pollution source affecting CODMn concentrations in Honghu Lake, while untreated
domestic sewage discharge (UDS) was identified as the main pollution source affecting BOD and F. coli concentrations. The
main pollution sources affecting nutrient indicators were rainfall and enclosure aquaculture (EA). Principal component analysis
(PCA) combined with absolute principal component score-multiple linear regression model (APCS-MLR) further appointed the
source contribution of each pollution source to water quality indicators. The results showed that EA in 2012 was reduced by 81%
compared with 2004, resulting in the contribution of EA to NH3-N, TP, and TN decreased by 0.2 mg L−1, 0.039 mg L−1, and
0.37 mg L−1, respectively. Compared with 2012, UIW was reduced by 65% in 2016, resulting in the contribution of UIW to
CODMn decreased by 1.17 mg L−1. In addition, compared with 2004, UDS decreased by 85% in 2016, and the contribution of
UDS to BOD and F. coli decreased by 0.7 mg L−1 and 887 cfu L−1, respectively. Based on the results of APCS-MLR, it was
predicted that the concentrations of COD and TP in Honghu Lake would meet the water quality requirements after 2017.
However, the rainfall non-point source pollution must be further controlled to achieve the desired level of TN concentration.
This study provided an accurate method for analyzing lake water pollution, and the results can provide a valuable reference for
optimizing water quality management and pollution control strategies within Honghu Lake.
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Introduction

As an important part of the earth ecosystem, lakes provide
important ecosystem services such as resilience to climate
change, productivity through biodiversity, hydrological regu-
lation, fisheries, recreation, and tourism (Schallenberg et al.
2013; Zhang et al. 2019). Water quality can influence the
health of lake wetland systems and its utility to human society
as a source of water (Wang et al. 2019). Drivers of changes in
lake water quality are complex (Han et al. 2020) because lakes
are affected by various anthropogenic activities and natural
factors, with the former being most prominent (Xian et al.
2007; Huang et al. 2010). The complexity of pollution sources
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and their interactions also pose significant challenges to man-
aging surface water resources (Elhatip et al. 2007). Long-term
water quality monitoring data and river basin pollutant dis-
charge data can be a valuable resource for the characterization
of temporal variations in water quality and the understanding
of complex drivers of water quality (Wan et al. 2017; Han
et al. 2020). This knowledge can act as important information
for the formulation of improved pollution control strategies
and water resources management in lakes (Chang 2005; Liu
et al. 2020).

Honghu Lake is the seventh-largest freshwater wetland
system in China (Li et al. 2018). Similar to many large lakes
in China, the water quality of this shallow lake had deteriorat-
ed severely under pressure by intense human activities before
pollution control measures were implemented (Mo et al.
2009). The pollution of Honghu Lake is considered the result
of the combined effects of large-scale enclosure aquaculture in
the lake and the inflow of external pollutants (Gui and
Yu 2008; Zhang et al. 2017). The Honghu Lake Wetland
Protection and Restoration Demonstration Project has been
implemented since 2004 and included interventions such as
the dismantling of aquaculture enclosures, the interception of
industrial and domestic wastewater, and the reconstruction of
the ecosystem (Chang et al. 2015). Besides, controls on live-
stock farming and fertilizer use were also tightened in 2010
and 2013, respectively (Chen et al. 2020). The long imple-
mentation period of restoration measures and the fact that
multiple measures were implemented together also makes it
difficult to assess the actual effect of a particular measure.
While these measures have resulted in the effective control
of some pollution sources, the concentrations of certain pol-
lutants in Honghu Lake still far exceed desired levels (Li et al.
2017a). Previous studies have provided some useful informa-
tion for the environmental protection of Honghu Lake, but
these mainly focused on heavy metals (Li et al. 2017b; Liu
et al. 2018), spatial variations in water quality (Li et al. 2015),
and ecological security (Mo et al. 2009). Few studies have
focused on quantifying the impact of various pollution sources
and pollution control measures on water quality and exploring
further measures to achieve the desired water quality levels.

Multivariate statistical techniques, such as cluster analysis
(CA), correlation analysis, and principal component analysis
(PCA)/factor analysis (FA), are effective approaches for ana-
lyzing large monitoring datasets for the grouping of multiple
variables and for facilitating the identification of potential
sources of pollution (Singh et al. 2005a; Ouyang et al. 2006;
Zhou et al. 2007a; Su et al. 2011; Xiao et al. 2016; Gurjar and
Tare 2019). Receptor-based models, such as absolute princi-
pal component score-multiple linear regression (APCS-
MLR), are able to quantify the contribution of different com-
ponents (Gholizadeh et al. 2016; Liu et al.,2020). However, to
quantify the contribution of a specific pollution source to wa-
ter quality indicators, it is necessary to establish a connection

between the pollution source and the principal components of
APCS-MLR. The realization of this goal requires both long-
term water quality monitoring data in the lake and pollutant
discharge data for the basin.

The present study was based on water quality monitoring
data for Honghu Lake and pollutant discharge data for the
Honghu Lake Basin collected over a long period.
Monitoring data for nine water quality parameters as well as
datasets for six potential sources of pollution to the lake were
selected for 2004 to 2017. These data were analyzed using the
water quality index, multiple statistical techniques, and source
apportionment methods in conjunction with the seasonal char-
acteristics of rainfall in the watershed. The objectives of the
present study were to (1) characterize temporal trends in lake
water quality; (2) identify the main driving forces affecting
water quality indicators; (3) quantify the contribution of pol-
lution sources in the Honghu Lake Basin to the water pollution
of Honghu Lake; and (4) provide suggestions for further water
quality management of Honghu Lake.

