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Abstract
The construction industry is a pillar industry of China’s national economy but its problems of high energy consumption, high
pollution, and low energy efficiency are increasingly prominent. The study on the energy efficiency of the construction industry is of
great significance for improving development quality and achieving the goal of energy saving and emission reduction. In this paper,
a three-stage undesirable SBM-DEA model was employed to measure the energy efficiency in the construction industry during
2005-2016. The CO2 directly emitted by the construction industry and indirectly emitted in the production of building materials
were used as the undesirable output and the three-stage framework was employed to analyze and eliminate the influence of external
environment. The empirical results showed that low efficiency of management in the construction industry is an important factor
leading to the low level of energy efficiency in China’s construction industry. For the energy efficiency value before and after
adjustment, the “high-high” provinces have made full use of the superior external environment by their high management level,
while the “high-low” provinces need to fully realize the potential in promoting energy efficiency of its external environment by
improving its ownmanagement of the construction industry. On the contrary, the “low-high” provinces need to improve the external
environment to ease its restrictions on the level of management in the construction industry. Environmental factors andmanagement
level should be considered simultaneously for different provinces to improve energy efficiency of the construction industry.
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Introduction

The problems of resources, energy, and environment have
become increasingly prominent with the rapid development

of economy and the acceleration of urbanization in China.
As an important pillar industry of China’s national economy,
the problems of high energy consumption, high pollution, and
low energy efficiency in the construction industry were par-
ticularly highlighted. The total output of China’s construction
industry reached 2139.54 billion in 2017 while the added val-
ue accounting for 6.7% of China’s GDP and its growth rate
exceeded GDP growth by 3%.1 At the same time, energy
consumption in the construction industry reached 857 million
tons of standard coal, accounting for 20% of China’s total
energy consumption in 2015, and this number is still grow-
ing.2 Figure 1 illustrates that the total construction carbon
emission in China shows a trend of continuous growth,
reaching 1.961 billion tons in 2016, which is about three times
higher than 668 million tons in 2000, with an average annual
growth of 6.96%, and the construction industry accounts for

1 The data come from China Statistical Yearbook (2018), National Bureau of
Statistics of China.
2 The data come from China Statistical Yearbook (2018), National Bureau of
Statistics of China.
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20.6% of China’s energy consumption and 19.4% of its car-
bon emissions.3 In addition, considering the energy consump-
tion during heating, cooling, illumination, and the production
of building materials, the construction industry will consume
more than a third of China’s total energy consumption.4 The
construction industry is an important emitter of carbon diox-
ide, haze, and other pollutants (Lu et al. 2016; Feng et al.
2016), which will lead to a lot of grave consequences, such
as lung diseases, traffic congestions in cities, and economic
loss (Zhang and Crooks 2012). In view of the problems of
high energy consumption, high pollution, and low energy ef-
ficiency in construction, promoting the energy efficiency in
the construction industry is crucial for improving develop-
ment quality and achieving the goal of energy saving and
emission reduction.

In this paper, the energy efficiency of China’s construction
industry was investigated by employing the three-stage unde-
sirable SBM-DEA model, which was widely used in energy
and environment modeling, for its superiority in dealing with
the undesirable output, as well as in evaluating and eliminat-
ing the influence of external factors or random noises. Based
on the measurement of energy efficiency in China’s construc-
tion industry, regional gaps, trends, and influencing factors are
the three main concerns in the discussion of this paper, follow-
ed by some policy implications for the sustainable develop-
ment of China’s construction industry. This paper contributes
to current literature in two aspects. Firstly, the CO2 directly
emitted by the construction industry and indirectly emitted in
the production of building materials were selected as an un-
desirable output to shed light on the full life cycle environ-
mental performance of the construction industry. Secondly,
urbanization, economic level, environmental regulation, pub-
lic investment, human capital, and industrial structure of each
province were selected as external factors to analyze the

influencing factors of energy efficiency in China’s construc-
tion industry within the three-stage framework.

This paper was organized as follows. The “Literature re-
view” section provides a brief literature review of the devel-
opment of DEA model and some research about energy effi-
ciency in the construction industry. Themethodology and data
were then described in the “Methodology” section and the
“Data description and variables” section respectively, follow-
ed by the empirical results in the “Empirical results” section,
and the conclusion and policy implications in the “Conclusion
and policy implications” section.

Literature review

Data envelopment analysis (DEA) and stochastic frontier
analysis (SFA) are the main methods to measure energy effi-
ciency. DEA is a non-parametric, linear, and programming
method to measure the productivity of comparable multiple-
input and multiple-output decision-making units (DMUs).
Compared with SFA, DEA does not require a priori assump-
tions on the underlying functional form and information on
prices, so it is widely employed for the measurement of the
energy efficiency. The first published paper used this
approach in energy efficiency issues by Färe et al. (1983) in
the field of electricity generation plant energy. During the
2010s, there are 524 articles on energy and environment that
applied the DEA methods (Sueyoshi et al. 2017), and this
method has been adopted by more and more scholars. DEA
model was widely employed to investigate energy efficiency
or environmental performance in different countries and re-
gions, and has been deeply modified and widely applied to
many sectors such as agricultural sectors (Ullah and Perret
2014; Fei and Lin 2017; Li et al. 2017), industrial sectors
(Liu and Wang 2015; Wu et al. 2019), transportation sectors
(Cui and Li 2014, 2015; Feng and Wang 2018), energy-
intensive industries (Lin and Tan 2016), power generation
industry (Liu et al. 2016), ecosystem (Susaeta et al. 2016),
construction sectors (Xue et al. 2015), service sectors (Lin
and Zhang 2017), and commercial banks (Wang et al.
2014). These studies showed that DEA model provides an
appropriate way in modeling the production with multiple-
inputs and multiple-outputs, especially widely employed in
the field of energy and environmental economics.

