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Submerged plants alleviated the impacts of increased ammonium
pollution on anammox bacteria and nirS
denitrifiers in the rhizosphere
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Abstract
Excess nitrogen input into water bodies can cause eutrophication and affect the community structure and abundance of the
nitrogen-transforming microorganisms; thus, it is essential to remove nitrogen from eutrophic water bodies. Aquatic plants can
facilitate the growth of rhizosphere microorganisms. This study investigated the impact of ammonium pollution on the anammox
and denitrifying bacteria in the rhizosphere of a cultivated submerged macrophyte, Potamogeton crispus (P. crispus) by adding
three different concentrations of slow-release urea (0, 400, 600 mg per kg sediment) to the sediment to simulate different levels of
nitrogen pollution in the lake. Results showed that the ammonium concentrations in the interstitial water under three pollution
treatments were significantly different, but the nitrate concentration remained stable. The abundance of anammox 16S rRNA and
nitrite reductase (nirS) gene in rhizosphere sediments exhibited no significant differences under the three pollution conditions.
The increase in the nitrogen pollution levels did not significantly affect the growth of anammox bacteria and nirS denitrifying
bacteria (denitrifiers). The change trend of the abundance ratio of (anammox 16S rRNA)/nirS in different nitrogen treatment
groups on the same sampling date was very close, indicating that this ratio was not affected by ammonium pollution levels when
P. crispus existed. The redundancy analysis showed that there was a positive correlation between the abundance of anammox
16S rRNA and nirS gene and that the abundance of these bacteria was significantly affected by the mole ratio of NH4

+/NO3
−.

This study reveals that submerged plants weaken the environmental changes caused by ammonia pollution in the rhizosphere,
thereby avoiding strong fluctuation of anammox bacteria and nirS denitrifiers.
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Introduction

The removal of nitrogen in aquatic ecosystems is mainly ac-
complished by plant absorption and nitrogen-transforming
microorganisms capable of nitrogen conversion processes
such as ammonia oxidation, nitrite oxidation, and nitrate re-
duction. However, excessive accumulation of nitrogen will
destroy the stability of the community structure and abun-
dance of these nitrogen-transforming microorganisms, there-
by breaking the balance of nitrogen input and output in water
bodies (Le et al. 2010), finally causing environmental prob-
lems such as water quality decline and eutrophication.

Submerged plants are an important part of the aquatic eco-
system. They can provide habitat and food for aquatic animal,
absorb pollutant (Brisson and Chazarenc 2009), inhibit algae
growth (Zhao et al. 2021), and reduce sediment resuspension
(Tang et al. 2018). Anammox bacteria and denitrifying bacte-
ria are two important nitrogen-transforming microorganisms.
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They can convert the ammonium (NH4
+) and nitrite

(NO2
−), nitrate (NO3

−) into nitrogen gas, respectively, thereby
removing the excessive nitrogen from lakes and maintaining
the nitrogen balance in water bodies (Pajares et al. 2017).
These two microorganisms are both cooperative and compet-
itive. The denitrification process consumes organic matter,
thus slowing down the inhibitory effect of organic matter on
the growth of anammox bacteria (Yang et al. 2019).
Moreover, in the denitrification process of converting NO3

−

to nitrite (NO2
−), NO2

− produced by denitrifying bacteria can
be used by anammox bacteria as a reaction substrate, thus
facilitating the growth of anammox bacteria (Wang et al.
2017; Koop-Jakobsen and Giblin 2009). However, in the de-
nitrification process of converting NO2

− to NO (nitric oxide),
nirS denitrifiers with Cu-containing enzymes and nirK deni-
trifiers with cytochrome cd1 enzymes may compete with
anammox bacteria for NO2

− (Wang et al. 2020).
In shallow lakes, aquatic plants can reduce the nitrogen

level in the lake by directly absorbing NH4
+ and NO3

− either
from water bodies or sediments (Zhou et al. 2016; Zhao et al.
2014). Aquatic plants can also facilitate the growth of rhizo-
sphere microorganisms by providing them nutrients through
the root system, leading to a much higher abundance of rhi-
zosphere microorganisms, compared to the non-rhizosphere
environment, thus showing the rhizosphere effect
(Christensen et al. 1994). Plant roots can release oxygen to
the rhizosphere and form diverse micro-environments such as
aerobic, anoxic, and anaerobic conditions in the rhizosphere
(Niu et al. 2015). This provides different living environment
for the coexistence of anaerobic microorganisms such as
anammox and denitrifying bacteria in the rhizosphere (Wang
et al. 2020) and more possibilities for combining denitrifica-
tion with anammox (Kumar and Lin 2010). It has been report-
ed that the activity and the abundance of anammox bacteria in
the rhizosphere were higher than those in the non-rhizosphere
(Nie et al. 2015). The coexistence of anaerobic and aerobic
environments in the rhizosphere was also considered to be
beneficial to the growth of anammox bacteria (Wang et al.
2015; Vazquez-Padin et al. 2010).