Materials and methods

Study area

Honghu Lake, located in the southeast portion of the Jianghan
Plain, is the seventh-largest freshwater lake in China (113° 12′–
113° 28′E, 29° 41′–29° 58′N) (Li et al. 2018). The lake is classed
as a shallow-water dammed lake (average depth 1.16m) (Cai and
Yi 1991) and is connected to the four lakes main canal, Luoshan
main canal, and the Yangtze River in the north, west, and south,
respectively (Fig. 1). The main rivers flowing into Honghu Lake
are the four lakes main canal and Luoshan main canal, which
receive various pollutions from agriculture, livestock and poultry
breeding, industrial, and domestic sewage (Wang et al. 2017).
Honghu Lake belongs to Jingzhou City in Hubei Province. A
survey in 2015 (Jingzhou Hydrology Bureau) determined that
Honghu Lake has a surface area and catchment area of 348
km2 and 5980 km2, respectively, with the basin hosting 3.3 mil-
lion permanent residents. Honghu Lake is a national wetland
reserve and fulfills important ecological service functions. The
lake acts as an important breeding base and wintering habitat for
many rare and endangered bird species as well as a gene bank for
wetland species in central China. The lake also serves a critical
function in regulating floods, hosts important fisheries, and acts
as a water supply for industry and agriculture (Zhang et al. 2017).
The study area has a subtropical humidmonsoon climate, with an
average annual temperature of 16–19 °C and yearly average pre-
cipitation between 900 and 1350 mm. Rainfall in the area is
abundant but uneven. Summers are hot and rainy, whereas win-
ters are cold and dry (Chen et al. 2020). The regional phreatic
aquifer consists of sandy silt, fine sandy silt, mild clay, etc. with
poor permeability (Zhang et al. 2017).
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Data source

Monthly water quality and water depth data from eight mon-
itoring stations spanning 2004–2017 were obtained from
Honghu Environmental Monitoring Center. The water quality
variables studied included pH, dissolved oxygen (DO), the
potassium permanganate index (CODMn), biochemical oxy-
gen demand (BOD), ammonia nitrogen (NH3-N), total nitro-
gen (TN), total phosphorus (TP), fluoride (F), and fecal coli-
forms (F. coli). The present study did not include heavy metal
indicators since the concentrations of all heavy metal indica-
tors were within the standard range and the majority of heavy
metal indicators fell below the minimum detection concentra-
tion. The low-risk level of heavy metals in Honghu Lake has
also been reported in other studies (Makokha et al. 2016; Li
et al. 2017b). Analyses were performed following the instruc-
tions outlined in the Technical Specifications Requirements
for Monitoring of Surface Water and Wastewater published
by the Ministry of Ecology and Environment of the People’s
Republic of China (standard number: HJ/T 91-2002). In the
case of a determined water quality variable falling below the
detection limit, that variable was set to the detection limit
(Farnham et al. 2002).

Previous studies have suggested that pollution from precip-
itation, enclosure aquaculture, domestic wastewater, industrial
wastewater, fertilizer use on farmland, and livestock produc-
tion in the basin may be important contributors to the deteri-
oration of water quality in Honghu Lake (Zhang et al. 2017; Li
et al. 2019). This study managed to collect annual information
on these six pollution sources in the Honghu Lake Basin from

2004 to 2017, including annual precipitation (AP), the area of
enclosure aquaculture in Honghu Lake (EA), untreated do-
mestic sewage discharge (UDS), untreated industrial waste-
water discharge (UIW), fertilizer use (FU), and livestock and
poultry production (LPP). AP and FU data were obtained
from the Jingzhou Statistical Yearbook and the UIW and
UDS data from the environmental statistics of the Jingzhou
Ecology and Environment Bureau. Livestock and poultry
breeding data were obtained from the Jingzhou Agricultural
and Rural Development Center. The number of livestock and
poultry was converted into the number of standard pigs ac-
cording to the conversion relationship of the pollutant output
(SEPA 2001). LPP represented the total number of standard
pigs after conversion. EA was determined through visual in-
terpretation of synthetic aperture radar (SAR) satellite imagery
combined with aquaculture statistics for Honghu Lake. The
SAR imagery data were mainly sourced from the satellite
instruments of the Environmental Satellite (ENVISAT) ad-
vanced synthetic aperture radar (ASAR), European Remote
Sensing (ERS) SAR, and Sentinel-1 SAR. The selected time
period of the imagery was September or October.

Analysis methods

Division of water period (DWP)

The precipitation in the Honghu Lake Basin shows a cyclical
trend. However, the study on the water period of Honghu
Lake has not been reported yet. Honghu Lake is the largest
catchment area of the Honghu Lake Basin. Rainfall will

Fig. 1 Location of Honghu Lake, Hubei Province, China, and the spatial distribution of the eight monitoring sites used in the present study.
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transport pollutants to Honghu Lake through storm runoff,
ditches, and streams, thereby inevitably cause seasonal chang-
es in the water depth and water pollution characteristics of
Honghu Lake. The present study proposes a novel classifica-
tion method to study changes in water quality during the year.
Each year of data for Honghu Lake was first separated into a
dry period (DP) and a wet period (WP) according to the
changes in lake water depth. The specific classification meth-
od was as follows:

R ¼
r11 r12
r21 r22

⋯ r1 j
⋯ r2 j

⋮ ⋮
ri1 ri2

⋱ ⋮
⋯ rij

2
664

3
775 ð1Þ

S ¼
s11 s12
s21 s22

⋯ s1 j
⋯ s2 j

⋮ ⋮
si1 si2

⋱ ⋮
⋯ sij

2
664

3
775 ð2Þ

t j ¼ s1 j þ s2 j þ…sij−smaxj−sminj
j−2

ð3Þ

T ¼ t1 t2 ⋯ t j
h i

ð4Þ

In Eq. (1) to Eq. (4), R represents the data matrix of water
depth; i is the number of years; j is the month of each year; S
represents the score matrix; sij is the rank number of rij when
sorting ri1, ri2,⋯ rij from low to high; smaxj and sminj represent
the maximum and minimum values among s1j, s2j, …, sij,
respectively; and t j is the average score in month j. In the
present study, the number of years (i) = 14 and the number
of months ( j) = 12. Finally, t1; t2;⋯; t j were clustered into
two groups by CA, and the individual groups of months with
the highest and lowest scores were designated as the wet and
dry periods, respectively. The rationality of water period divi-
sion was assessed using discriminant analysis. The principles
and results of discriminant analysis were provided in
Supplementary material.