DEA model has experienced a series of evolutions, from
radial slacks to non-radial slacks, from Shepard distance func-
tion (SDF) to directional distance function (DDF) and non-
radial directional distance function (NDDF) (Zhang and Choi
2014). During the evolution of DEA model, the disposal of
undesirable outputs and the impact of external factors and
random error were two concerned issues and the argument
around these two problems promoted the development of
DEA model.

Fig. 1 Carbon emission of the construction industry from 2000 to 2016

3 The data and figure come from China building energy consumption report
(2018), China Association of Building Energy Efficiency.
4 The data come from China building energy consumption report (2018),
China Association of Building Energy Efficiency.
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Traditional DEAmodels, such as BCC and CCR, are radial
models and hence cannot solve the coexistent of desirable and
undesirable outputs. The endeavor to solve this problem pro-
moted the improvement of DEAmodel from SDF to DDF and
NDDF. Early scholars took undesirable outputs as inputs, or
turned it into the desired outputs by SDF, implying the as-
sumption that the desirable output changed in the same pro-
portion as the undesirable output, which violated the actual
production process. Some scholars proposed a more practical
technology for weak disposability production, and employed
DDF to improve the deficiency of SDF (Zhou et al. 2008).
Furtherly, NDDF was employed to relax the constraints about
undesirable output of DDF, making the measurement of effi-
ciency more in line with reality (Zhou et al. 2012); then, cap-
ital, labor, and energy were all incorporated into the frame-
work of NDDF, and the calculation of total factor energy and
environmental efficiency is realized (Zhang et al. 2014).

In addition to the improvement of DDF, a slack-based mea-
surement (SBM) model proposed by Tone (2001) gave anoth-
er way to deal with different inputs and outputs, which
allowed input reduction and output expansion at the same
time, and does not stick to a proportionate change of input
and output. And the duality form of SBMmodel was proposed
to model the shadow price of pollution and the substitution
between production factors (Zhang et al. 2015a). Considering
the treatment of undesirable outputs, the SBM-undesirable
model was proposed by Tone (2004), which is a new non-
radial and non-oriented DEA approach and employed by a lot
of studies to investigate the efficiency (Zhang and Choi
2013a; Apergis et al. 2015; Zhang et al. 2016). On this basis
of SBM-DEAmodel, some new methods have been proposed
in recent years. Considering the technological gaps between
different DMUs and the movement of technological frontier,
the meta-frontier slack-based efficiency measure (MSBM)
and meta-frontier undesirable SBM were proposed to incor-
porate group heterogeneities (Zhang et al. 2015b). On the
contrary of SBM, which require a DMU was evaluated at
maximum distance to the frontier, a minimum distance to
the weak efficiency frontier method (MinDW) was proposed
to evaluate DMU at minimum distance to the frontier,
allowing a DMU to reach the frontier at a less adjustment of
inputs and outputs (Wang et al. 2013). In addition, considering
the different importance of each inputs and outputs, an
epsilon-based measure (EBM) model was proposed by setting
a series of parameters to express the relative importance of
inputs and desirable and undesirable outputs (Tone and
Tsutsui 2010). Yu et al. (2019) synthetically studied these
models (SBM, EBM, and MinDW) and their meta-frontier
forms, then employed them to investigate the eco-efficiency
of cities in China, and found there were small differences of
the measured eco-efficiency in different models.

Another argument which promoted the development of
DEA model was that the traditional DEA method does not

consider the impact of external environment and random error
on the efficiency value, and the results obtained are not com-
parable. In response, the three-stage and four-stage DEA
models were the most widely used approach to investigate
energy efficiency. The four-stage model proposed by Fried
et al. (1999) eliminates the influence of environmental factors
on technical efficiency, but it cannot eliminate the influence of
statistical noise. In recent years, the three-stage model pro-
posed by Fried et al. (2002) has effectively eliminated the
interference of environmental factors and managers’ luck on
the measurement of technical efficiency.

DEA model was also widely used to study the energy effi-
ciency in the construction industry. Xue et al. (2015)
employed a DEA-based Malmquist productivity index
(MPI) to measure the energy efficiency of the construction
industry in 26 provinces in China during 2004 to 2009.
They found that energy efficiency gaps existed different
regions and it is necessary for the Chinese government to
develop policies to strengthen the energy management. Chen
et al. (2016) employed a three-stage DEA and discriminant
analysis (DA) model to measure the energy efficiency and
trends of the construction industry in 30 provinces during
2003 and 2011. A constant fluctuate in the efficiency was
found in most of provinces during the sample years, for the
overall efficiency decreased after the peak in 2004. In
addition, they found that the regional economic level has no
significant impact on the energy efficiency in the construction
industry and the gaps among the eastern, central, and west
regions were not obvious. Zhang et al. (2018) employed the
undesirable SBM-DEA model to measure the provincial en-
ergy efficiency of the construction industry from 2011 to 2015
and empirically reveal that environmental regulation has a
significant impact on the energy efficiency in the construction
industry.