The growth of anammox and denitrifying bacteria in sedi-
ments can be affected by the changes in water pollutants.
Some studies have shown that the abundance of nirS gene in
sediments was decreased with the increase in lake nutrients
(Wan et al. 2019; Guo et al. 2014), while eutrophication ac-
celerated the anammox bacteria growth (Zhao et al. 2019b).
However, there is still a lack of understanding of how these
two bacteria respond to the increased nitrogen content in the
presence of submerged plants in lakes. Plants have been re-
ported to be able to maintain their growth environment, espe-
cially the stability of the physical and chemical properties of
rhizosphere environment (Hussain et al. 2011). Based on it,
we hypothesized that submerged plants could provide a stable
environment for anammox and denitrifying bacteria in the

rhizosphere, thus alleviating the rapid impact of increased pol-
lution on these two bacteria in the rhizosphere. To test this
hypothesis, the abundance of anammox and denitrifying bac-
teria in the rhizosphere of a submerged macrophyte,
Potamogeton crispus (P. crispus), under three ammonium
pollution levels in the lake sediment were investigated. The
most popular nitrogen fertilizer today is urea, which can dis-
solve in water within a few seconds, and the nitrite produced
during the oxidation process of the ammonia produced by its
hydrolysis can become the substrate of the anammox reaction.
Therefore, we choose water-dissolved slow-release urea as
ammonium pollution levels.

Materials and methods

Experiment design

The sediment used to cultivate P. crispus in the experiment
was sampled from Lake Liangzi (114° 38′ 23″ N, 30° 14′ 28″
E), a mesoeutrophic lake located in Yangtze River catchment,
Hubei Province, China. The total nitrogen content in the sed-
iment was 0.50 g kg−1, and the concentrations of NH4

+-N and
NO3

−-N in the fresh sediment interstitial water were 4.39 mg
L−1 and 0.22 mg L−1, respectively (Wang et al. 2018). The
submerged plant P. crispuswas selected from Liangzi Lake as
a cultivated plant which is one of the dominant plants in the
middle reaches of the Yangtze River. It is characterized by
rapid growth and well-developed root systems. A three-
compartment with multiple interlayers rhizobox design was
used to conduct rhizosphere experiments in the present study
(Wang et al. 2018). The size of the rhizobox was
175×175×115 (length × width × height) mm (Fig. 1). The
20-mm width in the center of the rhizobox chamber was the
central root chamber. Submerged plants were planted only in
this part, and the 1–5-mm area on both sides of the central root
chamber was the rhizosphere. Six sheets of nylon mesh (pore
size <25 μm, 1 mm each) were inserted on rhizosphere to
restrain the plant root to grow within the central root compart-
ment only. The rhizobox was, therefore, divided into three
main compartments and a total of seven layers, i.e. the central
root compartment (20 mm in width, 1 layer), rhizosphere (1–
5 mm from the root compartment, 5 layers), and non-
rhizosphere (>5 mm from the root compartment, 1 layer) com-
partments. The rhizobox were filled with air-dried and sieved
(1 mm) Lake Liangzi sediments in all layers.