Temporal variations in lake water quality

To understand the water pollution of Honghu Lake during
2004–2017, it is necessary to analyze the annual and inter-
annual changes in the water quality of Honghu Lake. The
water quality index method is a numerical method that can
be used to convert a large number of water quality parameters
into a single index to describe the overall state of water quality
(Han et al. 2020). However, the traditional water quality index
method has certain limitations due to the subjective assign-
ment of weights to each water quality parameter (Singaraju
et al. 2018). The CCME-WQI is a water quality assessment
method developed by the Council of Environment Ministers
of Canada, which can provide a more comprehensive and

objective reflection of the water quality status by integrating
information for the percentage of indicators that exceed the
standards, the percentage of monitoring sections in which
standards are exceeded, and the extent of exceedance of stan-
dards (Dede et al. 2013; Yan et al. 2016). The variables used
in the study were the water quality variables mentioned above.
As a habitat for rare aquatic organisms, Honghu Lake was
assessed according to China’s Environmental Quality
Standard for Surface Water (GB) Class II (SEPA 2002). The
pHwas 6–9, DOwas 6 mg L−1, CODMn was 4 mg L−1, BOD5

was 3 mg L−1, NH3-N was 0.5 mg L−1, TP was 0.025 mg L−1,
TN was 0.5 mg L−1, F was 1 mg L−1, and F. coli < 2000
colony forming units (cfu) L−1. The method used for calculat-
ing the CCME-WQI scores was as follows:

CWQI ¼ 100−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
1 þ F2

2 þ F2
3

q

1:732
ð5Þ

In Eq. (5), F1 is factor 1 and was labeled as the “scope.” It
gives the percentage of indicators which exceed the objective
value relative to the total number of indicators. F2 is factor 2
and was labeled as the “frequency.” It gives the percentage of
tests which exceed the objective value relative to the total
number of tests conducted during monitoring process. F3 is
factor 3 and was labeled as the “amplitude.” It gives the aver-
age extend of exceeding the objective value. The more de-
tailed computation procedure of F1, F2, and F3 can be found
in Dede et al. (2013). The score values were scaled to range
from 0 to 100 and were ranked in five categories: (1) poor (0–
44), (2) marginal (45–59), (3) fair (60–79), (4) good (80–94),
and (5) excellent (95–100) (Gao et al. 2016).

Multivariate statistics

Water pollution cannot be assigned directly to specific pollu-
tion sources by APCS-MLR. Thus, correlation analysis and
PCAwere used to gradually establish the relationship between
pollution sources in the Honghu Lake Basin and APCS-MLR
factors. Correlation analysis can estimate the strengths of re-
lationships between variables; thus, it is an effective method to
identify the pollution sources acting as the drivers of various
water quality indicators (Reimann et al. 2017). Pearson corre-
lation coefficients between variables greater than 0.6 or in the
range 0.4–0.6 when significance level P < 0.05 indicated sig-
nificant or moderate correlations, respectively (Li et al. 2013).
In addition to calculating the Pearson correlation coefficient
between pollution sources and water quality indicators, the
correlation coefficient between the six pollution sources was
also calculated to prevent confusion in determining the corre-
lation between specific pollution sources and water quality
indicators. The results of the correlation analysis will provide
the foundation for determining the pollution source category
represented by each factor in PCA.
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PCA is a statistical algorithm that transforms multiple var-
iables into several comprehensive variables to reflect the ma-
jority of original information, thus reducing the dimensional-
ity of the data (Wang et al. 2016; Liu et al. 2020). FA further
simplifies the structure of the PCA by rotating the defined axis
and constructing varifactors (VF) to describe the unobservable
potential factors that contribute to the compositional pattern of
water quality data (Han et al. 2020). PCA was used to analyze
the DP and WP water quality data of the optimal year and the
worst year for the water quality identified by CCME-WQI.
Since the pollution driver of each water quality indicator has
been determined by correlation analysis, the pollution catego-
ry represented by each VF can be judged by the driver of the
strong loading indicator in VF. The Kaiser-Meyer-Olkin
(KMO) and Bartlett’s sphericity tests were conducted to eval-
uate the validity of PCA, which required that the KMO values
be > 0.5 and Bartlett’s test to indicate significance (P < 0.001)
(Gao et al. 2016). Only components with eigenvalues greater
than 1 were retained until the cumulative variance was higher
than 75%. All PCAs conducted in the current study reserved
the same amounts of components to facilitate the comparison
of results (Gao et al. 2016). The pollution categories identified
by PCA were the pollution categories for source apportion-
ment in the APCS-MLR. Therefore, the result of PCA will be
the link between the pollution sources in the Honghu Lake
Basin and the pollution categories in the APCS-MLR.

Source apportionment using the APCS-MLR model

APCS-MLR model is an important receptor model and multi-
source analysis method that is constructed by combining the
multiple linear regression model (MLR) with the de-
normalized absolute principal component scores (APCS) pro-
duced by PCA (Singh et al. 2005a, 2005b; Su et al. 2011;
Gholizadeh et al. 2016; Chen et al. 2019). A detailed descrip-
tion of APCS can be found in Thurston and Spengler (1985)
and Zhou et al. (2007c). The source contributions to the con-
centration of water quality indicators can be calculated by
using a multiple linear regression (MLR) as:

Ci ¼ r0ð Þi þ ∑p
j¼1rij � APCS j ð6Þ

where Ci is the concentration of ith indicator, (r0)i is con-
stant term of obtained by the MLR for indicator i, rij is coef-
ficient of multiple regression of the pollution category j for
indicator i, APCSj is the scaled value of the rotated factor j for
the considered sample, and rij × APCSj represents the contri-
bution of pollution category j to Ci. The current study used
APCS-MLR to further analyze the contribution of each pollu-
tion category identified by PCA to the concentration of vari-
ous water quality indicators. Since the pollution sources rep-
resented by the strong loading indicators in each pollution
category have been determined through correlation analysis,

the source contributions of these pollution sources can also be
calculated through APCS-MLR. Moreover, the effect of con-
trolling the drivers of water quality indicators can be quanti-
fied by comparing the changes in the contribution of the same
pollution category to the same water quality indicator for dif-
ferent periods.

