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Abstract
Alumina nanoparticles (ALNPs) are widely used causing neurobehavioral impairment in intoxicated animals and humans.
Sesamol (SML) emerged as a natural phytochemical with potent antioxidant and anti-inflammatory properties. However, no
study has directly tested the potential of SML to protect against AlNP-induced detrimental effects on the brain. AlNPs (100
mg/kg) were orally administered to rats by gavage with or without oral sesamol (100 mg/kg) for 28 days. In AlNP-intoxicated
group, the brain AChE activity was elevated. The concentrations of MDA and 8-OHdG were increased suggesting lipid
peroxidation and oxidative DNA damage. GSH depletion with inhibited activities of CAT and SOD were demonstrated.
Serum levels of IL-1β and IL-6 were elevated. The expressions of GST, TNF-α, and caspase-3 genes in the brain were
upregulated. Histopathologically, AlNPs induced hemorrhages, edema, neuronal necrosis, and/or apoptosis in medulla
oblongata. The cerebellum showed loss of Purkinje cells, and the cerebrum showed perivascular edema, neuronal degeneration,
necrosis, and neuronal apoptosis. However, concomitant administration of SML with AlNPs significantly ameliorated the toxic
effects on the brain, reflecting antioxidant, anti-inflammatory, and anti-apoptotic effects of SML. Considering these results,
sesamol could be a promising phytochemical with neuroprotective activity against AlNP-induced neurotoxicity.
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Introduction

The incorporation of nanoparticles into everyday life consti-
tutes an important toxic hazard to humans and animals.
Alumina (aluminum oxide) nanoparticles (AlNPs) account
for about 20% of the global nanoparticle market (Sengul and
Asmatulu 2020). They have multiple uses in cosmetics,

medicines, electronics, aerospace, chemical engineering, food
contact materials, catalysts, ceramics, and rubber (Li et al.
2020).

The widespread use of AlNPs is associated with possible
exposure of humans and animals (Dawood et al. 2019a; El-
Seedi et al. 2019; Zahin et al. 2020; Bhattacharya et al. 2021).
They may enter the body through food, water, inhalation, or
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dermal contact, where they can readily penetrate biological
barriers due to their small size and high surface reactivity
and accumulate in different organs and tissues (El-Sayed and
Kamel 2020; Krause et al. 2020). Moreover, because the cell
surface is negatively charged and AlNPs are positively
charged, these particles are drawn to the interior of cells
through electrostatic interactions (Liu et al. 2020a). This in
turn produces many toxic effects including hematological
changes (De et al. 2020), genotoxicity (Zhang et al. 2017),
testicular toxicity (De et al. 2020), carcinogenicity (Dey
et al. 2008), immunotoxicity (Li et al. 2020), hepatotoxicity,
nephrotoxicity (Morsy et al. 2016), and pulmonary toxicity
(Yun et al. 2020).

The CNS was mentioned as a potential target for AlNPs.
They penetrate the blood-brain barrier (BBB) easily owing to
their small size (De et al. 2020) and their effect on BBB per-
meability through downregulation of the tight junction protein
expression such as occludin and claudin-5 (Chen et al. 2008).
The penetrating AlNPs were reported to accumulate in the
hippocampus, olfactory bulb, cerebral cortex, and striatum
causing learning and memory dysfunction and depression-
like behavior (Shah et al. 2015; Zhang et al. 2021a).
Furthermore, AlNPs were recognized as a major contributor
to many neurodegenerative disorders such as Alzheimer’s and
Parkinson’s diseases (Zhang et al. 2018).

Acetylcholinesterase (AChE) has an essential role in cho-
linergic neurotransmission and non-cholinergic functions
such as its effect on cell survival, neurite outgrowth, and
voltage-dependent calcium currents (Whyte and Greenfield
2003). Thus, assessment of the AChE activity is a useful
marker of neurotoxicity. Oxidative damage to nerve cell is
the first event in a sequence leading to deleterious effects after
nanoparticles intoxication (Shah et al. 2015; Abdel-Daim et al.
2019; Kandeil et al. 2020). However, cellular enzymatic and
non-enzymatic antioxidants can alleviate this oxidative injury.
Thus, the determination of MDA and 8-OHdG can be used as
valuable markers of oxidative damage to membrane lipids and
DNA. In addition, assessment of GSH, SOD, CAT, and GST
indicates the antioxidant status (Mohammed and Safwat 2013;
Dawood et al. 2019b).