In November 2014, six P. crispus turions with similar
growth characteristics were transplanted into each central root
compartment to start the cultivation. After transplanting, the
whole rhizobox and P. crispus were immersed under the dis-
tilled water to simulate the growth conditions of submerged
plants. After 5 months, the central root compartment was filled
with the root system in April 2015. Three concentrations of
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water-dissolved slow-release urea (Luxi Chemical Co., Ltd.,
Liaocheng, Shandong, China) were injected into sediment to
simulate three nitrogen-contaminated sediment conditions (ol-
igotrophic, mesoeutrophic, and hypereutrophic) in freshwater
lakes. Before injection, the urea was dissolved in ultrapure
water, and then the urea solution was injected into the sedi-
ment with a sterile syringe. Each rhizobox was arranged with
10 injection points, and the injection depth interval was 3 cm
at each point to ensure that the urea solution could be evenly
distributed in the sediment. After injection, the urea contents
in the sediment were 0 mg kg−1 (N0), 400 mg kg−1 (N400),
and 600 mg kg−1 (N600), respectively. On the 14, 28, and 42
days after urea injection, sediment samples from three repli-
cate rhizobox were collected by destructive sampling. At each
rhizobox, a total of seven layers of sediments were collected
from three compartments: root compartment (R), rhizosphere
compartment (N1-N5), and non-rhizosphere compartment
(Non). Plant cultivation and sediment collection followed
the procedures described by Wang et al. (2018).

Sediment chemical properties analysis

Before the samples were collected, the dissolved oxygen (DO)
and pH of the interstitial water in each layer of the rhizobox
were measured by using a microelectrode system (Unisense,
Aarhus, Denmark). Each sediment was centrifuged at

4000 rpm for 15 min to obtain interstitial water, and then the
interstitial water was filtered with a 0.45-μm pore filter mem-
brane. The contents of NH4

+-N and NO3
−-N in the interstitial

water were measured by using a flow injection analyzer
(SEAL Analytical AA3; SEAL Analytical, Norderstedt,
Germany). All samples were individually tested for physical
and chemical indicators, as well as anammox 16S rRNA and
nirS gene abundance.

DNA extraction and PCR amplification

Genomic DNA of each sediment sample was extracted using
Fast DNA Spin Kit for Soil (MP Biomedicals, Solon, OH,
USA) according to the manufacturer’s protocol. The purity
and concentration of the extracted DNA samples were
checked by super differentia l spectrophotometer
(NanoPhotometer-N60; Implen, Munich, Germany), and then
the qualified DNA samples were used for PCR amplification.
The amplification primers for nirS gene were nirS1F/nirS6R
(Braker et al. 1998). Anammox 16S rRNA amplification
consisted of two steps with the amplification of primers
pla46f/630r as the first step (Juretschko et al. 1998; Neef
et al. 1998) and that of primers Amx368f/Amx820r as the
second step (Schmid et al. 2005). PCR amplification of
anammox 16S rRNA and nirS gene was performed in a total
volume of 25 mL system containing 1 mL of each primer (10
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Fig. 1 The schematic diagram of the rhizobox (modified from Wang et al. 2018)
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mM), 12.5 mL of I-5™ 2XHigh-Fidelity Master Mix, and 9.5
mL of double-distilled water (ddH2O), with 1 mL of DNA as
templates (20–50 ng). The anammox 16S rRNA and nirS gene
amplification process is shown in Table 1. PCR products were
tested by using agarose gel (1.0%) electrophoresis.

Cloning, sequencing, and phylogenetic analysis

The DNA samples of the same layer were mixed in equal
amounts and used for sequencing. Then, the PCR products
of anammox 16S rRNA and nirS gene were purified with
magnetic bead purification kits (GeneOn BioTech, China).
After purification, these products were cloned with the
pClone 007 Vector Linker Kit (TSING KE, Beijing, China)
and transformed into competent Escherichia coli cells accord-
ing to the manufacturer’s instructions. Approximately 59
anammox 16S rRNA and 61 nirS positive clones were ran-
domly picked and checked by agarose gel. The re-amplified
PCR conditions of the anammox 16S rRNA and nirS gene in
every clone are shown in Table 1. A 20-μL aliquot of the PCR
product was digested with restriction endonuclease Msp I,
separated by 110 mV electrophoresis on a 15% polyacryl-
amide gel for about 1 h and then stained with ethidium bro-
mide (0.5 μg mL−1). Images of the gel were taken using a
Kodak Gel Logic 100 system (Eastman Kodak, Rochester,
NY, USA) to store their fingerprint of each clone. For each
clone library, anammox 16S rRNA and nirS gene were se-
quenced by ABI 3730xl DNA Analyzer (Applied
Biosystems, Foster City, CA, USA). Sequences with 97%
identity were classified into same OTUs with anammox 16S
rRNA and nirS gene using MOTHUR software (Wise et al.

2020; Schloss et al. 2009). Alignment of DNA sequences was
carried out using the ClustalW 1.6, and a neighbor joining
phylogenetic tree was constructed using MEGA 6.0 software.
Bootstrap values for each branch were determined using 1000
iterations.