Results and discussion

Changes in six pollutant sources in the basin between
2004 and 2017

The data for each pollution source was processed using
the maximum normalization (x/xmax) method to allow a
comparison of trends among the six pollution sources. As
shown in Fig. 2, the results demonstrated significant
changes to EA, UDS, and UIW from 2004 to 2017.
There has been an evident decline in UDS since 2006,
and by 2017, the UDS was only 7.86% of that in 2006,
which may be related to the improvement of the sewerage
network and the increase in sewage treatment rates in the
basin. UIW increased sharply between 2010 and 2012 and
then showed a decreasing trend year by year, which could
be attributed to the acceleration of industrialization and
changes in environmental protection policies (Fu et al.
2010; Li et al. 2017a, 2017b). From 2004 to 2017, EA
in Honghu Lake first decreased, then increased, and
finally decreased to 0. Dai et al. (2019) attributed the
fluctuations in the aquaculture area in Honghu Lake to
environmental policy drivers. Zhang et al. (2017) reported
that two aquaculture enclosures removal projects had been
implemented in Honghu Lake at the end of 2004 and
2016. Since 2017, no enclosure aquaculture in any form
has been allowed in Honghu Lake due to further escala-
tion of protection of the lake. FU and LPP fluctuated
slightly between 2006 and 2017, with both showing an
initial gradual increase followed by a gradual decrease,
peaking in 2011 and 2013, respectively. The decrease in
FU was related to adjustments in local government rec-
ommendations of the use of crop fertilizers in 2010 with
the aim of reducing agricultural non-point source pollu-
tion (Chen et al. 2020). A possible explanation for the
decline in LPP is that the promulgation of the new version
of the “Regulation on the Prevention and Control of
Pollution from Large-scale Breeding of Livestock and
Poultry (2013)” resulted in the operations of many non-
compliant small livestock and poultry farms being halted
by local government. The Honghu Lake Basin belongs to
the subtropical humid monsoon climate. Although AP in
the Honghu Lake Basin showed fluctuating changes, there
was an overall fluctuating upward trend in precipitation
after 2012.
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Division of water period

The average water depth scores shown in Fig. 3a illustrate that
the water depth of Honghu Lake was significantly higher dur-
ing the second half of the year compared to the first half of the
year. CA was performed on the average monthly water depth
scores to accurately divide each year into a DP and WP. The
results shown in Fig. 3b demonstrate that the monthly scores
can be divided into two clusters at (Dlink/Dmax) × 100 < 5 and
that the difference between the clusters was significant (Zhou
et al. 2007a). Cluster 1 (WP) contained 5 months from June to
October, including summer and early autumn. During this pe-
riod, the water level of the Yangtze River was higher than that
of Honghu Lake, and consequently the floodgates of Honghu
Lake were opened to store water, allowing flow from the
Yangtze River into Honghu Lake and causing the water level
of Honghu Lake to rise (Li et al. 2015). In addition, the total
precipitation during this period accounting for ~78.7% of

annual precipitation (Jingzhou Statistical Yearbook) and the
majority of the runoff resulting from this precipitation flowed
into Honghu Lake, resulting in a further increase in water level.
Moreover, high water temperatures and abundant water re-
sources provided good conditions for fish growth; thus, enclo-
sure aquaculture was also very active during this period (Zhang
et al. 2017). Cluster 2 (DP) included the remaining 7 months.
During this period, the water level of the Yangtze River fell
below that of Honghu Lake. As preparation for flood control in
the next year, the sluice gates of Honghu Lake were opened to
release water. In addition, there was less rainfall in the Honghu
Basin during the DP, which resulted in a decline in the water
depth of Honghu Lake during the DP. The accuracy of the
water period division results was provided in the Supporting
material Table S1. Ouyang et al. (2006) assessed the surface
water quality of the St. Johns River according to seasonal var-
iations; however, this method is not applicable to regions in
which seasons cannot be clearly isolated. Li et al. 2017a,
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2017b) divided the water period of Honghu Lake into dry
(January to April), wet (May to August), and normal seasons
(September to December) based on long-term experience.
However, the results of the present study demonstrated that
such a classification result lacks accuracy. In general, the hy-
drological conditions and pollution sources of many rivers and
lakes will change periodically, and a suitable method of cate-
gorizing water periods could assist in more accurately identify-
ing important parameters that affect water quality (Baldwin and
Mitchell 2000; Baldwin et al. 2008).

Changes in water quality trends

The annual average concentration changes of nine water quality
indicators in Honghu Lake from 2004 to 2017 were shown in
Fig. 4. The results showed that CODMn, BOD5, TP, and TN
were the water quality indicators with concentrations exceeding
the desired standard for most study periods. Therefore, the pol-
lution sources affecting the concentration of CODMn, BOD5,
TP, and TNwill be the most important pollution sources affect-
ing thewater quality of Honghu Lake. Temporal trends of water
quality conditions over WP, DP, and whole year (WY) in
Honghu Lake were identified by CCME-WQI (Fig. 5). The
results showed that the water quality of Honghu Lake could
be divided into a rising phase (2004–2011) and a declining
phase (2012–2017) during the study period. It is worth noting
that the water quality over the WP is generally better than that
over the DP between 2004 and 2011, while the water quality
over the DP is generally better than that over the WP between
2012 and 2017. Combined with the results in Fig. 2, it was
speculated that the occurrence of the rising water quality period
might be attributed to the significant decrease in EA and UDS
between 2004 and 2011, while the declining water quality pe-
riod may be attributed to the significant increase in EA and AP
between 2012 and 2017. Also, which period ofWP and DP has
better water quality was also considered the result of changes in
UDS, AP, and EA because the emissions of these pollution
sources were seasonal in Honghu Lake Basin (Zhang et al.
2017). The best year for water quality was 2012, which may
result from lower AP, EA, and UDS in this year. The worst
years for water quality in the rising and falling water quality
periods were 2005 and 2017, respectively, but none of the six
pollution sources in the Honghu Lake Basin have reached an
extreme value in these 2 years. Thus, the unsatisfactory water
quality in these 2 years was believed to be the result of the
disturbance of the lake sediments resulting from the disman-
tling of the aquaculture enclosures (Pettersson 2001).

Identification of the drivers of water quality
indicators

Although negative correlations between variables have been
considered in some studies (Han et al. 2020; Liu et al. 2020),