Apoptosis has been reported as a major pathway of cellular
death consequent to nanoparticle evoked oxidative stress
(Nogueira et al. 2019; Liu et al. 2020a; Mohammed et al.
2020). As the mitochondria are potential targets for oxidative
stress (Manke et al. 2013), cascade reactions occur in the
intrinsic (mitochondrial) apoptotic pathway including mito-
chondrial outer membrane permeabilization (MOMP) and cy-
tochrome c release to the cytoplasm activating caspase-9 and
subsequent caspase-3 (Xiong et al. 2014). Thus, assessment of
caspase-3 is a valuable marker for ROS-mediated cell death
via mitochondrial pathway.

Nanoparticle-mediated oxidative injury has been shown to
orchestrate a series of inflammatory responses (Manke et al.

2013; Samak et al. 2018) with the release of pro-inflammatory
mediators via NF-κB/MAPK activation (Mohammed and
Safwat 2020; Zhang et al. 2021a). The produced neuroinflam-
mation has been linked to Alzheimer’s disease and other neu-
rodegenerative disorders (Win-Shwe and Fujimaki 2011).
Thus, assessment of the inflammatory cytokines IL-1β, IL-
6, and TNF-α evaluates the inflammatory response in intoxi-
cated animals.

Research in the field of toxicology has always focused on
offering natural plant products to alleviate various toxic insults
(Abou-Zeid et al. 2018). They contain phytochemicals with
little harm and strong antioxidant activity making them valu-
able drugs (Farag et al. 2021; Kabir et al. 2021). Among them
is sesame (Sesamum indicum) oil which contains sesamol
(SML), a natural phenolic lignan with the chemical structure
3,4-(methylenedioxy) phenol (Majdalawieh and Mansour
2019). Sesamol was reported to be a potent antioxidant with
strong scavenging activity against free radicals (Kanimozhi
and Prasad 2009). After oral administration, it was readily
absorbed and detected in multiple organs due to its unique
solubility in both aqueous and oily phases (Jan et al. 2008).
In addition, it has a great ability to penetrate the BBB due to its
high lipophilicity (Ren et al. 2018).

Evidences have been accumulated regarding the ther-
apeutic uses of sesamol specially as antimutagenic and
anticancer drug (Majdalawieh and Mansour 2019).
Recently, sesamol has been receiving considerable atten-
tion as a neuroprotective agent. It alleviated the cogni-
tive deficits and detrimental effects produced in rat
models of induced diabetic neuropathy (VanGilder
et al. 2009; Chopra et al. 2010), Huntington’s disease
(Kumar et al. 2010), epilepsy (Hassanzadeh et al. 2014),
chronic intermittent hypoxia (Zhang et al. 2021b), and
natural aging model in mouse (Ren et al. 2018, 2020).

We hypothesized that sesamol may exhibit a neuro-
protective effect towards AlNP-induced brain injury.
Thus, the present study aimed at investigating the anti-
oxidant, anti-inflammatory, and anti-apoptotic potentials
of sesamol in AlNP-intoxicated rats via assessment of
AChE activity, oxidative stress markers, antioxidants,
proinflammatory cytokines, and caspase-3 gene expres-
sion. In addition, the histopathological alterations in the
brain were investigated.

Materials and methods

Chemicals

Aluminum oxide (Al2O3) or alumina nanoparticles (ALNPs)
(particle size < 50 nm) and sesamol (SML) were obtained
from Sigma-Aldrich (Germany). All other chemicals used
were of analytical grade.
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Characterization of AlNPs

AlNPs were characterized as previously mentioned by Li et al.
(2020) using transmission electron microscopy (TEM). The
diameters of AlNPs were analyzed by the Image-Pro Plus
software. Suspensions of freshly prepared AlNPs in bi-
distilled water were used after ultrasonic vibration (100 W,
30 kHz, 30min). In the TEM, a suspension droplet was placed
on a 200-mesh Cu-lacy lace carbon TEM grid. The film on the
TEM grid was dried overnight in a vacuum oven at room
temperature (25 °C). After water evaporation, the AlNPs were
dispersed over the TEM grid. TEM measurements were con-
ducted on a JEOL model 2100 F instrument (Japan) operated
at an accelerating voltage of 200 kV.

Animals

All experimental procedures in this study were approved in
advance (approval number: VUSC-007-1-20) by the
Institutional Animal Care and Use Committee of University
of Sadat City, Egypt, and conducted out following National
Institutes of Health Guidelines for the Care and Use of
Laboratory Animals.

Eighty young adult male Sprague–Dawley rats (140–160
g) were obtained from the Laboratory Animal Farm, Faculty
of Veterinary Medicine, University of Sadat City, Egypt, and
were acclimated in our facility for 1 week, prior to the exper-
iment. Animals were caged at standardized conditions (12 h
light/ dark period; temperature 23 ± 2 °C; humidity 50%) and
allowed free access to food and distilled water during the
acclimatization period and throughout the experiment.
Animals were randomly allocated into four groups, 20 rats
each.