The sequences obtained in this study were deposited in the
GenBank database with accession numbers of MK641594-
MK641650 for anammox 16S rRNA and MK783879-
MK783936 for nirS, respectively.

Real-time quantitative PCR (qPCR)

Quantitative analysis of anammox 16S rRNA and nirS genes
was performed by real-time quantitative PCR by using the
SYBR Green method with the QuantStudio™ 6 Flex quanti-
tative PCR instrument (Thermo Fisher Scientific, Singapore).
The anammox 16S rRNA and nirS genes qPCR primers
(Tsushima et al. 2007; Throback et al. 2004) and amplification
procedures are shown in Table 1. Each qPCR reaction system
contained 10 μL mixture as follows: 5 μL of SybrGreen
qPCR Master Mix, 0.5 μL of each primer (10 mM), 3 mL of
ddH2O, and 1 μL of DNA template. The ddH2O was set as
negative control, and the known copy number of plasmid
DNA subjected to ten-fold serial dilution was set as positive
control. Six standard plasmid DNA samples were obtained for
quantitative amplification with three replicates each to gener-
ate a standard curve. The amplification efficiency of anammox
16S rRNA and nirS genes was 92.4% and 94.7%, respective-
ly. The correlation coefficient (r2) was greater than 0.99, and
the melting curve showed a single peak.

Table 1 Primers used in this study

Gene name Primer name Primer sequences (5′–3′) Thermal profile for PCR Reference

Primers used for PCR amplification

nirS nirS1F
nirS6R

CCTAYTGGCCGCCRCART
CGTTGAACTTRCCGGT

95 °C for 8 min; 35 cycles of 10 s at 98 °C, 10 s at
56 °C, 20 s at 72 °C; 5 min at 72 °C

(Braker et al. 1998)

Anammox
16S
rRNA

First
step

pla46f
630r

GGATTAGGCATGCAAGTC
CAKAAAGGAGGTGATCC

95 °C for 8 min; 35 cycles of 10 s at 98 °C, 10 s at
59 °C, 20 s at 72 °C; 5 min at 72 °C

(Juretschko et al. 1998;
Neef et al. 1998)

Second
step

Amx368f
Amx820r

TTCGCAATGCCCGAAAGGTT
CGCAATGCCCGAAAGG

AAAACCCCTCTACTTAGTGC
CC

95 °C for 8 min; 35 cycles of 10 s at 98 °C, 10 s at
59 °C, 20 s at 72 °C; 5 min at 72 °C

(Schmid et al. 2005)

Primers used for real-time quantitative PCR

nirS nirSCd3aF
nirSR3cd

AACGYSAAGGARACSGG
GASTTCGG

RTGSGTCTTSAYGAA

95 °C for 15 min; 40 cycles of 10 s at 95 °C, 30 s at
56 °C, 30 s at 72 °C

(Throback et al. 2004)

Anammox
16S
rRNA

AMX809F
AMX1066R

GCCGTAAACGATGGGCACT
AACGTCTCACGACACGAGCT

G

95 °C for 15 min; 40 cycles of 10 s at 95 °C, 30 s at
59 °C, 30 s at 72 °C

(Tsushima et al. 2007)
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Statistical analysis

The physicochemical properties (pH, and NH4
+-N and NO3

−-
N concentrations) of the interstitial water and the abundance
of anammox 16S rRNA and nirS gene were investigated un-
der three nitrogen pollution concentrations through one-way
ANOVA and Tukey’s test (P<0.05) with SPSS 20.0 software.
Detrended correspondence analysis (DCA) (Canoco 4.5 soft-
ware) was used to examine the correlation between microbial
abundance and its environmental factors. Since the length of
the gradient value obtained byDCA in this study was less than
three, the redundancy analysis (RDA) method was selected
from the Canoco software. The significance test of Monte
Carlo permutations (999) was used to explore the environ-
mental factors related to the abundance of anammox 16S
rRNA and nirS gene.