they were not considered in the current study since pollution
sources (besides AP) selected in the present study were direct
contributors to the deterioration of water quality indicators (Fig.
6). Pollution sources that had a significant correlation with wa-
ter quality indicators were considered the dominant drivers of
this indicator. In this study, when the correlation coefficient
between variables was greater than 0.4, the significance level
P < 0.05 for all. Correlation analysis between pollution sources
showed that besides the correlation between UIW and LPP
(r=0.82), there were no obvious correlations between other
variables. The results of correlation analysis between water
quality indicators and pollution sources showed a significant
correlation between EA and pH (0.79), NH3-N (0.83), TP
(0.67), and TN (0.63), indicating that enclosure aquaculture
may be the main driver of changes to pH and nutrient
pollution in the Honghu Lake. This result is consistent with
Bian et al. (2012) and Querijero and Mercurio 2016), who
showed that aquaculture was the main source of nutrients in
lakes and an important driver of water eutrophication. Yang
et al. (2017) attributed an increase in pH in Dianchi Lake,
China, to higher temperatures, resulting in stronger photochem-
ical synthesis processes and increased carbon dioxide consump-
tion by algae. However, the field investigation in the current
study found that aquaculture farmers regularly applied quick-
lime to the water to neutralize acidity generated by the decom-
position of feed residues and fish feces, as well as to sterilize
and improve the water quality. Therefore, aquaculture in some
lakes may be an additional important driver of changes in pH.
Significant correlations between UDS and BOD (0.88) and F.
coli (0.91) were identified in Honghu Lake. This result is sup-
ported by Han et al. (2020), who attributed the BOD and F. coli
pollution in Baiyangdian Lake to the discharge of domestic
sewage. Environmental statistics showed that the average influ-
ent concentrations of BOD and F. coli to the Jingzhou Sewage
Treatment Plant were 63 mg L−1 and 240,000 cfu L−1, respec-
tively. Clearly, the discharge of untreated sewage would have a
considerably negative impact on the environment.

UIW showed significant correlations with CODMn (0.74)
and F (0.86). Qin et al. (2007) and Gao et al. (2016) similarly
attributed the decline in CODMn concentration to reducing
industrial wastewater discharge and an increase in urban sew-
age treatment rates. Fluorine in industrial wastewater usually
originates from fluoride mines, cement plants, fluorine chem-
ical factories, phosphorus fertilizer plants, and smelters
(Huang et al. 2010; Su et al. 2011). Information provided by
the Industry and Commerce Bureau showed that although
there are no fluorine mines in the Honghu Lake Basin, there
are a few cement, fertilizer, and chemical factories. The direct
discharge of wastewater from some such enterprises may be
the reason for UIW being related to F concentration in
Honghu Lake (Duan et al. 2016; Fuge 2019). The Pearson
correlation coefficients between LPP and F and F. coli were
0.83 and 0.77, respectively. Livestock and poultry breeding

60136 Environ Sci Pollut Res  (2021) 28:60130–60144



2004 2006 2008 2010 2012 2014 2016
0

2

4

6

8

10

pH

Year
2004 2006 2008 2010 2012 2014 2016

0

2

4

6

8

)L/g
m(

O
D

Year

class 

2004 2006 2008 2010 2012 2014 2016
0

1

2

3

4

5

6

C
O

D
M
n

)L/g
m(

Year

class 

2004 2006 2008 2010 2012 2014 2016
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

)L/g
m(

D
OB

Year

class 

2004 2006 2008 2010 2012 2014 2016
0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
H

3
)L/g

m(
N-

Year

class 

2004 2006 2008 2010 2012 2014 2016
0.000

0.025

0.050

0.075

0.100

)L/g
m(

PT

Year

class 

2004 2006 2008 2010 2012 2014 2016
0.0

0.5

1.0

1.5

2.0

2.5

)L/g
m(

NT

Year

class 

2004 2006 2008 2010 2012 2014 2016
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

)L/g
m(

F

Year

2004 2006 2008 2010 2012 2014 2016
0

200
400
600
800

1000
1200
1400
1600
1800
2000

)L/ufc(iloc.F

Year

class 

2004 2006 2008 2010 2012 2014 2016
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

)
m(

h

Year

Fig. 4 Water quality parameters of Honghu Lake with respect to time series from 2004 to 2017 with level of Environmental quality standards for surface
water Class II.
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are dominant industries in the Honghu Lake Basin. Fluorine in
LPP mainly originates from the fluoroquinolone antibiotics
(Wang et al. 2017). Although antibiotics have a limited effect
on F concentration, Honghu Lake has a low F background
value of 0.25 mg L−1, and therefore, the impact of LPP on F
cannot be ignored. DO showed no significant correlations
with the six pollution sources, which may be related to sea-
sonal or biological factors, such as temperature, wind speed,
and aquatic plants (Singh et al. 2005b; Zhou et al. 2007b). AP
showed significant correlations with TP (0.75) and NH3-N
(0.71), whereas AP showed moderate correlations with TN
(0.52). Rainfall can act as a driver of non-point source pollu-
tion as rainfall-runoff washes pollutants from the land surface
into the lake (Hülya and Hayal 2008). Non-point source pol-
lution is aggravated by agriculture, which is a dominant land
use in the Honghu Lake Basin. Excessive application of

chemical fertilizers results in the loss of fertilizers during rain-
fall, thereby explaining the observation of rainfall being sig-
nificantly correlated with TN and TP (Chen et al. 2013; Gao
et al. 2016). Although agricultural non-point source pollution
results from the combined effect of excessive fertilization and
rainfall, the results of the correlation analysis implied that
rainfall played a decisive role under conditions of little change
in fertilizer use. As shown in Fig. 4, the indicators in Honghu
Lake that exceeded the standards included CODMn, BOD5,
TP, and TN. Combined with the results of the correlation
analysis, it is clear that the pollution generated by EA, AP,
UDS, and UIW in recent years may be the main factor for the
failure of water quality in Hong Lake to meet the desired
standard.

Identification of potential pollution categories by PCA

By comparing the difference in pollution status between the
optimal and worst water quality years, the role of controlling
pollution sources could be more intuitively reflected. Based
on the results of CCME-WQI and considering minimizing the
interference of other pollution sources to the analysis of
APCS-MLR, the water quality data for the dry and wet pe-
riods in 2012, 2004, and 2016 were finally used to explore the
pollution situation for the optimal and worst periods of water
quality in Honghu Lake. The results of KMO for the three dry
periods were 0.532, 0.551, and 0.643, respectively, whereas
those for Bartlett’s sphericity were 84, 96, and 130 (P <
0.001). KMO results for the three wet periods were 0.513,
0.74, and 0.747, respectively, whereas those for Bartlett’s
sphericity were 81, 191, and 159 (P < 0.001). The results of
KMO and Bartlett’s sphericity indicated that PCA was appro-
priate and would be useful for providing significant reductions
in data dimensionality for each dry and wet period (Su et al.
2011; Dugga et al. 2020). Following the threshold recom-
mended by Shrestha and Kazama (2007), absolute values of
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indicator loadings > 0.75, 0.5–0.75, and 0.3–0.5 were consid-
ered to be strong, moderate, and weak, respectively.