In view of the studies about energy efficiency in China’s
construction industry, DEA model provides a good way to
measure the energy efficiency and can help policy-makers to
improve strategies of sustainable development in China.
However, there were some gaps in current research. Firstly,
various DEA models were employed in these research, while
few of them considered the disposal of undesirable outputs
and the elimination of external influences simultaneously.
Secondly, indirect CO2 emissions from the production of
building materials, which was an important source of emis-
sions, were often overlooked when CO2 emissions were con-
sidered an undesirable output of the construction industry.
Thirdly, existing studies were not comprehensive enough to
examine the factors influencing energy efficiency in the con-
struction industry. Therefore, this paper combined undesirable
SBM-DEA and three-stage DEA framework to accurately
measure the energy efficiency of the China’s construction in-
dustry, then distinguish and eliminate the impact of external
factors.
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Methodology

A three-stage SBM-DEA model was adopted to evaluate the
energy efficiency of the construction industry. Compared with
the traditional DEA model, this method can eliminate the im-
pact of external environment and random error on the efficien-
cy value and conduct input and output slacks at the same time.
Considering other types of updated DEA models, such as
meta-frontier slack-based efficiency measure (Zhang et al.
2014), which incorporates the movement of technological
frontier caused by the technological gaps between different
groups of DMU, and the duality form of SBM model was
proposed to model the shadow price of pollution and the sub-
stitution between production factors (Zhang et al. 2014), the
three-stage undesirable SBM-DEA was more consistent with
our research goals. Further studies can be carried out on the
basis of these updated DEA models.

The specific framework of the three-stage undesirable
SBM-DEA model is shown in Fig. 2. In stage I, the
energy efficiency of each DMU is initially evaluated
based on the SBM-DEA model. In stage II, SFA meth-
od was employed to decompose the influence of envi-
ronmental factors and random error factors, and then
adjust the input variables according to the SFA results
to exclude the influence of environmental factors and
random error factors. In stage III, the energy efficiency
of each DMU was re-estimated using the adjusted input
variables and the SBM-DEA model.

The SBM-undesirable model

The slack-based measurement (SBM) model proposed
by Tone (2001) can deal with input reduction and
output expansion at the same time, and does not stick
to a proportionate change of input and output. However,
the SBM model cannot deal with undesirable outputs.
Tone (2004) proposed the SBM-undesirable model to
deal with undesirable output. As a new non-radial and
non-oriented DEA model, the SBM-undesirable model
can conduct input and output slacks at the same time,
while does not need strict proportional changes of in-
puts and outputs.

According to Tone’s model, a system with n decision-
making units (DMUs) has three indicators: inputs, desirable
outputs, and undesirable outputs, represented by three vectors
∈Rm, yg ∈ Rs1, and yb ∈ Rs2, respectively. Matrices X, Yg, and
Yb were defined as follows:

X ¼ x1;…; xn½ �∈Rm�n; Y g ¼ yg1;…; ygn
� �

∈Rs1�n; Yb

¼ yb1;…; ybn
� �

∈Rs2�n ð1Þ

where X, Yg, and Yb are greater than 0.

Then, the production possibility set P was defined as:

P ¼ x; yg; yb
� �

x≥Xλ; yg ≤Ygλ; yb≥Ybλ;λ≥0
��� � ð2Þ

According to the production possibility set P, the energy
efficiency of SBM-undesirable model was modified as fol-
lows:

ρ* ¼ min
1−

1

m
∑m

i¼1

S−i
xi0

1þ 1

S1 þ S1
∑s1

r¼1

Sgr
ygr0

þ ∑s2
r¼1

Sbr
ybr0

	 


s:t:

Xλþ S−i ¼ xd
Y gλ−Sgr ¼ yg

Y bλþ Sbr ¼ yb

λ≥0; S−i ≥0; S
g
r ≥0; S

b
r ≥0

8>><
>>:

ð3Þ

In this model, ρ∗ represents the energy efficiency value,
and s−i , s

g
r , and s

b
r represent the slack of inputs and two various

outputs; λ represents a weight vector used to conduct the
frontier; 0 ≤ ρ∗ ≤ 1 and it strictly decreases with respect to s−i ,
sgr , ands

b
r . The DMU is efficient only when ρ∗ = 1 and s−i , s

g
r ,

and sbr are equal to 0; this DMU is most efficient.

Stochastic frontier analysis

The energy efficiency value in stage I cannot eliminate the
impact of external environment and random error, so it is
not credible. In general, SFA and Tobit model are
commonly employed in stage II to adjust input or output
variables for more accurate efficiency values. However,
Tobit model cannot eliminate the influence of random error;
Fried et al. (2002) proposed a three-stage DEA model and
employ the cost function SFA model in stage II, and to sepa-
rate the effects of management inefficiencies, environmental
factors, and random errors, they used environmental variables
and a combined error term to regression the slack variables
obtained in stage I.

The regression equation for the slack variables and envi-
ronmental variables can be set to:

S*ni ¼ f Zi;β
nð Þ þ vni þ Uni n ¼ 1;…;N ; i ¼ 1;…; Ið Þ ð4Þ

where S*ni is the slack variable for the n-th input of the i-th DMU,
and fi(Zi,β

n) represents the effect of the environment variable on
the slack variable. Let fi(Zi,β

n) = Ziβ
n and vni +Uni be the mixed

error term. We assume that vni∼N 0;σ2
vn

� �
represents the impact

of random error and uni∼Nþ μn;σ2
un

� �
obey the truncated normal

distribution, representing the impact of management inefficien-

cies, and the two error terms are independent.When γ ¼ σ2un
σ2unþσ2vn

tends to 1, this indicates that management inefficiency dominates
the slack variables; when γ tends to 0, this indicates that random
error dominates the slack variables.
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Then, the results of the SFA will be employed to adjust
the inputs of each DMU by putting all DMUs in the same
environment and luck. There are two ways of adjustment:
The first way is to increase the inputs of DMUs in rela-
tively good environment and good luck; the other way is
to decrease the inputs of DMUs in relatively bad environ-
ment and bad luck. When the outputs are constant, in-
creased inputs mean lower efficiency value while de-
creased inputs mean higher efficiency value. Considering
the regional gaps in the construction industry and some
DMUs are at extreme disadvantages, the downward ad-
justment may make their inputs very small, even close

to 0, and the first approach was employed for the adjust-
ment in the SFA regression. That is, put all DMUs under
the worst environment and luck to increase the inputs of
DMUs in relatively good environment and good luck, so
their efficiency value will decrease.