Results

Physicochemical properties of interstitial water in the
rhizosphere

The concentration of NH4
+-N in the sediment interstitial water

differed significantly with the average concentration of 1.87,
16.42, and 20.16 mg L−1 for the three nitrogen treatments (N0,
N400, and N600), respectively (P<0.05). The NH4

+-N con-
centration in the urea addition treatment (N400 and N600)
was significantly higher than that in the non-addition treat-
ment (N0) during the entire experiment of up to 42 days
(Fig. 2A). On day 28, the average of NH4

+-N concentrations
in urea addition treatments (N400: 20.94 mg L−1, N600:
28.01 mg L−1) was significantly higher than that on day 14
(N400: 15.54 mg L−1, N600: 16.20 mg L−1) and day 42
(N400: 12.79 mg L−1, N600: 16.28 mg L−1) after the urea
addition.

The NO3
−-N concentration in the root compartment and

non-rhizosphere showed no significant difference. During
the entire experiment, the NO3

−-N concentration in the rhizo-
sphere interstitial water reached the peak at 14 d after the urea
addition and then was gradually decreased with the extended
time of urea addition (Fig. 2B). In contrast, the NO3

−-N con-
centrations in the root compartment and non-rhizosphere in-
terstitial water remained stable with the extended time of urea
addition. The average interstitial water NO3

−-N concentra-
tions were 1.18, 1.21, and 1.34 mg L−1, respectively, for three
urea addition treatments of N0, N400, and N600, and there
was no significant difference between different treatments
(P>0.05). The average pH values in the rhizosphere (1–5
mm) for three treatments of N0, N400, and N600 ranged from
7.46 to 7.63, 7.60 to 7.73, and 7.60 to 7.64, respectively.
There was no significant difference in oxygen concentration

at the sediment-water interface under each treatment, and the
average value was 11.86 μmol L−1.

Nitrogen-transforming bacterial abundance in the
rhizosphere of P. crispus under ammonium pollution

The gene abundance of anammox 16S rRNA in the rhizo-
sphere was generally higher than that in the root compartment
and non-rhizosphere, but there was no significant difference
between them (P>0.05) (Fig. 3). The anammox 16S rRNA
gene abundance in the rhizosphere for each treatment group
(0, 400, 600 mg kg−1) was 1.96×107, 1.82×107, and 1.83×107

copies g−1 (P>0.05) (Fig. 3), respectively. The gene abun-
dance of anammox 16S rRNA (2.01×107 copies g-−1) on day
14 was significantly higher than that on day 28 (1.69×107

copies g−1), but it was closer to that on day 42 (1.89×107

copies g−). During the entire experiment, the anammox 16S
rRNA abundance for each treatment group (0, 400, 600 mg
kg−1) was 1.96×107, 1.82×107, and 1.83×107 copies g−1, re-
spectively. And there was no significant difference between
different groups (P>0.05, Fig. 4).

Under N0 treatment, the abundance of nirS gene in rhizo-
sphere showed significant difference on days 14 and 28
(P<0.05) (Fig. 3). The nirS gene abundance in the rhizosphere
for each treatment group (0, 400, 600 mg kg−1) was 2.25×105,
2.12×105, and 1.99×105 copies g−1 (P>0.05) (Fig. 3), respec-
tively. Under N400 and N600 treatments, the abundance of
nirS gene in the rhizosphere, root compartment, and non-
rhizosphere showed no significant difference (P>0.05).
Throughout the entire experiment, the average abundance of
nirS gene under three nitrogen treatments (0, 400, 600 mg
kg−1) was 2.25×105, 2.12×105, and 1.99×105 copies g−1, re-
spectively, and no significant difference was observed be-
tween them (P>0.05, Fig. 4). The fluctuation trend of
(anammox 16S rRNA)/nirS ratio was very close on the same
sampling date under three nitrogen treatments.

Impact of key physicochemical factors on rhizosphere
bacterial abundance

The first two RDA axes together explained 62.2% of the var-
iance (Fig. 5). RDA analysis showed that the abundance of the
anammox 16S rRNA and nirS gene was significantly corre-
lated with the concentration of NO3

−-N (P=0.001, F=14.725,
999Monte Carlo permutations) and the mole ratio of NH4

+-N/
NO3

−-N in the interstitial water (P=0.001, F=7.655, 999
Monte Carlo permutations). The abundance of the anammox
16S rRNA gene was positively correlated with the abundance
of the nirS gene. The abundance of the anammox 16S rRNA
gene was negatively correlated with the concentration of
NO3

−-N and pH in the interstitial water. The abundance of
nirS gene was negatively correlated with pH and the concen-
trations of NH4

+-N and NO3
−-N in the interstitial water. The
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abundance of anammox 16S rRNA and nirS gene was posi-
tively correlated with the ratio of NH4

+-N/NO3
−-N in the in-

terstitial water.