For water quality data analyzed over the DP ( Table 1), the
first varifactor (VF1) in 2004 had strong and positive loadings
on CODMn, F, and DC and a moderate positive loading on
BOD5. Correlation analysis indicated that CODMn, F, DC, and
BOD5mainly originated fromLPP, UIW, and UDS; thus, VF1
was classified as “mixed point source pollution” (Hülya and
Hayal 2008). Similar classifications were made for VF2 for
2012 and VF1 for 2016 due to strong loading factors similar to
VF1 for 2004. VF2 in 2004 had strong positive loadings on
DO and TP and a moderate loading on TN. Honghu Lake is a
shallow lake, and since the dry period is associated with cold
and windy conditions, DO of the lake water is easily
replenished. Therefore, VF2 for 2004 was recognized as a
“natural pollution source” (Han et al. 2020). In addition,
VF1 in 2012 and VF2 in 2016 had strong DO loadings and
were also identified as “natural pollutions sources.” VF3 in
2004 showed strong loadings on NH3-N and moderate load-
ings on BOD5 and TN, which can be attributed to the effect of
EA and AP based on the results of correlation analysis.
Therefore, VF3 in 2004 was identified as a “mixed non-point
source” (Chen et al. 2013; Liu et al. 2020). Similarly, VF4 for
2012 and VF3 for 2016 were identified as “mixed non-point
sources.” Finally, VF4 in 2004, VF3 in 2012, and VF4 in 2016
all showed a strong loading on pH. Changes to the pH of
Honghu Lake were related to the application of quicklime
by aquaculture farmers, and thus, they were identified as a
“chemical pollution source” (Ma et al. 2019). Finally, each
VF of PCA was identified as either a “mixed point source,”
“natural pollution source,” “mixed non-point source,” or
“chemical pollution source” for DP over 3 years.

The analysis results over the WP (Table 2) showed that
VF1 in 2004 had strong loadings on CODMn, TP, and TN
and moderate loadings on NH3-N and F. According to corre-
lation analysis, CODMn mainly originated from UIW, TP and
NH3-N mainly originated from rainfall-runoff and EA, TN
mainly originated from EA, and F mainly originated from
UIW and LPP. Therefore, VF1 was identified as a “mixed
source” (Su et al. 2011). Similarly, VF1 of 2016 was identified
as a “mixed source.” VF2 in 2004 showed strong positive
loadings on BOD5 and F. coli, and a moderate loading on F,
and based on the results of correlation analysis, was associated
with “domestic pollution sources” (Najar and Khan 2012).
Similarly, VF2 in 2016 explained 22.72% of total variance
in BOD5 and similarly represented a “domestic pollution
source.” VF3 in 2004 and 2012 and VF4 in 2016 showed a
high loading on pH. Therefore, similar to VF4 in 2004 during
the DP, they were identified as “chemical pollution sources.”
VF4 in 2004 and 2012 showed strong loading on DO; the
higher DO in Honghu Lake over the WP was considered the
influence of aquatic plants (Fitch and Kemker 2014; Liu et al.
2019). In addition, VF1 for 2012 over the WP contained the
same variables as VF1 for 2004 over the DP, which represent-
ed the mixed point source pollution, while VF2 for 2012 over
the WP contained the same variables as VF3 for 2004 over the
DP, which represented mixed non-point source pollution.
Finally, VF3 in 2016 had a strong loading on TP and moderate
loadings on F and DC. This principal component was associ-
ated with rainfall non-point source pollution (Zhang et al.
2020). The VFs of the wet periods were ultimately identified
as one of the following seven types: (1) mixed source, (2)
domestic pollution sources, (3) chemical pollution source,
(4) aquatic plant sources, (5) mixed point source, (6) mixed
non-point source, and (7) rainfall non-point sources.

Table 1 Loadings of nine selected variables on VARIMAX rotated factors of dry periods (DP) for different years in Honghu Lake

Parameters 2004 Dry period 2012 Dry period 2016 Dry period

VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4
pH −0.186 0.089 −0.120 0.872 0.123 −0.033 0.926 0.055 −0.007 0.033 −0.042 −0.903
DO −0.127 0.936 0.020 0.145 0.801 −0.115 −0.099 0.003 −0.071 0.859 0.226 0.005

CODmn 0.760a −0.422 0.122 0.049 −0.052 0.851 0.226 0.392 0.835 0.017 0.105 −0.139
BOD5 0.590b 0.041 −0.516 0.300 0.660 0.406 0.151 0.132 0.198 0.588 0.043 0.661

NH3-N −0.128 −0.119 0.954 0.000 0.028 0.052 −0.008 0.943 0.012 0.082 0.793 0.037

TP −0.039 0.877 0.340 0.159 0.425 0.518 −0.309 0.561 −0.029 0.161 0.857 0.079

TN −0.005 0.509 0.676 −0.324 −0.623 0.247 −0.042 0.523 0.410 0.671 −0.117 0.157

F 0.827 0.185 −0.131 −0.151 −0.023 0.872 −0.193 −0.088 0.859 0.057 −0.031 0.248

F. coli 0.811 0.099 0.153 0.255 0.097 0.710 0.519 −0.120 0.651 0.441 −0.061 0.173

Eigenvalue 2.338 2.057 1.569 1.337 2.169 1.801 1.509 1.384 2.400 1.765 1.633 1.437

% Total variance 25.973 22.860 17.436 15.298 24.100 20.013 16.762 15.382 26.662 19.612 18.145 15.965

Cumulative % 25.973 48.833 66.269 81.566 24.100 44.113 60.875 76.257 26.662 46.274 64.419 80.384

aUnderlined and bolded factor loading are considered strong loading
b Factor loading that are only underlined are considered moderate loading
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Compared with DP, the compositions of VFs in the WP
weremore complicated.Wet periods are characterized by high
rainfall (Jingzhou Statistical Yearbook), and pollutants during
this period will be mixed through surface runoff or river flow
(Ma et al. 2018), thereby posing difficulties to identification
by PCA. In addition, although the DP contained the same
potential pollution categories every year, their rank changed,
whereas theWP changed not only the rank but also the type of
pollution. These results can be explained by the changing
environment and pollutants in the Honghu Lake Basin (Li
and Zhang 2010). For example, mixed point sources and
mixed sources explained the majority of total variance
during the DP and WP, respectively, and were the most
important pollution categories in the dry and wet periods.
UIW was highest in 2012; thus, F loading was the highest in
the PCA for 2012. EA was lowest in 2012, and the
corresponding loadings of TN and TP in 2012 were lower
than those of the other 2 years. Duan et al. (2016) found that
nutrients, organics, chemicals, heavy metals, and natural
pollutants were the main pollution categories in Eastern
Poyang Lake. Gao et al. (2016) determined that the main
pollution categories of the Three Gorges Reservoir were
mixed pollution, heavy metals, nutrient inputs, and organic
pollutants. These previous studies and the current study indi-
cate that although there are similarities in the pollution cate-
gories among Chinese lakes, each lake also has unique phys-
ical and chemical characteristics due to different natural and
anthropogenic features (Huang et al. 2010). Li et al. (2017a)
determined the potential pollution categories of Honghu Lake
to be nutrients, climate, and geographical factors. The results
of Li et al. (2017a) are similar to those of other studies that

