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Abstract
Fish have defense systems that are capable of repairing damages caused by xenobiotics like benzo[a]pyrene (BaP), so the aims of
this study were to identify BaP toxicity in melanomacrophages (MMs) cytoskeleton, evaluate the melanin area in MMs, and
analyze genotoxicity. Rainbow trout juveniles (n = 24) were split in 48h and 7d treatments that received 2mg/kg of BaP. After the
experiment, blood samples were collected and liver was removed, to proceed with the analysis: EROD activity, MMs melanin
area quantification, melanosomes movements, and a genotoxicity test. The results revealed increased in EROD activity after 48-h
and 7-day BaP exposure. The group 7d displayed a reduction in MMs pigmented area, melanosomes aggregation, in addition to
an increased frequency of micronucleus. By means of the EROD assay, it was possible to confirm the activation of BaP
biotransformation system. The impairment of the melanosomes’ movements possibly by an inactivation of the protein respon-
sible for the pigment dispersion consequently affects the melanin area and thus might negatively impact the MMs detoxification
capacity. In addition to this cytotoxicity, the increased frequency of micronucleus might also indicate the genotoxicity of BaP in
this important fish species.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) originated from in-
complete combustion processes of carbonaceous materials,
during energy generation and other industrial processes
(Curtis et al. 2011), such as the combustion of fossil fuels,
petroleum spills, and industrial effluents (Whyte et al. 2000;
Santana et al. 2018). Although natural sources of PAHs exist,
such as forest fires and natural petroleum sources, the main
source of contamination is anthropogenic (Whyte et al. 2000;

Santana et al. 2018). Fish and other aquatic organisms can be
exposed to PAHs through the gills (respiration), guts (inges-
tion), or by means of contact through its integument (dermal
contact) (Logan 2007). Several PAHs, such as benzo[a]pyrene
(BaP), are of great concern when it comes to the health of
aquatic organisms.

Benzo[a]pyrene is a hepatotoxic (Pastore et al. 2014;
Regnault et al. 2014, 2016; Fanali et al. 2018) and genotoxic
PAH (Mouchet et al. 2005; Fanali et al. 2018), being widely
studied due to its bioconcentration capacity (Connel 1990;
Logan 2007), extensive distribution (Douben 2003; Head
et al. 2015), toxicity (Brandt et al. 2002; Head et al. 2015;
Santana et al. 2018), and persistence in the environment
(Brandt et al. 2002; Collier et al. 2013).

Aquatic organisms have molecular and cellular defense
systems (e.g., detoxifying enzymes and molecules) to protect
themselves against harmful effects of xenobiotics (Sturve
et al. 2014). Cellular and molecular damages caused by expo-
sure to these substances are often used in monitoring and
assessment programs addressing the environmental impact
of pollutants (van der Oost et al. 2003; Sturve et al. 2014).
Effects of pollutants on both biochemical and physiological
functions in fish that result in sub-lethal disturbances can be
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used as early warning biomarkers, indicating possible alter-
ations in reproduction, growth, and even survival (Forlin et al.
1986; Haux and Forlin 1988; Sturve et al. 2014).

Biological responses to PAHs toxicity can be assessed by
measuring the induction of hepatic CYP1A activity. CYP1A
expression is induced through the aryl-hydrocarbon (Ah) re-
ceptor that binds dioxin-like compounds, planar PCBs, and
PAHs (Goksøyr and Förlin 1992; Abrahamson et al. 2007;
Sturve et al. 2014). CYP1A activity can be measured by
means of the ethoxyresorufin-O-deethylase (EROD) activity,
a widely used technique in fish species (Whyte et al. 2000;
Bonacci et al. 2003; Sturve et al. 2014). Thus, EROD activity
serves as a sensitive biomarker for PAHs including BaP
(Pacheco and Santos 1998; Whyte et al. 2000).

Melanomacrophages (MMs) are hepatic phagocytic mac-
rophages present in fish, amphibians, and reptiles (Wolke
1992; Fishelson 2006; Bach et al. 2018) that produce and store
melanin (Agius and Roberts 2003; Ribeiro et al. 2011), which
enables an antioxidant function to these cells (Fenoglio et al.
2005; Bach et al. 2018). Melanin neutralizes free radicals,
cations, and other toxic agents produced during the degrada-
tion of phagocyted cell material (Zuasti et al. 1989). The
MMs’ melanin production is performed by the melanosome
(Sichel et al. 1997), an organelle that contains melanogenic
enzymes, that is capable of producingmelanin (Colombo et al.
2011).