Experimental design

All experimental groups received the treatments daily by
stomach tube for 28 days. Group I (Control): received distilled
water. Group II (SML group): received SML at a dose level of
100 mg/kg/day. Group III (AlNP group): received AlNPs at
100 mg/kg bw/day. Group IV (AlNPs + SML): received SML
followed (after 2 h) by AlNPs, at the dose levels indicated for
groups II and III. The exposure levels of SML and AlNPs
were selected based on previous studies of Hemalatha et al.
(2013) and Jo et al. (2016), respectively.

AlNPs were daily dispersed in bi-distilled water (at 4 °C)
using ultrasonic vibration (100 W, 30 kHz) for 30 min before
administration to ensure homogeneous distribution. The solu-
tion was subjected to sonication and vigorous vortexing as per
requirement, to ensure uniform suspension. Sesamol was
freshly prepared daily by dissolving the required amount of
sesamol powder in a suitable amount of distilled water
(Hemalatha et al. 2013).

Sampling

At the end of experiment, blood samples were collected from
the retro-orbital plexus, and were allowed to sit for 30 min,
then centrifuged at 3000 rpm at 4 °C for 15 min. Sera were
collected and stored at – 80 °C to be used for interleukin
analysis.

Rats from all experimental groups were euthanized by cer-
vical dislocation under sodium pentobarbital anesthesia (60
mg/kg). Brains were dissected and assigned into three sets.
The first set was homogenized, using Teflon homogenizer in
cold PBS (pH 7.4), and the obtained homogenates were cen-
trifuged at 4 °C for 20 min (14,000×g). Supernatants were
obtained and stored at – 80 °C to be used for investigation
ofMDA, 8-OHdG, and antioxidants. The second brain set was
immediately frozen in liquid nitrogen and stored at – 80 °C
until being processed for RT-qPCR expression and assess-
ment of AChE activity. The third set of brains was fixed in
neutral buffered formalin 10% solution to be used in the his-
topathological investigation.

Acetylcholinesterase (AChE)

The brain acetylcholinesterase (AChE) activity was measured
using enzyme -linked immunosorbent assay (ELISA) Kit ob-
tained from MyBioSource Biotechnology company, Egypt
(Catalog No. MBS2501434), according to manufacturer in-
structions. Standards are added to the wells of a micro-
ELISA plate precoated with RatAChE specific antibodies. A
biotinylated detection antibody specific for RatAChE and
Avidin-Horseradish Peroxidase (HRP) conjugate are added
to each well. This was followed by washing free components
and addition of the substrates. A sulfuric acid solution was
added to terminate the reaction. The optical density (OD)
was measured spectrophotometrically at 450 nm.

Oxidative stress/antioxidant biomarkers

The concentrations of the lipid peroxidation product
malondialdehyde (MDA) and reduced glutathione
(GSH), and the activities of catalase (CAT) and super-
oxide dismutase (SOD) were assessed in brain tissue
using assay kits from the Biodiagnostic Company,
Egypt, (Catalog No: MD2529, GR2511, CA2517,
SD2521, respectively) according to Ohkawa et al.
(1979), Beutler et al. (1963), Aebi (1984), and
Nishikimi et al. (1972), respectively.

8-hydroxy-2'-deoxyguanosine (8-OHdG)

Brain 8-OHdG was quantified using 8-OHdG ELISA kit
(Catalog No: MBS008851) obtained from MyBioSource
Biotechnology company, Egypt.
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Inflammatory response markers

Serum IL-1β and IL-6 levels were assessed using the com-
mercial rat ELISA kits obtained from MyBioSource, San
Diego, CA, USA (Catalog No: MBS825017 and
MBS175908, respectively. The assessment protocols were
followed as provided by the manufacturer.

Quantitative real-time polymerase chain reaction
(qRT-PCR) of Glutathione-S-transferase (GST), tumor
necrosis factor-alpha (TNF-α), and caspase-3 genes

Total RNA in brain samples was extracted using QIAmp
RNA mini kit (Qiagen, Hilden, Germany) as indicated by
the manufacturer. Total RNA purity and concentration were
determined using a nanodrop ND-2000 spectrophotometer.
The isolated RNAwas used for cDNA synthesis using reverse
transcriptase (Fermentas, EU). Real-time PCR (qPCR) was
performed in a total volume of 20-μl using a mixture of 1 μl
cDNA, 0.5 mM of each primer (Table 1), iQ SYBR Green
Premix (Bio-Rad 170-880, USA). PCR amplification and
analysis were achieved using Bio-Rad iCycler thermal cycler
and the MyiQ real-time PCR detection system. Each assay
includes triplicate samples for each tested cDNAs and no-
template negative control; the expression relative to the con-
trol is calculated using the equation 2-ΔΔCT (Livak and
Schmittgen 2001).