Diversity of anammox and nirS denitrifiers in the
rhizosphere

A total of 57 anammox 16S rRNA gene sequences were ob-
tained from the constructed clone library. A total of five OTUs
were obtained with a similarity of 97% (Fig. 6). The se-
quences of OTU1 and OTU2 accounted for 61.4% and
17.5% of the cloned library, respectively. Anammox 16S
rRNA gene sequences in the sediments of phylogenetic trees
were mainly clustered to the genus Brocadia and Kuenenia.
OTU1, OTU2, OTU3, and OTU5 were all assigned to the
genus Brocadia. The sequences of this genus accounted for
93% of all the sequences of anammox 16S rRNA. Therefore,
genus Brocadiawas the dominant species of anammox in this

study, and the similar sequences were from freshwater lake
sediments, dehydrated aluminum sludge, suspended sedi-
ments of the Yellow River, and rhizosphere sediment of
Potamogeton. OTU4 belonged to the genus Kuenenia and
had a high similarity with the sequences from freshwater sed-
iment, but its sequences accounted for only 7% of the total
number of sequences.

Among the 58 nirS sequences, 84.5% belonged to
Betaproteobacteria (β-Proteobacteria) class, 5.2% belonged
to Gammaproteobacteria (γ-Proteobacteria) class, and 10.3%
belonged to Bacilli class (Fig. 7). The β-Proteobacteria class
was the most dominant group in the nirS gene clone library
with 24 OTUs belonging to this class. The β-Proteobacteria
class was divided into three clusters, namely uncultured clus-
ter, Thauera cluster, and Cupriavidus cluster, respectively.
Uncultured cluster (24 sequences) contained more sequences
than Thauera cluster (13 sequences) and Cupriavidus cluster
(12 sequences) in the clone library. OTU1 exhibited the
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highest abundance, which belonged to Cupriavidus cluster
including 9 sequences, and these 9 sequences exhibited high
similarity with those in the sediments of submerged plants.
Three OTUs (OTU23, OTU24, OTU28) belonging to
Thiothrix cluster, γ-Proteobacteria class, exhibited the similar
sequences with those fromYangtze lake sediment and Jiulong
river estuary sediment. OTU4 and OTU6 belonged to Bacillus
cluster, Bacilli class.

Discussion

Many studies have shown that changes in nitrogen content in
the environment will significantly change the abundance of
anammox and denitrifying bacteria in sediments (Zhao et al.

2020; Fu et al. 2019; Kim et al. 2016). Guo et al. (2014) found
that compared with those in mesoeutrophic lakes, denitrifying
bacteria in hypereutrophic lakes exhibited the lowest abun-
dance and evenness. However, the eutrotrophic Dianchi
Lake had greater anammox bacterial abundance thanmesotro-
phic Erhai Lake (Yang et al. 2017). The similar phenomenon
was also found in the sediment of Yangcheng Lake, that is, the
maximum abundance of anammox bacteria was in months
with high ammonia concentration (Zhang et al. 2016).
Therefore, a high nitrogen input was likely to be able to stim-
ulate the growth of anammox bacteria (Nie et al. 2019). The
content of ammonium also affected the composition of
anammox bacteria and the types of denitrifying bacteria.
Some studies found that in eutrophic Taihu Lake and
Kitaura Lake, community structure analysis showed that
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anammox bacteria Ca. Brocadia sp. were the dominant genus
(Qin et al. 2018; Zhu et al. 2015), and the species richness of
denitrifying bacteria decreased with the decrease of ammoni-
um concentrations from surface flow wetland to ditch wetland
(Chen et al. 2020a). In the present study, the NH4

+-N concen-
trations in the sediment interstitial water for each nitrogen
pollution treatment were significantly different during the
whole experiment (Fig. 4) in the presence of P. crispus.
Especially, the maximum NH4