MMs accumulate exogenous materials from both natural
and experimental origins (Steinel and Bolnick 2017) and are
also responsive in face of the action of xenobiotics (De
Oliveira et al. 2017; Fanali et al. 2017, 2018), thus being
involved in detoxification processes, due to a combination of
enzymatic biotransformation and antioxidant actions
(Fenoglio et al. 2005; Bach et al. 2018). This gives them the
ability to detoxify cytotoxic substances through the melanic
biopolymer (Fenoglio et al. 2005; Bach et al. 2018).

Pigment cells are excellent models to study the transport of
organelles, as these are responsible for the translocation of
pigment granules in response to specific chemical signals
(Aspengren et al. 2006). Toxicological effects in components
of the cytoskeleton such as microtubules and actin filaments
were previously studied in pigmented cells called melano-
phores, seen that these components are evolutionarily well-
conserved (Aspengren et al. 2006, 2012; Hedberg and
Wallin 2010). However, effects on the MMs cytoskeleton
have never been used to assess effects of contaminants on
melanosome movement.

Environmental stressors and contaminants are able to im-
pair the cytoskeleton, thus compromising the aggregation and
dispersion of melanin granules (Aspengren et al. 2006, 2008;
Hedberg andWallin 2010). Such an effect on the cytoskeleton
is known to jeopardize the detoxification function of MMs, as
it affects the cell’s integrity. Additionally, genotoxic sub-
stances like BaP can damage the genetic material of cells

through interactions with the DNA structure (Kaur et al.
2018), which may result in the formation of micronucleus
(MN) (Kaur et al. 2018) and other nuclear erythrocytes abnor-
malities (Pacheco and Santos 1998; Peixoto et al. 2019).

Rainbow trouts (Oncorhynchus mykiss) have been used as
model fish species in several studies concerning the effects of
toxic substances in their metabolic activity and cytotoxicity
(Laville et al. 2004; Schreer et al. 2005; Ellesat et al. 2010).
The aims of the present study were to evaluate the effects of
BaP in the MMs melanin area, in order to deduce how the
compound can affect the cell’s functionality, and to identify
toxic effects in actin filaments and microtubules. BaP-
mediated activation of the biotransformation system was
assessed by measuring hepatic EROD activity. In addition,
genotoxicity was analyzed by erythrocytes abnormalities
(anucleate, binucleated, MN, and bud).

Material and methods

All procedures described in this study were conducted accord-
ing to Swedish ethics guidelines, in accordance with the
Ethics permit 15986-2018, and animal handling followed the
NIH Guide for Care and Use of Laboratory Animals.

Experiment with benzo[a]pyrene

A total of 24 rainbow trout juveniles (about 1 year) with an
average weight and length of 70 g and 190 mm, originating
from Vänneåns Laxodling, Halmstad, Sweden, were used for
the experiments. The experimental design consisted of two
treatments (control and BaP — Sigma Aldrich, St Louis)
and two exposure times (48 h and 7 days), with 6 animals in
each group. Thus, our experimental design was represented
by: control 48 h (n = 6), BaP 48 h (n = 6), control 7 days (n =
6), and BaP 7 days (n = 6).

The group 48 h received a single intraperitoneal injection
of BaP (2 mg/kg, dissolved in peanut oil), while the group
denominated 7 days received 3 injections with 2-day intervals.
The control groups received the same injections, which
contained only the peanut oil. Fish were kept without feeding
under a natural night and daylight regime (12 h/12 h), in a 40 L
glass tanks with flow through system, de-chlorinated, and
constant aerated water at 12 °C that was filtered through a
bio-filter. The chosen concentration of BaP was based on the
study developed by Padrós et al. (2003), with adaptations.

At the end of the experiment, the animals were euthanized
with a blow to the head. Blood was collected from the caudal
vein and the liver excised. The middle part of the liver (0.88 g)
was shock-frozen and stored on liquid nitrogen until prepara-
tion for enzymatic analysis. For quantification of melanin,
fragments of liver (5 mm) were fixed in Metacarn (60%meth-
anol, 30% chloroform, 10% acetic acid). For cytoskeleton
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analysis, fragments of liver (5 mm) were frozen at −20 °C
until preparation for analysis.

EROD assay

Liver pieces (n = 24; average weight 0.36 g) were homoge-
nized with glass/teflon in a cold homogenizing buffer solution
(0.1 M Na/P— phosphate buffer containing 0.15 M KCl, pH
7.4). The homogenate was centrifuged at 10,000×g during
20 min at 4 °C. The supernatant was centrifuged again for
100,000×g for 60 min at 4 °C, in order to prepare the micro-
somal fraction. The pellet (microsomes) was re-suspended in
the homogenizing buffer solution containing 20% glycerol
and stored at −80 °C.