The equation for adjusting input variables is as follows:

X *
ni ¼ X ni þ max

i
Ziβ

nf g−Ziβ
n

� �

þ max
i

Vnif g−Vni

� �
n ¼ 1;…N ; i ¼ 1;…; Ið Þ ð5Þ

Fig. 2 Methodological framework of the three-stage undesirable SBM-DEA model
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where X *
ni is the adjusted input, and Xni is the input value from

stage I. The first brackets on the right hand side of the equation
indicate that all DMUs were adjusted to the worst observation
environment in the sample. The second brackets indicate that
all DMUs were adjusted to the most unfortunate observation
state in the sample. Through this adjustment, all DMUs face
the same operating environment and external luck, so it can be
obtained that the impact of external environment and random
error were eliminated when measuring the energy efficiency
in stage III.

Data description and variables

This paper collected the data of the construction industry of
China’s 30 provinces over 2005-2016 (except Tibet, Hong
Kong, Macao, Taiwan), which are mainly from China
Statistical Yearbook, China Energy Statistical Yearbook,
China Architecture Yearbook, and China’s provincial statisti-
cal yearbooks. Table 1 shows the descriptive statistics of the
data, and input and output variables are selected in the second
half of this section.

Input

Considering about the existing literature on energy efficiency
evaluation of China’s construction industry, the input indicators
mainly cover the four aspects of labor, capital, equipment, and
energy consumption (Xue et al. 2015; Chen et al. 2016; Zhang
et al. 2018). In this paper, the labor of the construction industry
(labor), total assets of the construction industry (capital), total
power of machinery (equipment), and energy consumption
converted to standard coal (energy) were used as inputs to in-
vestigate energy efficiency of the construction industry.

Desirable output

The gross output value of construction, the total profits, and
the completed floor area are the main indicators of outputs in

the construction industry and they are correlated with each
other. In this paper, gross output value of the construction
industry (GDP) was selected as a desirable output in the pro-
cess of measuring energy efficiency.

Undesirable output

Carbon dioxide is a typical undesirable output of the construc-
tion industry. This paper needs to calculate the carbon dioxide
emissions of the construction industry before calculating the
energy efficiency of China’s provincial construction industry.

It can be seen from the relevant literature (Yan et al. 2010;
Acquaye and Duffy 2010; Wu et al. 2012) that the measure-
ment standards for carbon dioxide emissions of the construc-
tion industry have not been unified, and the current studies
were always focused on the national level, and there was no
comparative analysis of the carbon dioxide emissions of the
construction industry in the provinces.

Carbon dioxide emissions of the construction industry are
divided into direct emissions and indirect emissions. Direct
carbon emissions refer to the carbon emissions generated by
energy consumption in the activities of the construction indus-
try. Indirect carbon emissions refer to the carbon emissions
generated from the production of building materials.
Therefore, this paper takes the concept of the whole life cycle
of buildings for reference and, on the basis of measuring the
direct carbon emissions of the construction industry, puts the
carbon dioxide generated during the production of building
materials into the carbon emission measurement framework
of the construction industry. At the provincial level of the
construction industry, considering the possibility of data ac-
quisition and the practicability of model establishment, this
paper calculated the indirect carbon emission of the construc-
tion industry caused by the production of steel, aluminum,
wood, cement, and glass, which are the most widely used
buildingmaterials. The direct carbon emission of the construc-
tion industry is caused by the consuming of twelve types of
energy sources. Among them, raw coal, briquette coal, coke,
gasoline, kerosene, diesel oil, fuel oil, lubricating oil, liquefied

Table 1 Descriptive statistics of input and output variables

Variable Type Unit OBS Min Max Mean SD

Labor Input 10 thousand 360 5.48 787.23 131.25 146.28

Equipment Input 10 thousand kw 360 15.10 5390.10 702.81 723.00

Capital Input 100 million Yuan 360 40.68 20,263.67 3136.53 3348.77

Energy Input 10 thousand ton standard coal 360 8.00 740.18 169.71 133.60

GDP Desirable output 100 million Yuan 360 59.69 25,791.76 3682.32 4243.81

CO2 emission Undesirable output 10 thousand tons 360 87.81 109,783.20 5539.28 9293.59

Note: Min, max, mean, and SD represent the minimum value, maximum value, mean value, and standard deviation of 360 results of 30 provinces during
2005–2016, respectively
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petroleum gas, natural gas, and other ten kinds of energy
sources are primary energy, and heat and electricity are sec-
ondary energy sources. Based on the above, this paper estab-
lishes the following carbon dioxide emission measurement
approach of the construction industry:

Eco2 ¼ ∑Ci � βi þ ∑Gi � εi � 1−αð Þ ð6Þ
whereEco2 is the total carbon dioxide emissions of the construc-
tion industry, Ci is the total energy consumption of energy i, βi
is the carbon dioxide emission factor of each kind of energy,Gi

is the usage amount of building materials i, εi is the unit carbon
dioxide emission coefficient of each kind of building material,
and α is the recovery coefficient of some metal material; for the
steel, α is 0.8 and for aluminum, it is 0.85. Carbon dioxide
emission factor comes from Energy Information
Administration of United States Department of Energy, and

emission coefficient and recovery coefficient of each kind of
building material come from the research of Yan et al. (2010).

Empirical results

The initial energy efficiency (stage I)

This stage employed the SBM-undesirable model in the
MaxDEA software to measure the initial energy efficiency
of China’s construction industry between 2005 and 2016.
Table 2 shows the results, ignoring the effects of random
errors and external environmental variables.