Histopathological examination

The brain of each rat was removed completely and fixed in
10% neutral buffered formalin solution for 72 h. For histo-
pathological investigation, samples were trimmed, washed,
dehydrated, embedded in paraffin wax, serially sectioned with
a microtome at 3-μm thickness and stained with hematoxylin
and eosin (H&E) stain. Additionally, histological photos were
taken using Lieca DMLB microscopes and Leica EC3 digital
camera. The comparative histopathological lesion scoring in

different brain regions was conducted according to Gibson-
Corley et al. (2013).

Statistical analysis

The obtained data are presented as means ± S.E of the mean.
All experimental data were subjected to one-way analysis of
variance (ANOVA) followed by Duncan’s multiple range test
for post hoc analysis using SPSS software, version 17 (IBM,
USA). The level of significance was set at p ≤ 0.05.

Results

Characterization of AlNPs

As displayed in Fig. 1, the ultrasonicated aluminum oxide
nanoparticles appeared as crystals, in the form of rods, with
an average length of 20–35 nm and an average thickness of 3–
6 nm.

Brain acetylcholinesterase (AChE) activity

We have observed that subacute daily oral administration of
AlNPs (100 mg/kg) for 28 days significantly (p ≤ 0.05) ele-
vated the activity of brain AChE (Table 2). However, con-
comitant administration of SML (100 mg/kg) with AlNPs
reduced the elevated enzyme activity, compared to AlNP
group, but a significant difference from control value was still
present.

Oxidant/antioxidant biomarkers findings

When compared to respective control values, the level of brain
MDA level was significantly (p ≤ 0.05) elevated, while that of
GSH was significantly reduced in AlNP-treated rats.
Additionally, the activities of CAT and SODwere significant-
ly inhibited. The group of rats that received both AlNPs and

Table 1 Primer sequences
reference of GST, TNF-α and
caspase-3 genes of Rattus
norvegicus

Target genes Accession no. Sequence (5' to 3') Product size

GAPDH

(reference gene)

NM_017008.4 F: 5'-GAGACAGCCGCATCTTCTTG-3'

R: 5'-TGACTGTGCCGTTGAACTTG-3'

224bp

GST NM_031509.2 F:5'GACCAGAGCCATTCTCAACTACA3'

R:5'CTCAGCCTATTGCCAACGAGATA3'

261bp

TNF-α NM_012675.3 F: 5'ACACACGAGACGCTGAAGTA3'

R: 5'GGAACAGTCTGGGAAGCTCT3'

235bp

Casp-3 NM_012922.2 F: 5'-CATGCACATCCTCACTCGTG-3'

R: 5'-CCCACTCCCAGTCATTCCTT-3'

158bp
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SML showed significant improvement in all indices, in com-
parison to AlNP-treated group. However, values were still
significantly different from control group, except for CAT
which showed complete recovery (Table 2).

Concerning brain GST gene expression, we observed a
significant 4.8-fold increase in the AlNP-treated group, com-
pared to control. In the combined treatment group (AlNPs +
SML), the expression significantly decreased to 56.3% of the
AlNP group, but the value was significantly different from
control (Fig. 2A and D).

8-OHdG findings

As shown in Table 2, AlNP-treated group presented signifi-
cant elevation (p ≤ 0.05) of brain 8-OHdG concentration, rel-
ative to control. However, concurrent administration of SML

with AlNPs completely recovered the level of 8-OHdG to
control value.

Inflammatory response findings

As summarized in Table 3, IL-1β and IL-6 levels in
serum of AlNP-intoxicated rats were significantly (p ≤
0.05) elevated, with respect to the corresponding con-
trols. When SML was co-supplemented with AlNPs, it
alleviated the effect on both interleukins, compared to
AlNP-treated group. However, the values were still
higher than corresponding controls.