The EROD activity was measured in the microsomal frac-
tion of the liver, according to the method described by Forlin
et al. (1986) using rhodamine as standard. The reaction mix-
ture contained sodium phosphate buffer (0.1 M, pH 8.0),
ethoxyresorufin (0.5 mM), and 25 to 50 ml of sample in a
final volume of 2 ml. The reaction began with the addition
of 10 ml of NADPH (10 mM). The increase in fluorescence
was monitored at 530 nm (excitation) and 585 nm (emission).
EROD activity was expressed as picomoles of resorufin
formed per minute and per milligram of protein (pmol/min/
mg protein). For this purpose, the protein content was quanti-
fied according to Lowry et al. (1951) using bovine serum
albumin (BSA) as standard.

Quantification of melanin

In regard to the histological analysis, one liver fragment for
each fish was fixed in Metacarn for 3 h, dehydrated in alco-
holic series, embedded in paraffin, and stained with
Hematoxylin-Eosin. Under a light microscope with the aid
of an image capture system, 25 random pictures were taken
from liver fragments. Then, the quantification of the
pigmented area was carried out by the difference in color
intensity observed in MMs as suggested by Santos et al.
(2014), using the software Image Pro-Plus (version 6.0).

Cytoskeleton analysis

Liver samples (n = 24) were frozen at −20 °C prior to analysis,
and after thawing, fragments of the organ were placed in 2 ml
of an EDTA solution (2 mM) for up to 24–48 h at 4 °C, in
order to dissociate liver cells and separate MMs. This step
allows cells to be dissociated by mechanical action of contin-
uous suctioning of its contents. Subsequently, the content was
centrifuged at 1500×g for 10 min at 4 °C for pellet formation.
Pellets containing MMs were dissolved in KCl (0.56% w/v)
for 20 min and mixed during 10 s to suspend the pellet.

Regarding microtubules immunostaining process, the cells
were fixed in ice methanol for 6 min and then washed three

times during 5 min with PBS (phosphate buffered saline),
before being incubated with the primary antibody Rabbit
polyclonal to beta tubulin-loading control (Abcam) for
60 min at room temperature. The cells were then washed three
times during 5 min with PBS and incubated in the darkness
with the secondary antibody Goat polyclonal to rabbit IgG-
H&L (Alexa Fluor® 488) (Abcam) for 45 min. Finally, cells
were again washed three times during 5 min with PBS and
underwent a final rinse in miliQ water, in the attempt to avoid
the formation of salt crystals before they were allowed to dry
(Hedberg and Wallin 2010).

The analysis of actin filaments was performed by initially
rinsing cells in PBS, followed by fixation in a 3.7% formal-
dehyde solution for 10 min, then washing it twice with PBS,
and permeabilized with 0.1% Triton X-100 for 5 min. The
slides were then washed again twice for 5 min in PBS and
blocked with 1% BSA for 20 min. The cells were then stained
with Rhodamine-Phalloidin (Thermo-Fisher) for 20 min,
washed three times for 5 min in PBS, rinsed in miliQ water,
and dried (Hedberg and Wallin 2010).

A total of 50 cells per animal were counted under a Nikon
Eclipse E100 fluorescence microscope, using the ACT-1 (ver-
sion 2.0) software. The quantification was made by the mea-
surement of the fluorescent cell area, using the software Image
Pro-Plus (version 6.0).

Nuclear abnormalities analysis

Upon euthanasia, blood was collected from the caudal vein
with a heparinized syringe and needle, dripped onto a slide,
and blood smears were made. After drying, slides were fixed
in methanol for 20 min and stained with Giemsa 7.5%, for 30
min. The following nuclear abnormalities in erythrocytes were
analyzed: anucleate, binucleated, bud, and MN. For each an-
imal, 1000 erythrocytes were counted, as suggested by Pérez-
Iglesias et al. (2014).

Statistical analysis

The experimental design consisted of two treatments (control
and one BaP concentration) and two exposure times (48 h and
7 days), which characterizes a 2 × 2 factorial design. In each
experimental group, six animals were used for the quantifica-
tion of EROD activity, cytoskeleton, MMs, and erythrocytes
abnormalities.

A Kruskal-Wallis test was applied in the EROD assay, in
order to determine whether significant differences among
groups existed, seen that the data did not present a normal
distribution.