It can be seen that Beijing, Tianjin, Zhejiang, Jiangxi,
Shanghai, Jiangsu, Heilongjiang, and Jilin have higher energy
efficiency, and the average efficiency values of these

Table 2 The initial energy efficiency of China’s construction industry in stage I

Province 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

Anhui 0.72 0.71 0.69 0.75 0.71 0.62 0.69 0.65 0.66 0.65 0.73 0.71 0.69

Beijing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Chongqing 0.72 0.71 0.69 0.75 0.71 0.62 0.69 0.65 0.66 0.65 0.73 0.71 0.69

Fujian 0.70 0.72 0.88 0.64 0.62 0.66 0.72 0.71 0.71 0.68 0.70 0.72 0.70

Gansu 0.38 0.37 0.47 0.35 0.41 0.53 0.54 0.58 0.61 0.56 0.62 0.59 0.50

Guangdong 0.58 0.63 0.63 0.61 0.68 0.61 0.62 1.00 0.63 0.63 0.61 0.62 0.65

Guangxi 0.52 0.55 0.58 0.65 0.70 0.72 0.84 0.85 1.00 1.00 1.00 1.00 0.78

Guizhou 0.47 0.46 0.47 0.46 0.55 0.54 0.59 0.63 0.64 0.63 0.62 0.55 0.55

Hainan 0.46 0.44 1.00 0.55 0.55 1.00 1.00 1.00 1.00 1.00 0.77 0.82 0.80

Hebei 0.56 0.54 0.57 0.57 0.62 0.62 0.66 0.63 0.74 0.79 0.71 0.72 0.64

Henan 0.62 0.75 0.71 0.86 0.76 0.66 0.71 0.68 0.71 0.70 0.63 0.67 0.70

Heilongjiang 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.78 0.96

Hubei 0.52 0.59 0.56 0.66 0.67 0.60 0.75 0.69 0.79 0.93 0.85 1.00 0.72

Hunan 0.57 0.58 0.63 0.62 0.63 0.68 1.00 1.00 1.00 1.00 0.69 0.76 0.76

Jilin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.65 0.81 1.00 0.68 1.00 0.93

Jiangsu 1.00 1.00 1.00 1.00 1.00 0.79 0.77 0.78 1.00 1.00 1.00 1.00 0.95

Jiangxi 0.69 0.72 0.81 1.00 1.00 1.00 1.00 1.00 0.88 1.00 0.87 0.87 0.90

Liaoning 1.00 1.00 1.00 0.86 1.00 0.78 1.00 0.88 1.00 0.78 0.56 0.46 0.86

Inner Mongolia 0.58 0.62 0.67 0.57 0.60 0.61 0.61 0.56 0.58 0.52 0.49 0.51 0.58

Ningxia 0.50 0.53 0.60 0.57 0.68 0.71 0.72 0.71 0.73 0.74 0.64 0.67 0.65

Qinghai 0.43 0.46 0.43 0.44 0.53 0.68 0.60 0.49 0.56 0.55 0.55 0.50 0.52

Shandong 0.64 0.60 0.73 0.60 0.61 0.54 0.59 0.58 0.60 0.64 0.60 0.59 0.61

Shanxi 0.62 0.62 0.59 0.61 0.71 0.63 0.65 0.59 0.64 0.65 0.56 0.59 0.62

Shaanxi 0.67 0.70 0.76 0.69 0.75 1.00 1.00 0.80 0.77 0.74 0.75 0.82 0.79

Shanghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sichuan 0.56 0.59 0.57 0.62 0.68 0.60 0.63 0.69 0.69 0.69 0.67 0.69 0.64

Tianjin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 1.00 0.99

Xinjiang 0.65 0.60 0.64 1.00 1.00 1.00 0.83 0.83 1.00 1.00 1.00 1.00 0.88

Yunnan 0.47 0.46 0.48 0.48 0.58 0.60 0.63 0.54 0.64 0.61 0.60 0.60 0.56

Zhejiang 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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provinces are close to 1. Guizhou, Qinghai, Inner Mongolia,
Gansu, and Yunnan are less energy efficient for their average
efficiency value below 0.6. Among them, the energy efficien-
cy values of Beijing, Tianjin, Zhejiang, and Shanghai are al-
most 1 from 2005 to 2016, indicating that the energy efficien-
cy of the construction industry in these provinces is high and
very stable. These four provinces constitute the frontier of
energy efficiency of China’s provincial construction industry.
There are 113 DMUswith an efficiency value of 1; accounting
for 31.4% of all the DMUs, only 21 DMUs are less than 0.5,
and the overall situation of energy efficiency of China’s pro-
vincial construction industry is good but the gaps between
regions are obvious. According to the estimation results, the
energy efficiency of Gansu, Guangxi, Hainan, Hubei, and
Chongqing has been improved obviously, while other prov-
inces have not experienced significant fluctuations. By com-
paring the energy efficiency of 30 provinces horizontally, it
can be seen that the highest energy efficiency is 1.000 and the
lowest is below 0.500, indicating that the provinces with low
energy efficiency have potential for improvement.

To study the regional differences in energy efficiency of
the construction industry, 30 provinces were divided into six
regions: North China, Northeast, East China,Middle of South,
Southwest, and Northwest. Table 3 shows the division of
these regions and Fig. 3 shows the regional differences and
tendency of these regions. It is illustrated that the efficiency of
the construction industry in Northeast and East China is rela-
tively higher, and the efficiency value in Southwest and
Northwest is at a lower level though it has been growing for
these years. The Northeast has been declining in recent years
while East China is relatively stable, and efficiency gaps be-
tween regions are decreasing by year.