In addition, we recorded 3.9-fold increase in the ex-
pression of TNF-α gene in the brain of AlNP-treated
animals, in comparison to control. However, the con-
comitant administration of SML with AlNPs attenuated

Fig. 1 Transmission electron microscope image of Al2O3 nanoparticles in stock solutions

Table 2 Effect of AlNPs and/or
SML on biochemical indices in
the brain of rats from all experi-
mental groups

Control SML AlNPs AlNPs + SML

AChE (ng/ml) 9.81 ± 0.60c 11.66 ± 0.90bc 18.01 ± 0.94a 13.17 ± 0.82b

MDA (nmol/g) 28.75 ±1.12c 26.15 ± 1.23c 68.15 ± 2.03a 44.15 ± 1.86b

GSH (mg/g) 87.75 ± 2.73a 84.74 ± 2.57a 45.59 ± 1.65c 76.22 ± 2.03b

CAT (U/g) 2.04 ± 0.086a 2.06 ± 0.053a 1.53 ± 0.070b 1.89 ± 0.048a

SOD (U/g) 21.56 ± 0.99a 20.94 ± 1.01a 10.48 ± 0.75c 13.18 ± 0.82b

8OHdG (ng/ml) 8.33 ± 0.39b 8.25 ± 0.41b 14.33 ± 0.62a 8.93 ± 0.27b

Values are means ± SE, n = 5. Means in the same row with different superscripts (a, b, and c) are statistically
significant (p ≤ 0.05). ALNPs alumina nanoparticles, SML sesamol, AChE acetylcholinesterase, MDA
malondialdehyde, GSH glutathione, CAT catalase, SOD superoxide dismutase, 8-OHdG: 8-hydroxy-2'-
deoxyguanosine
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the expression to be 58.97% of the AlNP value, al-
though still significantly higher than control value
(Fig. 2B and E).

Brain caspase-3 finding

As indicated in (Fig. 2C and F), caspase-3 gene expression
presented 4.4-fold increase in the brain of AlNP-treated ani-
mals, relative to control. However, the concurrent administra-
tion of SMLwith AlNPs ameliorated this overexpression to be
52.27% of the AlNP group, although still significantly higher
than control.

Histopathological findings

Histopathologically, all examined brain regions in the nega-
tive control group and in the SML-treated group (Fig. 3)
showed a normal histological architecture. On the other hand,
AlNP administration induced necrosis and complete loss of
several Purkinje cells: congestion and edema in molecular
layer of the cerebellum (Fig. 4a). Medulla oblongata showed
multiple hemorrhage, edema, neuronal necrosis, microglia ac-
tivation (Fig. 4c), and apoptosis on neurons (Fig. 4e). In cere-
brum, AlNP toxicity induced a widespread perivascular ede-
ma, hyalinization of vascular walls, a widespread apoptosis of
neurons, neuronal necrosis, and edema in neuropil (Fig. 5a
and c). Additionally, midbrain red nucleus showed a neuronal
degeneration of multiple neurons (Fig. 5e).

As summarized in Table 4, co-supplementation of SML
with AlNPs alleviated the histopathological alterations in-
duced by the nanometal. The brain tissues showed necrosis
of a few Purkinje cells in cerebellum (Fig. 4b). In medulla
oblongata, mild neuronal necrosis and edema were observed
(Fig. 4d and f). In cerebrum, a slight perivascular edema and a
few apoptotic neurons were detected (Fig. 5b). Inmidbrain red
nucleus, neuronal degeneration of a few neurons was recorded
(Fig. 5f).

Discussion

Excessive or long-term exposure to aluminum nanoparticles
(AlNPs) constitutes a major hazard to human and animal ner-
vous system. Thus, search is continuous for phytochemicals
with neuroprotective effects. In the present study, we have
studied the impact of sesamol (SML) co-supplementation on
the AlNP-induced toxic effects in the brain of rats. The small
size of AlNPs and their large surface area enable them to
penetrate biological membranes easily through all routes (De
et al. 2020). In the current investigation, we adopted the oral
route of administration, as it is the most common route of
exposure. Our results regarding TEM photomicrographs re-
vealed that the AlNPs were rods with an average length of 20–
35 nm and an average thickness of 3–6 nm, which were ap-
proximately within the range of < 50 nm, as provided by the
manufacturer.

Fig. 2 Effect of AlNPs and/or SML on brain gene expression. Fold-
change of mRNA gene expression of: A GST, B TNF-α, and C
caspase-3 using quantitative RT-PCR. Values are expressed as mean ±
SE, n = 5. Bars carrying different letters (a, b, and c) are significantly

different at p ≤ 0.05. Cropped gel of electrophoretic mobility of quanti-
tative RT-PCR products of D GST, E TNF-α, and F caspase-3 genes,
with GAPDH as internal control, on 2% agarose gel. Lane 1: control, lane
2: sesamol, lane 3: AlNPs, and lane 4: AlNPs + sesamol