identified VFs through inference. Although those studies
identified the main categories of pollution of the lake, they
provided no clear guidance for tracking specific pollution
sources and subsequent targeted reduction (Wang et al.
2011). Obviously, the identification of VFs based on the cor-
relation between water quality indicators and pollutants will
be more accurate and reasonable.

Source contribution based on APCS-MLR

Coefficients of determination (R2) shown in Tables 3 and 4
indicated that APCS-MLR was relatively accurate besides for
TN over the DP in 2004 (0.39) and for TP over the WP in
2012 (0.46) (Zhou et al. 2007a). The influence of chemical
sources on pH accounted for more than 50% over all periods,
indicating that the application of lime played an important role
in the pH of Honghu Lake. The contribution of strong sources
on DO during the WP was higher than that during the DP,
indicating that aquatic plants may strongly influence DO.
UIW was the main driver of CODMn in Honghu Lake.
Compared with 2012, UIW decreased by 65% in 2016, but
this only reduced the contribution of mixed sources or mixed
point sources to CODMn by 1.27 mg L−1 and 1.07 mg L−1 in
wet and dry periods, respectively, and the influence of UIW to
CODMn remained at a high level (46.6% in DP and 55.2% in
WP). This result demonstrated that although the management
of industrial wastewater discharge by the local government
played a certain role in reducing the concentration of
CODMn in Honghu Lake (Fu et al. 2010), existing potential
pollution sources continue to have a strong influence on
CODMn, which need to be further controlled.

Table 2 Loadings of nine selected variables on VARIMAX rotated factors of wet periods for different years in Honghu Lake

Parameters 2004 Wet period 2012 Wet period 2016 Wet period

VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4

pH −0.172 0.016 0.916 −0.018 −0.115 0.216 0.885 0.202 −0.232 −0.072 −0.041 −0.910
DO −0.326 0.224 −0.311 0.830 0.232 0.063 0.100 0.945 0.739 0.434 0.253 −0.039
CODmn 0.815a 0.040 −0.256 −0.066 0.782 0.116 0.272 0.295 0.885 0.140 0.288 0.008

BOD5 −0.078 0.815 −0.019 −0.182 0.733 0.070 0.351 0.353 0.179 0.889 0.073 0.054

NH3-N 0.634b 0.230 0.356 0.121 0.046 0.938 0.002 −0.103 0.553 0.480 0.077 0.554

TP 0.913 −0.059 −0.181 0.050 0.101 0.542 0.143 0.374 0.165 −0.121 0.882 0.178

TN 0.750 −0.186 0.429 0.177 −0.688 0.298 −0.012 −0.242 0.961 0.031 0.087 −0.054
F 0.514 0.597 −0.155 −0.127 0.914 0.073 0.252 0.107 −0.664 −0.204 −0.628 −0.052
F. coli 0.068 0.903 −0.044 −0.086 0.810 −0.088 0.398 −0.009 0.367 0.333 0.738 −0.071
Eigenvalue 2.461 1.955 1.452 1.084 2.333 1.736 1.419 1.203 2.327 2.225 1.885 1.279

% Total variance 28.786 25.615 16.130 12.049 27.034 19.288 15.764 13.363 27.852 22.724 20.944 14.215

Cumulative % 28.786 55.401 70.531 82.580 27.034 46.322 62.086 75.449 27.852 50.576 71.520 85.734

aUnderlined and bolded factor loading are considered strong loading
b Factor loading that are only underlined are considered moderate loading
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UDSwas the main driver of BOD concentration in Honghu
Lake. Compared with the UDS in 2004, the UDS in 2016 have
been reduced by about 85%, and the contribution of strong
sources on BOD decreased 0.73 mg L−1 and 0.66 mg L−1 over
the DP and WP, respectively. Furthermore, domestic sources
seemed to have a higher impact on BOD during the WP than
during the DP and weremaintained at a relatively high level (>
50%). This phenomenon indicated the possible presence of
other sources in identified domestic sources such as agitation
of bottom mud that impact BOD during the WP besides do-
mestic pollution sources (Lin et al. 2018). Correlation analysis
identified NH3-N, TP, and TN as the most important indica-
tors relating to aquaculture and rainfall. Compared with 2004,
aquaculture in 2012 was reduced by 81%, but annual rainfall

was similar. Correspondingly, the average contributions of
strong sources to NH3-N, TP, and TN were reduced by
0.2 mg L−1, 0.039 mg L−1, and 0.37 mg L−1, respectively. In
addition, aquaculture decreased by 51% in 2016 compared
with 2004, but rainfall increased by 34%, resulting in the
average contributions of strong sources to NH3-N, TP, and
TN, which were reduced by 0.04 mg L−1, 0.023mg L−1, and
0.25mg L−1, respectively. The indicators that exceeded the
water quality standards of Class II in 2016 were CODMn,
TP, and TN, which exceeded by 0.09 mg L−1, 0.020 mg
L−1, and 0.30 mg L−1, respectively. Comparing the changes
in pollution emissions and source contributions in 2004, 2012,
and 2016, it can be inferred that if UIW and EA are further
reduced, the concentration of CODMn and TP in Honghu Lake

Table 3 Concentration contribution of pollution sources to each water quality variable during dry periods in Honghu Lake, China. (mg/L)