+-N concentration of 600 mg

kg−1 urea treatment was 20.2 mg L−1, while the minimum
NH4

+-N concentration of 0 mg kg−1 urea treatment was
0.9 mg L−1. However, the abundance of anammox 16S
rRNA and nirS gene showed no significant difference under
the three nitrogen pollution conditions. Therefore, the pres-
ence of submerged plants provided a stable environment for
anammox bacteria and nirS denitrifiers to avoid rapid fluctu-
ations in the abundance of these two bacteria in the
rhizosphere.
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The ratio of the abundance of two microorganisms can
reflect which microorganism has better adaptability to the en-
vironment (Kent et al. 2019; Liu et al. 2015). Our previous
study found that the ratio of the abundance of anammox 16S
rRNA to nirS gene in the rhizosphere could quickly respond to
the damage of P. crispus leaves at day 10 after the damage
treatment (Hu et al. 2020). However, in the present study,
during the 42 days of pollution treatment, no significant
changes in the gene abundance ratio were found between dif-
ferent nitrogen pollution treatments, although NH4

+-N con-
centrations differed significantly (Fig. 3). Our results indicated
that the ecological relationship between these two bacteria
was not impacted by different pollution levels in the presence
of submerged plant. This further confirms that submerged
plants provided a stable environment for anammox bacteria
and nirS denitrifiers to avoid the rapid fluctuations in the
abundance of these two bacteria in the rhizosphere.

One reason why plants can provide a stable environment
might be the radial oxygen loss (ROL) from plants. When
there were no plants in the lake, the sediment-water interface
gradually becomes anoxic, and nitrification can only occur in
the oxygen-containing area of the surface sediments (Satoh
et al. 2007). However, oxygen secretion from plant roots can
provide oxygen to ammonium-oxidizing microorganisms in
deep rhizosphere sediments (Okabe et al. 2012). Therefore,
the amount of oxygen secreted from the root system is an
important rate-limiting factor for ammonia oxidation in

rhizosphere sediments (Wang et al. 2012; Lam et al. 2007).
Different macrophytes may show different ROL (Tian et al.
2015); however, there might be a certain limit on the amount
of oxygen loss. For example, the ROL values of Juncus
effusus L. and Juncus inflexus L. were (9.5 ± 1)×10−7 and
(4.5 ± 0.5)× 10−7 mol O2 h

−1 root−1 (Sorrell 1999), respective-
ly. The limited oxygen loss of the root system prevents the
ammonium around the rhizosphere from being rapidly oxi-
dized to nitrate, thus avoiding the impact of the rapid rise in
nitrate concentrations on anammox and denitrifying bacteria
activities. Our results also showed that although the ammoni-
um concentration under each pollution treatment was signifi-
cantly different, the nitrate concentration was relatively stable
(Fig. 4). However, the concentration of nitrate only increased
significantly in the rhizosphere on 14 days and remained sta-
ble in the subsequent 28 and 42 days (Fig. 2). This indicated
that the presence of plants can stabilize the concentration of
nitrate in the rhizosphere and provide a more stable growth
environment for anammox bacteria and denitrifying bacteria.

Another reason why plants can provide a stable environ-
ment wasthat plants may also increase their NH4

+-N absorp-
tion capacity when NH4

+-N content increases in the sediment,
thereby alleviating the ammonium pollution. Most macro-
phytes have been confirmed to prefer ammonium rather than
nitrate due to their energy-saving strategies (Fang et al. 2007;
Tylova-Munzarova et al. 2005). Therefore, plants can absorb
ammonium in the interstitial water faster than nitrate (Zhao
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et al. 2019a). The ammonium concentration in sediment has
been detected to be significantly reduced after planting
Phragmites australis (Toyama et al. 2016). In the present
experiment, the concentration of urea added in N600 treat-
ment was 1.5 times as much as that in N400 treatment, but
the average ammonium concentration in N600 treatment was
detected to be only 1.2 times as much as that in N400 treat-
ment (Fig. 4), indicating that when the ammonium content in
the interstitial water was increased, P. crispus also increased
its capacity of ammonium absorption to avoid the damage to
the micro-habitat caused by the rapid rise of ammonium in the
rhizosphere to a certain extent.

The third reason why plants can provide a stable environ-
ment may be that plant roots increase the absorption of nitrate

in interstitial water. On 14 days, nitrate in rhizosphere inter-
stitial water showed an upward trend (Fig. 2). It may be that
ammonia-oxidizing archaea and ammonia-oxidizing bacteria
(AOB) in the rhizosphere oxidized the ammonia released by
urea, which caused the concentration of nitrate to rise. Studies
also found that the application of urea and fertilizer stimulated
the enrichment of AOB (Chen et al. 2020b), and it also sig-
nificantly increased the abundance and diversity of AOB
genes (Tao et al. 2021). The enrichment of AOB accelerates
ammonia oxidation speed. However, on 28 and 42 days, the
concentration of nitrate in rhizosphere interstitial water
remained relatively low when the ammonia concentration
did not decrease significantly. This indicated that when the
abundance of two nitrate consumers, anammox bacteria and
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denitrifying bacteria, did not increase significantly, plant roots
were likely to increase the absorption of nitrate after short-
term adaptation.