Table 3 Effect of AlNPs and/or
SML on serum proinflammatory
cytokines in rats

Control SML AlNPs AlNPs + SML

IL-1β (pg/ml) 200.40 ± 3.70c 194.60 ± 3.23c 235.00 ± 4.01a 211.60 ± 3.78b

IL-6 (pg/ml) 314.00 ± 3.63c 318.00 ± 3.33c 436.20 ± 5.14a 368.80 ± 4.19b

Values are means ± SE, n = 5. Means in the same row with different superscripts (a, b, and c) are statistically
significant (p ≤ 0.05). ALNPs alumina nanoparticles, SML sesamol
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Acetylcholinesterase (AChE) is a key enzyme involved
in catalyzing acetylcholine into choline and acetic acids at
nerve synapses and neuromuscular junctions. Our findings
demonstrated that oral administration of AlNPs to rats for
28 days increased the activity of brain AChE, which is
expected to reduce the level of brain acetylcholine. This
may contribute to AlNP-induced neurodegeneration, as
the onset of degenerative diseases such as Alzheimer’s
disease was linked to reduced acetylcholine level
(Emmett and Greenfield 2004; Arya et al. 2021). The
elevated AChE activity may result from allosteric interac-
tion of Al3+ cation with the enzyme peripheral sites caus-
ing modifications in the enzyme secondary structure and
thus enhances its activity (Zatta et al. 1994). Our findings
are in accordance with previous studies demonstrating el-
evated brain AChE activity in response to aluminum treat-
ment (Auti and Kulkarni 2019; Aboelwafa et al. 2020; Liu
et al. 2020b).

Of note, when SML was co-administered with AlNPs, it
lowered the elevated AChE activity, reflecting the neuropro-
tective effect of SML. Likewise, SML was previously report-
ed to produce a similar effect in experimental paradigm of
diabetes associated cognitive decline (Kuhad and Chopra
2008) and Alzheimer’s disease induced by intracerebroven-
tricular injection of streptozotocin (ICV-STZ) in rats
(Sachdeva et al. 2015).

The brain is more susceptible to oxidative stress due to
poor antioxidant content, high oxidizable polyunsaturated fat-
ty acids and iron content, and great metabolic rate (Casetta
et al. 2005). Herein, we recorded elevation of brain MDA,
depletion of GSH, and inhibition of activities of SOD and
CAT in AlNP-treated rats. Consistent with our results,
Manke et al. (2013) showed that ROS generation with conse-
quent oxidative stress is the major mechanism of nanoparticle-
induced toxicity, due to large surface area, compared to their
larger counterparts. Similar to our results, AlNPs administered

Fig. 3 Brain, rat, sesamol (SML)-treated group. a Cerebellum: showing
normal histological architectures. GL, granular layer; P, Purkinje cell
layer; ML, molecular layer. b Medulla oblongata: showing normal
histological architectures. MeN, medulla oblongata neurons. c Midbrain

red nucleus: showing normal histological architectures motor neurons
(thick arrow), oligodendrocyte (thin arrow), astrocyte (arrowhead). d
Cerebrum: showing normal histological architectures. Cerebral neurons
(arrowhead), blood vessels (arrows). HE stain, × 20
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Fig. 4 Brain, rat. a, c, and e Aluminum nanoparticle (AlNP)-treated
group. b, d, and f AlNPs plus sesamol (SML)-treated group. a
Cerebellum: showing necrosis and complete loss of several Purkinje
cells (thick arrows), congestion (thin arrow) and edema (arrowhead) in
molecular layer. b Cerebellum: showing necrosis of a few Purkinje cells
(arrow). cMedulla oblongata: showing hemorrhage (thick arrow), edema

(bended arrow), neuronal necrosis (arrowhead). and microglia activation
(thin arrow). d Medulla oblongata: showing mild neuronal necrosis (ar-
rowhead). e Medulla oblongata: showing multiple hemorrhage (thick
arrow) and apoptosis on neurons (thin arrow). fMedulla oblongata: show-
ing edema (arrow). HE stain, × 20
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Fig. 5 Brain, rat. a, c, and e Aluminum nanoparticle (AlNP)-treated
group. b, d, and f AlNPs plus sesamol (SML)-treated group. a
Cerebrum: showing a widespread perivascular edema and hyalinization
of vascular walls (arrows), apoptosis of neurons (arrowhead) and edema
(bended arrow). b Cerebrum: showing a slight perivascular edema
(arrow) and apoptosis of neurons (arrowhead). c Cerebrum: showing a

widespread apoptosis of neurons (arrowhead), neuronal necrosis (arrow)
and edema in neuropil (bended arrow). d Cerebrum: showing normal
histological architectures. e Midbrain red nucleus: showing neuronal de-
generation of multiple neurons (arrowhead). f Midbrain red nucleus:
showing neuronal degeneration of a few neurons (arrowhead). HE stain,
× 20
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orally to rats were shown to increase lipid peroxidation and
deplete GSH with suppression of GPx and SOD activities in
the brain (Arslanbaş and Coşar 2019; De et al. 2020; Zhang
et al. 2021a). In addition, brain oxidative stress was reported
in rats received AlNPs intraperitoneal (Li et al. 2009; Morsy
et al. 2016), intravenous (Mrad et al. 2017), or via intranasal
instillation (Ji et al. 2011).