Variables 2004 Dry period R2 2012 Dry period R2 2016 Dry period R2

S1 S2 S3 S4 T S1 S2 S3 S4 T S1 S2 S3 S4 T

pH - 1.46 - 4.32 7.38 0.74 - - - 5.47 7.52 0.88 - - - 4.60 8.17 0.82

DO - 3.12 - 0.76 7.71 0.82 - 3.05 - - 8.24 0.66 - 3.63 - 1.25 8.04 0.79

CODMn 1.93 0.74 1.19 - 5.48 0.70 3.03 - 0.50 - 5.40 0.73 1.76 - 0.83 - 3.77 0.91

BOD5 0.96 - 0.79 - 2.78 0.72 0.56 1.10 - - 2.34 0.64 0.23 0.55 - 0.52 1.82 0.82

NH3-N - 0.09 0.32 - 0.51 0.86 0.05 0.03 0.11 - 0.24 0.89 - 0.10 0.34 - 0.54 0.87

TP - 0.061 - 0.005 0.088 0.63 0.004 0.002 0.005 - 0.016 0.74 - - 0.031 - 0.040 0.77

TN - - 0.54 - 1.46 0.39 - 0.29 0.21 - 0.69 0.73 - 0.54 0.13 - 0.84 0.66

F 0.21 0.08 - - 0.39 0.80 0.41 0.06 0.11 - 0.67 0.81 0.19 0.06 - - 0.44 0.80

F. coil 806 - - 361 1524 0.75 501 - - 384 1305 0.80 34 20 - - 91 0.79

S1 represents for mixed point source sources, S2 represents natural pollution sources, S3 represents mixed non-point sources, and S4 represents chemical
sources. T are the concentration of water quality indicators in Honghu Lake

Underlined and bolded factor loading are considered strong sources; factor loading that are only underlined are considered moderate sources

Table 4 Concentration contribution of pollution sources to each water quality variable during wet periods in Honghu Lake, China. (mg/L)

Variables 2004 Wet period R2 2012 Wet period R2 2016 Wet period R2

S1 S2 S3 S4 T S5 S3 S4 S6 T S1 S2 S3 S7 T

pH 0.75 1.01 4.19 - 7.86 0.87 - 4.05 - - 7.28 0.84 2.12 - 4.89 - 8.13 0.89

DO - - 0.96 3.60 7.60 0.87 - - 4.54 - 8.29 0.96 5.82 - - - 8.30 0.80

CODMn 2.57 - 0.79 - 4.71 0.74 3.63 - - 0.61 5.22 0.79 2.56 0.91 - 0.73 4.63 0.89

BOD5 - 1.81 - - 2.73 0.70 1.10 - 0.43 - 1.88 0.79 0.63 1.15 - - 2.19 0.83

NH3-N 0.29 0.07 - - 0.53 0.60 0.05 - - 0.10 0.23 0.89 0.20 0.09 0.13 - 0.45 0.85

TP 0.030 - 0.016 - 0.055 0.87 - - 0.005 0.007 0.021 0.46 0.015 - - 0.028 0.049 0.85

TN 0.57 - - - 1.16 0.81 0.29 - - 0.16 0.76 0.62 0.39 - 0.12 - 0.71 0.93

F 0.10 0.11 - - 0.31 0.66 0.33 0.15 - - 0.56 0.92 0.12 - - 0.09 0.27 0.88

F. coil - 1018 - - 1358 0.83 517 - 218 - 1010 0.82 16.71 - - 32 73 0.80

S1 represents mixed sources, S2 represents for domestic pollution source, S3 represents chemical source, S4 represents aquatic plant source, S5
represents mixed point source, S6 represents mixed non-point source, and S7 represents rainfall non-point source. T are the concentration of water
quality indicators in Honghu Lake

Underlined and bolded factor loading are considered strong sources; factor loading that are only underlined are considered moderate sources
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will meet the water quality standards. However, after enclo-
sure aquaculture is completely dismantled, it is necessary to
control rainfall non-point source pollution further so that the
TN concentration can meet the water quality standard of Class
II. Compared with 2004, UDS in 2016 was reduced by 85%,
and the contribution of domestic sources on F. coli decreased
772 cfu L−1 and 1001 cfu L−1 over DP and WP, respectively,
indicating that treatment of domestic pollution by the govern-
ment had a significant effect on reducing the concentration of
F. coli in Honghu Lake.

In general, the impact of point source pollution on Honghu
Lake gradually weakened, and non-point source pollution
resulting from rainfall become the most important factor af-
fecting the water quality of Honghu Lake. The percentage
contribution of various pollution sources to the water quality
of Honghu Lakewas shown in SupportingMaterials Table S2.
As shown in Table S2, unidentified sources (UIS) over all
periods contributed to pollution in Honghu Lake for most
water quality variables, ranging from 0.8 to 30.6%.
Although correlation analysis identified pollution sources that
resulted in fluctuations in water quality, long-term fixed pol-
lution sources such as endogenous pollution could not be
identified. The results of APCS-MLR indicated the existence
of these pollutants and proved their important impact on the
water quality of Honghu Lake. It is recommended that future
studies conduct more systematic research on UIS and endog-
enous pollution.

Conclusions

The present study applied a variety of analysis methods to the
combined water quality data of Honghu Lake and pollution
discharge data of the Honghu Lake Basin to systematically
analyze the water pollution of Honghu Lake. The water period
division method based on CA categorized the months of each
year in two water periods according to water depth, with
June–October representing the WP and November–May
representing the DP. The CCME-WQI further found that the
water quality of Honghu Lake showed an overall improving
trend from 2004 to 2011, whereas the results for 2012 to 2017
showed an overall declining trend.

The main drivers of different water quality indicators were
identified by correlation analysis. Generally, pH was affected
by aquaculture, whereas CODMn and BOD were mainly af-
fected by industrial pollution and domestic pollution, respec-
tively, and NH3-N, TP, and TN were mainly affected by
enclosed aquaculture and rainfall. PCA identified a total of
four and seven types of pollution categories in the DP and
WP, respectively, in 2004, 2012, and 2016, revealing the com-
plexity and variability of pollution categories in Honghu Lake.
Receptor-based source apportionment through APCS-MLR
showed the differences in source apportionment over these 3

years. By comparing the difference of source contributions in
different periods, the effect of pollutant reduction was quanti-
fied. Based on the results of source appointment, it was pre-
dicted that the concentration of most water quality indicators
in Honghu Lake would meet the water quality requirements
after 2017, but rainfall non-point source pollution must be
controlled in the future to make TN concentration achieve
the desired level. The research results obtained in the present
study affirmed the effect of management of point source pol-
lution and aquaculture enclosures on improving water quality
and also provided a reference for further water quality man-
agement of Honghu Lake.
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