Nie et al. (2019) found that the ratio of NH4
+/NO3

− in the
soil was a key factor regulating the anammox process. In the
present study, the gene abundance of anammox 16S rRNA
was negatively correlated with NO3

−-N content in the intersti-
tial water, but it was positively correlated with the ratio of
NH4

+/NO3
-, which might be due to the fact that at high am-

monium concentrations, anammox bacteria might be more
inclined to use NO2

− produced by nitrification as reaction
substrate compared to NO3

− or NH4
+ (Nie et al. 2019). In

the present study, the abundance of nirS gene was also nega-
tively correlated with NO3

−, which was consistent well with
the results of our previous study (Hu et al. 2020). The research
on neutralized used acid biofilter and reeds rhizosphere sedi-
ment also found that the abundance of nirS gene was not
positively correlated with NO3

− (Xu et al. 2020; Wang et al.
2017). This might be attributed to the interference of the an-
aerobic ammonia oxidation process, since the intermediate
products from nitrification and denitrification were used as
reaction substrates, these intermediate products might inter-
fere with the second step of the denitrification process domi-
nated by nirS denitrifiers (Wang et al. 2017).

Five genera of anammox bacteria have been identified
(Zhou et al. 2018). The present study found that Candidatus
Brocadia and Candidatus Kuenenia of anammox bacteria
could coexist in sediments, and these two genera were report-
ed to be more adapted to the growth in freshwater systems
(Sun et al. 2014; Zhu et al. 2013). In our study, Ca.
Brocadia was dominant in anammox bacteria, and this genus
was also found to be dominant in the sediments of rivers and
eutrophic lakes in previous studies (Hu et al. 2012; Yoshinaga
et al. 2011; Zhang et al. 2007). Candidatus Brocadia prefers a
rich ammonium environment (Oshiki et al. 2016). The high
ammonium content in the present study might be the reason
for Ca. Brocadia predominance. Candidatus Brocadia was
also reported to coexist with other genera of anammox bacte-
ria (Sonthiphand et al. 2014). Our study also found that a small
amount of Ca. Kuenenia coexisted with Ca. Brocadia.
Candidatus Kuenenia showed lower affinity constants for
NH4

+ and NO2
− which might make it more suitable for a

low ammonium environment (Oshiki et al. 2016). The rich
ammonium environment in the present study might have an
inhibitory effect on the growth of these bacteria.

This study indicated that β-Proteobacteria and γ-
Proteobacteria accounted for 84.5% and 5.2% of the total
number of nirS sequences, respectively. Both the β-
Proteobacteria class and the γ-Proteobacteria class belonged
to the Proteobacteria phylum. Previous study has found that
the Proteobacteria phylum has an advantage in the river envi-
ronment (Zwart et al. 2002), which is in line with our findings

for this phylum. The present study found that Thauera cluster
contained 13 sequences, which has already been confirmed to
be more suitable for survival in an eutrophic environment in
previous study (Yang et al. 2013). Some studies have also
reported that the nitrate addition will increase the denitrifica-
tion activity, but this nitrate addition cannot change the com-
munity composition of the denitrifying bacteria (Wallenstein
et al. 2006).

Conclusions

In this study, three different concentrations of slow-release
urea were added to the rhizosphere sediments of P. crispus
to investigate their impacts on anammox and denitrifying bac-
teria. Our results showed that the ammonium concentrations
in the interstitial water were significantly increased after the
addition of the slow-release urea, but the concentrations of
nitrate remained stable. The abundance of the anammox 16S
rRNA and nirS gene showed no significant difference among
three nitrogen pollution treatments. And the change trend of
the ratio of (anammox 16S rRNA)/nirS in different nitrogen
treatment groups on the same sampling date was very close.
These results support our hypothesis that under increased ni-
trogen pollution conditions, submerged plants weaken the en-
vironmental changes caused by ammonia pollution in the rhi-
zosphere, thereby avoiding strong fluctuations anammox bac-
teria and nirS denitrifiers.
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