SFA regression (stage II)

In stage II, an SFA model was employed to eliminate the
influence of external environment as well as statistical noise.
Urbanization, per capita GDP, environmental regulation, gov-
ernment public investment, human capital, and industrial

structure were selected as environmental variables. The de-
scription of each variable and the indicators for selecting the
variable were listed in Table 4.

Frontier 4.1 was used to carry out the SFA analysis and
Table 5 shows the results. It was illustrated that there was a
significant σ2 for each year and γwas also significantly bigger
than 0.5, indicating that the impact of external factor
accounted for a large proportion of the total variance, meaning
the adjustment in this stage is necessary to eliminate the im-
pact of external environment and random error. Based on the
results, the impact of each environmental variable was
discussed as below.

Urbanization Table 5 shows that the level of urbanization is
significantly negatively correlated with all of the four slack
variables, especially the slacks of equipment and capital for
the coefficients are −5.52 and −7.49, respectively. Therefore,
the higher degree of urbanization will reduce the use of pro-
duction factors and increase the efficiency of the construction
industry. It can be explained that higher urbanization level was
benefit to the efficient use of labor, equipment, capital, and
energy in the construction industry.

Environmental regulation It is showed that environmental reg-
ulation is negatively correlated with the slack of equipment

Table 3 The division of China’s six major regions

Region Province

North China Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia

Northeast China Heilongjiang, Jilin, Liaoning

East China Anhui, Zhejiang, Jiangsu, Shanghai, Fujian, Jiangxi,
Shandong

Middle of South
China

Hubei, Hunan, Henan, Guangdong, Guangxi,
Hainan

Southwest China Chongqing, Sichuan, Guizhou, Yunnan

Northwest China Shanxi, Ningxia, Gansu, Qinghai, Xinjiang

Fig. 3 The initial regional energy efficiency in the construction industry
from 2005 to 2016

Table 4 Selection and description of environment variables

Variable name Definition of variables

Urbanization Proportion of urban population

Per capita GDP Per capita GDP of each province

Environmental
regulation

The proportion of environmental management
input to GDP

Government public
investment

The proportion of fixed asset investment to
GDP

Human capital The proportion of employees with professional
certificates

Industrial structure Proportion of tertiary industry
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and energy, while positively correlated with slack of labor and
capital. In other words, environmental regulation will limit the
use of equipment and energy in the construction industry,
which produce more pollution and consume more energy,
making construction firms to substitute equipment and energy
with cleaner production factors such labor and capital.
Environmental regulation is generally believed to improve
the total and industrial energy efficiency (Mandal 2010; Bi
et al. 2014; Zhang et al. 2016), but the promotion effect may
not exist due to specific environmental regulation policies and
the enforcement force (Dirckinck 2015; Lin and Xu 2017),
and this impact has regional differences (Lin and Xu 2017).
This section studies the correlation between environmental
regulation and energy efficiency by investigating its impact
on the slack variables; however, the measurement of energy
efficiency in this paper was based on the frame of total factor
energy efficiency (TFEE), so the substitution between these
production factors resulted in the uncertain effect of environ-
mental regulation on energy efficiency in the construction
industry.

Per capita GDP It is shown that per capita GDP do not have
significant impact on each input slacks, indicating that eco-
nomic development will not promote energy-environment ef-
ficiency in the construction industry, which is different form
general belief. It may be explained that with the improvement
of economic, the construction industry’s dependence on ener-
gy has not weakened, and the energy structure of the construc-
tion industry has not been well optimized.

Industrial structure It is illustrated from Table 5 that industrial
structure is negatively correlated with the slack of labor, while
positive correlated with slack of equipment, capital, and energy,
indicating that the proportion of tertiary industry is higher, the

labor in the construction industry will decrease, and construc-
tion companies tend to use more equipment, capital, and energy
to cover the decline in labor. This may be explained that the
increase of the proportion of the tertiary industry will lead to the
increase of the price of labor and the expansion of financing
channels at the same time, so construction firms tend to substi-
tute labor with relatively inexpensive production factors and it
is easier for them to raise their capital through financing and
loans, so the influence of industrial structure on the efficiency of
the construction industry is uncertain due to the substitution
between these production factors. At present, the impact of
industrial structure on energy efficiency is mostly concerned
on the provincial level and industrial sector (Li and Lin 2014;
Xiong et al. 2019), and the influence of industrial structure on
energy efficiency in the construction industry needs to be fur-
ther studied.

Government public investment This variable is positively cor-
related with all of the four slack variables, indicating the gov-
ernment fixed asset investment is not conducive to the reduc-
tion of waste of construction resources and the improvement
of efficiency. This is a bit of a deviation from people’s expec-
tations. It can be explained from another perspective, that is,
the production of the construction industry is greatly affected
by policies, and the government’s regulatory policies will
have an important impact on the development of the construc-
tion industry. At present, the main body of the construction
industry is still the government and large construction state-
owned enterprises, the market economy requires the govern-
ment to reduce its intervention in the market, and the govern-
ment public investment to infrastructure construction or public
buildings is not conducive to the improvement of the relative
efficiency of the construction industry in China in the long
term, indicating that construction industry may get better

Table 5 The results of SFA
regression Environmental variables Dependent variables

Slack of labor Slack of equipment Slack of capital Slack of energy

Constant 58.70*** 142.58*** −431.40*** −45.93***
Urbanization −0.65*** −5.52** −7.49* −0.27**
Environmental regulation 0.78** −47.86*** 96.31** −1.67***
Per capita GDP 0.00 0.00 −0.01 0.00

Industrial structure −0.64*** 2.20** 13.09*** 1.68*

Government public investment −0.07* 1.90*** 5.93** 0.85***

Human capital −0.31*** −11.99** −24.29** −4.32**
σ2 913.46*** 158,716.33*** 483,589.07*** 16,156.15***

γ 0.71*** 0.69*** 0.65*** 0.82***

log likelihood function −4867.36 −5813.02 −6039.88 −5307.04
LR 180.29 153.46 154.07 306.68

Note: ***, **, and * represent 1%, 5%, and 10% significance respectively
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performance in energy and environment when government
relax the intervention towards construction and give them
more market incentives. The conclusion was conformed to
the research on stated-owned power plants (Zhang and Choi
2013a, b; Zhang et al. 2014).