The elevated level of MDA with depletion of GSH indicat-
ed redox imbalance. MDA, a lipid peroxidation marker, is a
toxic adduct which contributes to neuronal cell death (Serteser
et al. 2002). Low GSH level could be attributed to excessive
utilization in scavenging ROS (De et al. 2020). The reduced
activity of CAT and SOD may result from being utilized in
detoxication of H2O2 and superoxide radical (Abou-Zeid et al.
2021). We also observed upregulation of brain GST gene
expression in AlNP-intoxicated rats. This may occur in re-
sponse to increased ROS generation. The increased utilization
of GSH by GST enzyme may contribute to the recorded GSH
depletion. In agreement with our findings, Prabhakar et al.
(2012) reported increased GST activity in the brain of AlNP-
treated rats, while GSH concentration was decreased.

Interestingly, when AlNP-treated rats were co-
supplemented with SML, amelioration of all biochemical in-
dices of oxidative stress was observed, reflecting the antioxi-
dant potential of SML. This could be attributed to the capacity
of SML to scavenge hydroxyl, superoxide, NO, ABTS, and
DPPH radicals (Kanimozhi and Prasad 2009; Mishra et al.
2011) through its phenolic hydroxyl group (Majdalawieh
and Mansour 2019). SML exhibited 1.8-fold greater radical
scavenging activity than ascorbic acid (Majdalawieh and
Mansour 2019) and 20 times stronger antioxidant ability com-
pared to melatonin (Mishra et al. 2011).

In agreement with our findings, SML reduced lipid perox-
idation and improved GSH and enzymatic antioxidants in the
brain of rat experimental paradigm of diabetes (VanGilder
et al. 2009), Alzheimer’s disease (Sachdeva et al. 2015),
Huntington’s disease (Kumar et al. 2010), chronic intermittent
hypoxia (Zhang et al. 2021b), and focal cerebral ischemia/

reperfusion injury (Gao et al. 2017). The induction of antiox-
idant enzymes by SML was thought to be mediated through
activation of Nrf2 transcriptional pathway and its nuclear
translocation (Ren et al. 2018) and activation of SIRT1-
SIRT3-FOXO3a expression (Ruankham et al. 2021).

Moreover, we demonstrated elevation of brain 8-OHdG
concentration in AlNP-intoxicated animals, reflecting oxida-
tive DNA damage. In accordance with our results, previous
studies documented the ability of AlNPs to induce DNA dam-
age in mouse brain (De et al. 2020), bone marrow, and sperm
(Zhang et al. 2017) secondary to oxidative stress. Notably,
when SML was co-administered with AlNPs, it reduced the
brain 8-OHdG level. Similar to our findings, SML was report-
ed to inhibit the radiation-induced DNA damage both in vivo
and in vitro (Prasad et al. 2005; Kumar et al. 2018).

Accumulation of ROS may initiate apoptosis (Hsin et al.
2008). Our findings showed upregulation of caspase-3 in the
brain of rats intoxicated with AlNPs. Similar to our results,
Nano-Al2O3 produced apoptosis manifested by downregula-
tion of bcl-2 and upregulation of p53 and Bax gene expression
in the brain of rats (Liu et al. 2020a), and by caspase-3 gene
overexpression in mouse brain (Zhang et al. 2011). Similar
effect was demonstrated in vitro in astrocytes of neonatal rat
cerebral cortex (Dong et al. 2019) and mouse neuroblastoma
cells (Nogueira et al. 2019). The AlNP-induced apoptosis
seems to be mediated via mitochondrial (intrinsic) pathway
via activation of p53 pathway consequent to increased oxida-
tive DNA damage (Liu et al. 2020b). Our histopathological
findings revealed a widespread neuronal apoptosis in the ce-
rebral neurons in the AlNP-treated group, which is in line with
the upregulation of caspase-3 gene.