A linear mixed-effects model (package lme4; Bates et al. 2015)
(Zuur et al. 2009) with restricted maximum likelihood (REML;
Bolker et al. 2009) considering treatment and time of exposure as
fixed factors along with their interaction was applied to model
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microtubules, actin filaments, and MMs area, considered as con-
tinuous responses variables. Sampling units (cells for microtubules
and actin filaments; pictures forMMs area), inwhichwe estimated
the response variables, were nested within each animal (true rep-
licate). To control the dependency among 50 cells or 25 pictures
from the same animal (Crawley 2012: 703), we included a random
intercept for animal (categorical with 6 levels; Moen et al. 2016).
Then, in order to test themodel’s assumptions, we used diagnostic
plots with the R package sjPlot (Lüdecke 2016) and to assess for
differences between treatment and exposure time, we used least-
squares means with R package lsmeans (Lenth 2016).
Microtubule analysis data were log-transformed, aiming to attend
the assumptions of normality and homogeneity. Then, the statisti-
cal models were summarized and, as suggested by Kenward and
Roger (1997), P values were estimated based on conditional F-
tests, with the approximations of degrees of freedom being made
with the aid of the sjPlot.

A generalized linear model (GLM) was used to model
erythrocytes abnormalities. A binomial distribution and log
link function included treatment and exposure time, along
with their interactions. To test model assumptions, we used
diagnostic plots from the R (Team Core 2016) sjPlot package
(Lüdecke 2016). All analyses were performed using software
R v. 3.3.2 (R Core Team 2016).

Results

EROD activity

Results show that EROD activity was significantly induced
after both exposure times, 48 h and 7 days. After 48 h, the
activity increased from 175.8 ± 48.8 to 849.8 ± 153.6
pmol/min/mg, i.e., 4.84× (p < 0.05) (Fig. 1). Similarly, the

activity increased from 38.5 ± 16.5 to 144.2 ± 30.3
pmol/min/mg after 7 days, i.e., 3.74× (p < 0.05) (Fig. 1).

Melanin area of melanomacrophages

The presence of BaP did not exert significant effects on the
area of melanin (p > 0.05) after 48 h. After 7 days of exposure,
the melanin area of MMs was reduced from 91.0 ± 31.9 to
64.4 ± 28.3 μm2, which represents a reduction of 29.2% (F =
0.8965, p < 0.01) (Fig. 2).

Cytoskeleton

After 48 h of exposure, we did not observe significant effects
of BaP in fluorescent cell area (p > 0.05). After 7 days, the
fluorescent cell area corresponding to actin filaments de-
creased from 7915.9 ± 1305.9 to 5058.0 ± 901.1 μm2, which
means that melanin granules were 36.1% (F = 26.0756, p <
0.01) more aggregated in the treated group in comparison to
the control (Fig. 3). In relation to microtubules, no significant
differences were observed among groups (p > 0.05) (Fig. 4).

Nuclear abnormalities

Regarding the group exposed for 48 h to BaP, no significant
differences were found in relation to nuclear abnormalities.
Differently, after 7 days of exposure, a 30% higher frequency
of MN was observed (p < 0.05) (Fig. 5).

Discussion

Results from the present study show that EROD activity was
increased in the BaP exposed animals, possibly due to an

Fig. 1 EROD activity in rainbow
trouts exposed to 2 mg/kg of
benzo[a]pyrene for 48 h (48h; n =
6 individuals) and 7 days (7d; n =
6 individuals). The asterisk
indicates significant differences
between the control and the
treated groups for the same time
interval (P < 0.05). Cont = peanut
oil, BaP = benzo[a]pyrene
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induction of CYP1A, results that are supported by other stud-
ies.WhenMedaka (Oryzias latipes) were exposed to 0.5 and 5
μg/L BaP for 48 h, it resulted in increased EROD activity
(Pannetier et al. 2019) and studies with flounder (Platichthys
flesus) and rainbow trout (Oncorhynchus mykiss) showed the
same response after several days of exposure with 10 and 50
mg/kg BaP (Malmström et al. 2004). Eelpouts (Zoarces
viviparous) exposed to three different doses of bunker oil con-
taining around 25% PAHs (10, 100, and 1000 μg L−1) also
exhibited increased EROD activity (Sturve et al. 2014). Curtis
et al. (2011) showed increase hepatic microsomal EROD ac-
tivity after 3 and 14 days in rainbow trout exposed to 3 μg
BaP/g fish/day. Ethoxyresorufin-O-deethylase is character-
ized to be sensitive to induction by Ah receptor binding
chemicals such as PAHs (Pacheco and Santos 1998). BaP

binds to the Ah receptor, which is translocated to the nucleus,
where the transcription of CYP1A occurs, an enzyme respon-
sible for EROD activity (Whyte et al. 2000).