Human capital It is illustrated that human capital is negatively
correlated with all of the four slack variables, indicating that
the improvement of human capital will reduce various input
indicators, so as to improve the efficiency of the construction
industry.

Based on the discussion for the impact of some external fac-
tors, it can be found that these factors, expect per capita GDP,
would have an impact on the energy efficiency of the construc-
tion industry. Among the environmental factors, urbanization
and human capital have a positive impact on energy efficiency,

while government direct investment has a negative impact on
energy efficiency. The impact of environmental regulation and
industrial structure was uncertain on different provinces due to
the substitution of production factors. Environmental regulation
does not necessarily improve environmental efficiency and may
have a negative impact on the development of the construction
industry. Economic development has little impact on energy
efficiency in the construction industry, possibly because that
the energy structure and technological innovation in the con-
struction industry are not significantly promoted in the process
of economic development in recently years.

Therefore, external environment has a certain impact on
energy efficiency; when the external environment became rel-
atively equitable, the real energy efficiency will better reflect
the internal management efficiency of the construction indus-
try. Specially, the efficiency value of the construction industry

Table 6 The energy efficiency of China’s construction industry in stage III

Province 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

Anhui 0.52 0.50 0.52 0.54 0.56 0.58 0.63 0.69 0.66 0.64 0.72 0.65 0.60

Beijing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Chongqing 0.44 0.44 0.46 0.52 0.56 0.58 0.63 0.75 0.78 0.87 1.00 1.00 0.67

Fujian 0.48 0.53 0.63 0.55 0.53 0.58 0.63 0.62 0.63 0.63 0.65 0.67 0.59

Gansu 0.26 0.24 0.30 0.24 0.27 0.38 0.36 0.47 0.47 0.44 0.50 0.45 0.36

Guangdong 0.62 0.64 0.65 0.63 0.66 0.61 0.60 1.00 0.67 0.64 0.65 0.68 0.67

Guangxi 0.33 0.36 0.37 0.41 0.42 0.49 0.56 0.56 0.79 0.75 1.00 1.00 0.59

Guizhou 0.32 0.32 0.31 0.32 0.37 0.38 0.38 0.43 0.44 0.44 0.45 0.43 0.38

Hainan 0.09 0.08 0.10 0.12 0.13 0.19 0.20 0.20 0.21 0.23 0.27 0.24 0.17

Hebei 0.51 0.48 0.52 0.52 0.57 0.63 0.65 0.73 0.80 1.00 0.62 0.64 0.64

Henan 0.47 0.53 0.54 0.62 0.64 0.65 0.74 0.64 0.74 0.64 0.74 0.65 0.64

Heilongjiang 0.44 0.45 0.50 0.49 0.57 1.00 1.00 1.00 1.00 0.69 0.51 0.51 0.68

Hubei 0.46 0.54 0.52 0.62 0.66 0.81 0.90 1.00 1.00 1.00 1.00 1.00 0.79

Hunan 0.49 0.49 0.53 0.55 0.55 0.61 1.00 1.00 1.00 1.00 0.68 0.75 0.72

Jilin 1.00 0.46 0.56 0.54 0.60 0.61 0.70 0.48 0.55 0.60 0.55 1.00 0.64

Jiangsu 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.81 1.00 1.00 1.00 1.00 0.97

Jiangxi 0.39 0.41 0.45 0.52 0.55 0.61 0.59 0.72 0.74 1.00 0.70 0.74 0.62

Liaoning 0.73 0.69 0.72 0.68 0.74 1.00 1.00 1.00 1.00 0.75 0.53 0.40 0.77

Inner Mongolia 0.35 0.34 0.42 0.36 0.42 0.43 0.46 0.43 0.44 0.38 0.27 0.27 0.38

Ningxia 0.13 0.14 0.14 0.17 0.20 0.24 0.23 0.26 0.24 0.24 0.22 0.20 0.20

Qinghai 0.15 0.15 0.15 0.14 0.18 0.22 0.25 0.22 0.25 0.25 0.23 0.19 0.20

Shandong 0.65 0.59 0.64 0.59 0.59 0.59 0.64 0.56 0.62 0.64 0.63 0.63 0.61

Shanxi 0.52 0.49 0.45 0.47 0.57 0.56 0.53 0.53 0.55 0.51 0.44 0.47 0.51

Shaanxi 0.49 0.51 0.59 1.00 0.66 1.00 1.00 1.00 0.73 0.75 0.65 0.67 0.75

Shanghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sichuan 0.51 0.52 0.53 0.58 0.62 0.56 0.59 0.67 0.66 0.68 0.69 0.74 0.61

Tianjin 0.65 0.64 0.64 0.59 0.62 0.70 0.79 0.68 0.67 0.69 0.69 0.79 0.68

Xinjiang 0.43 0.36 0.39 0.49 0.54 0.55 0.55 0.59 1.00 0.70 0.66 0.62 0.57

Yunnan 0.39 0.38 0.39 0.41 0.47 0.49 0.57 0.57 0.55 0.51 0.57 0.60 0.49

Zhejiang 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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in provinces facing better external environment and good luck
may be higher, while provinces facing a poor external envi-
ronment and luck will have lower construction efficiency.
When evaluating the efficiency of the construction industry,
it is necessary to adjust the external environment factors and
random error factors, making all DMUs under the influence of
unified external environment and random error; then, its real
efficiency level is investigated more accurately in stage III.