Of note, coadministration of SMLwith AlNPs downregulat-
ed the expression of caspase-3 in the brain. Similar effect of
SML was reported in the brain of rats with rotenone-induced
Parkinson’s disease (Sonia Angeline et al. 2013), focal cerebral
ischemia/reperfusion injury (Gao et al. 2017), and experimental
diabetes (Chopra et al. 2010). The molecular mechanisms un-
derlying the anti-apoptotic activity of SML in nerve cells may

Table 4 A comparative lesion scoring in examined brain regions between different groups

Brain regions Cerebellum Medulla oblongata Cerebrum Midbrain red nucleus

Lesions G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

Hemorrhage - - - - - - +++ - - - - - - - - -

Degeneration - - +++ + - - +++ ++ - - ++ + - - +++ +

Necrosis - - +++ + - - ++ + - - ++ - - - - -

Apoptosis - - - - - - + - - - ++++ + - - - -

Edema - - + - - - ++ + - - ++ + - - - -

G1, G2, G3, and G4 represent negative control group, SML-treated group, AlNP-treated group, and SML + AlNP-treated groups, respectively. -, +, ++,
+++, ++++ means normal, mild, moderate, and severe, respectively
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include activating SIRT1-SIRT3-FOXO3a expression, upregu-
lation of the anti-apoptotic protein Bcl-2, and inhibition of the
proapoptotic protein Bax (Ruankham et al. 2021).

It has been documented that oxidative damage is a major
initiator of inflammatory cascade via several mechanisms
(Manke et al. 2013). We recorded overexpression of brain
TNF-α gene and increased levels of IL1-β and IL-6 in serum
of AlNP-intoxicated rats, reflecting inflammatory response
which may contribute to development of neurodegenerative
deficits (Win-Shwe and Fujimaki 2011; Guo et al. 2018).
Similar to our results, AlNP increased the levels of proinflam-
matory cytokines such as IL-1β, IL-6, and TNF-α in the brain
of rats (Arslanbaş and Coşar 2019; Liu et al. 2020a; Zhang
et al. 2021a) and in vitro in astrocytes of neonatal rats (Dong
et al. 2019). Compelling evidence has suggested activation of
NF-κB as a major pathway of aluminum-induced neuroin-
flammation (Zhang et al. 2018). Yun et al. (2020) have shown
that the activation of notch pathway is the main mechanism of
lung inflammation induced by AlNPs.

Importantly, concomitant SML treatment with AlNPs allevi-
ated the inflammatory response as evidenced by downregulation
of brain TNF-α expression and reduction of IL-1β and IL-6
levels. This is in line with the previous studies reporting the
anti-inflammatory activity of SML in the brain of rats with dia-
betic neuropathy (Chopra et al. 2010;Misra et al. 2011; Sachdeva
et al. 2015), focal cerebral ischemia/reperfusion injury (Gao et al.
2017), and chronic intermittent hypoxia (Zhang et al. 2021b) and
in the lungs of rats with endotoxemia (Chu et al. 2010). The anti-
inflammatory effect of SML was suggested to be mediated via
suppressing NF-κB/MAPK activation and upregulating AMP
kinase signaling (Wu et al. 2015; Liu et al. 2017).

Histopathologically, a notable neuronal degeneration and/
or necrosis were observed in different areas in the brain of
AlNP-treated group. Interestingly, the most affected neurons
were motor neurons (motor neurons of medulla oblongata and
midbrain red nucleus) or neurons with an inhibitory action on
certain motor neurons (Purkinje cells of cerebellum).
Hemorrhages and inflammatory edema were recorded espe-
cially in medulla oblongata. Additionally, perivascular edema
and hyalinization of vascular walls were observed in the cer-
ebellum. The nanosized aluminum can easily penetrate the
blood-brain barrier and accumulate in brain tissues (De et al.
2020) resulting generation of ROS. The latter may produce
oxidative damage on lipids in the cell andmitochondrial mem-
branes and on the cellular macromolecules like DNA and
protein and thus induce histopathological changes with deg-
radation of neurons. Our findings are in agreement with pre-
vious reports demonstrating histopathological changes in the
brain of rats and mice (Morsy et al. 2016; Mrad et al. 2017; De
et al. 2020; Liu et al. 2020a, b; Zhang et al. 2021a). Finally, all
the observed histopathological alterations in brain tissue of
AlNP-treated rats have been ameliorated upon concomitant
administration of SML with AlNPs. This protective effect of

SML is in line with our findings concerning the oxidative
stress markers and inflammatory cytokines.

Conclusion

In conclusion, administration of AlNPs to rats at 100 mg/kg
was associated with neurotoxicity and brain damage. We hy-
pothesized oxidative injury, apoptosis, and inflammatory re-
sponse as underlying mechanisms. Concomitant administra-
tion of SML with AlNPs exerted neuroprotective effect prob-
ably through the antioxidant, anti-apoptotic, and anti-
inflammatory activities of SML. The present study presents
SML as a protective agent from AlNP-induced neurodegener-
ative disorders.
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