Environmental-adjusted energy efficiency (stage III)

The input-output data in stage I can be adjusted according to
the results of the SFA model regression to provide new input-
output data to stage III for the evaluation and Table 6 shows
the efficiency of each DMU in stage III. It is illustrated that

when all provinces are facing the worst external environment
and luck, there has been a decrease in overall efficiency.
Among the eight provinces with higher efficiency in stage I,
Beijing, Zhejiang, Shanghai, and Jiangsu are still at the fron-
tier with the efficiency value of 1, while the efficiency values
of Tianjin, Jiangxi, Heilongjiang, and Jilin have a significant
decline. This phenomenon indicated that the management lev-
el of the construction industry in these provinces is not well
and their efficiencies were high in stage I because they faced
better external environment, while traditionally developed
provinces Beijing, Zhejiang, Shanghai, and Jiangsu have a
high level of management in the construction industry so their
efficiency did not decrease after adjustment. There are 73
DMUs with an efficiency value equal to 1, 40 less than the
number of stage I and DMUs with an efficiency below 0.5
which is more than 50%, showing that management ineffi-
ciency is widespread in the construction industry.

Figure 4 shows the change of energy efficiency of China’s
construction industry in six regions of China. It is illustrated that
the efficiency of the construction industry in Northeast and East
China is relatively higher; the efficiency value in Northwest
China is at a lowest level. Energy efficiency in East China,
Middle of China, and North China was on the rise, while other
regions are clearly fluctuating, and there was a sharp drop after
2011 in Northeast China, indicating that the management level
of its construction industry has deteriorated.

Figure 5 shows the changes of average efficiency in stage I
and stage III. When all DMUs are faced with the worst external

Fig. 4 China’s regional energy efficiency in the construction industry
after adjusted from 2005 to 2016
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Fig. 5 The comparison of China’s regional average energy efficiency in the construction industry
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environment and luck, the average efficiency has decreased in
most provinces. In terms of the “high-low” provinces, such as
Hainan, Ningxia, and Qinghai, the dramatic decrease of energy
efficiency when facing the poorest external environment and
luck showed that their relatively higher energy efficiency in
stage I was benefit from their superior external environment,
but the management level in their construction industry limits
the potential to be realized. The “high-high” provinces, espe-
cially Beijing, Zhejiang, and Shanghai, have an efficiency value
of 1 in both stage I and stage III, indicating that their environ-
mental conditions and management level reached a high level.
In terms of limited “low-high” provinces (Jiangsu, Hubei, and
Guangdong), there was a slight increase after the adjustment,
indicating that the external environment limits the contributions
of the management level in their construction industry, and the
improvement of energy efficiency needs to start from improv-
ing external environment.

At the regional level, in the eastern region, the construction
industry management level is high and the environmental condi-
tions are good, so the efficiency level is very high; of central and
northern region, the management level has also been gradually
improve; in the western region, construction efficiency is low not
only because of its natural and social environment, the manage-
ment level of the construction industry itself is also the important
reasons of the low efficiency. Although the natural and social
environment in Northeast China is better, its management level is
low, which limits its efficiency in the construction industry.

Conclusion and policy implications

This paper employed the three-stage undesirable SBM-DEA
to evaluate the energy efficiency of the construction industry
of 30 provinces in China from 2005 to 2016 and discussed the
influence of external factors by SFA approach in stage II. The
following conclusions could be obtained through the empiri-
cal results. Firstly, after the adjustment which let each DMU
facing the poorest external factors and random error, the en-
ergy efficiency of China’s construction industry showed a
significant decline, indicating that the low efficiency of man-
agement in the construction industry is an important factor
leading to the low level of energy efficiency in China’s con-
struction industry. Secondly, compared with the “high-high”
provinces, which has made full use of the superior external
environment by their high management level, the “high-low”
provinces need to fully realize the potential in promoting en-
ergy efficiency of its external environment by improving its
own management of construction. On the contrary, the “low-
high” provinces need to improve the external environment to
ease its restrictions on the level of management in the con-
struction industry. Thirdly, among the external environmental
factors, urbanization and human capital have a positive impact
on energy efficiency, while government direct investment has

a negative impact on energy efficiency. The impact of envi-
ronmental regulation and industrial structure was uncertain on
different provinces due to the substitution of production fac-
tors. Environmental regulation does not necessarily improve
environmental efficiency and may have a negative impact on
the development of the construction industry. Economic de-
velopment has little impact on energy efficiency in the con-
struction industry, possibly because that the energy structure
and technological innovation in the construction industry are
not significantly promoted in the process of economic devel-
opment in recently years. In response to the above conclu-
sions, some policy applications were proposed. (1) The pro-
motion of the energy efficiency of the construction industry
should not only rely on improving the external environment,
but also take full account of the internal management level.
The potential to improve the energy efficiency relies on im-
proving the management level in Northeast China, while in
“low-high” province, this should shed light on improving ex-
ternal environment. (2) Improving the urbanization level and
the technical level of the construction industry will promote
the improvement of the energy efficiency of the construction
industry. (3) The government should reduce intervention in
the construction industry and focus on ensuring fair competi-
tion in the market. At the same time, the characteristics of the
construction industry should be taken into account when car-
rying out environmental regulation. (4) In the process of eco-
nomic development, construction enterprises need to optimize
the energy structure and enhance the human capital invest-
ment, which will help Chinese construction industry to im-
prove energy efficiency and achieve the goal of energy con-
servation and emission reduction.
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