The increase in EROD activity demonstrates the induc-
tion of CYP1A, which in turn is responsible for the
metabolization of BaP (Whyte et al. 2000). In the
metabolization of lipophilic xenobiotics such as BaP, the
formation of water-soluble products of low toxicity is ex-
pected (Goksøyr and Förlin 1992; Bonacci et al. 2003).
However, during the processes of hepatic biotransforma-
tion, which is mostly catalyzed by cytochrome P450 en-
zymes such as CYP1A (Caruso and Alaburda 2008; Wakx
et al. 2016), higher concentrations of toxic byproducts
such as 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetra (a)
pyrene (BPDE) may be formed (Madureira et al. 2014).

Fig. 2 Melanin area of
melanomacrophages in rainbow
trouts exposed to 2 mg/kg of
benzo[a]pyrene for 48 h (48h; n =
6 individuals; 150 measurements)
and 7 days (7d; n = 6 individuals;
150 measurements). The asterisk
indicates significant differences
between the control and the
treated groups for the same time
interval (P < 0.05). Cont = peanut
oil, BaP = benzo[a]pyrene

Fig. 3 Fluorescent cell area
corresponding to actin filaments
of rainbow trouts exposed to 2
mg/kg of benzo[a]pyrene for 48 h
(48h; n = 6 individuals; 300
measurements) and 7 days (7d; n
= 6 individuals; 300
measurements). The asterisk
indicates significant differences
between the control and the
treated groups for the same time
interval (P < 0.05). Cont = peanut
oil, BaP = benzo[a]pyrene
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These compounds can lead to increased oxidative stress
and genotoxic effects (McFarland et al. 1999; Freire et al.
2019).

After 7 days of BaP exposure, the melanosomes of
MMs were more aggregated, according to the smaller
fluorescent cell area corresponding to actin filaments; ad-
ditionally, the melanin area of MMs was found to be
reduced. The basic principle for the intracellular transport
of melanosomes involves microtubules and actin fila-
ments, cytoskeletal components as a molecular engine
on melanosomes, and the presence of the kinesin and dy-
nein proteins, as a mode for transporting (Alberts et al.
2002). The cytoplasmic protein dynein is involved in the
movement of melanosomes by microtubules towards the
nuclei, while kinesin disperses the granules throughout

microtubules (Bagnara and Matsumoto 2006; Sköld
et al. 2002, 2016).

In the anuran Xenopus laevis, the removal of actin fila-
ments from melanophores inhibits the dispersion of melano-
somes (Aspengren et al. 2006;McGuire et al. 1972), and those
filaments are essential for pigment dispersion in these cells
(Rogers et al. 1999). Actin filaments may be disrupted in
dispersed melanophores, which leads to melanosomes aggre-
gation in the cell center (Rogers et al. 1998, 1999; Aspengren
et al. 2006). Drugs (e.g., cytochalasin B) are also capable of
inducing pigment aggregation by causing actin disruption
(Koyama and Takeuchi 1980; Aspengren et al. 2008).

Even though the rupture of actin filaments leads to the
aggregation of pigments in anurans, the opposite happens in
fish (Sköld et al. 2002; Aspengren et al. 2008). However, the

Fig. 4 Fluorescent cell area
corresponding to microtubules of
rainbow trouts exposed to 2
mg/kg of benzo[a]pyrene for 48 h
(48h; n = 6 individuals; 300
measurements) and 7 days (7d; n
= 6 individuals; 300
measurements). No statistical
differences were observed (P >
0.05). Cont = peanut oil, BaP =
benzo[a]pyrene

Fig. 5 Micronucleus frequency in
rainbow trouts exposed to 2
mg/kg of benzo[a]pyrene for 48 h
(48h; n = 6 individuals; 6000 cells
counted) and 7 days (7d; n = 6
individuals; 6000 cells counted).
The asterisk indicates significant
difference between the control
and the treated groups for the
same time interval (P < 0.05).
Cont = peanut oil, BaP =
benzo[a]pyrene
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motor protein kinesin, which is involved in the dispersion of
melanosomes in fish (Rodionov et al. 1991), is regulated and
activated by the cyclic adenosine monophosphate (cAMP)
signal cascade (Sköld et al. 2002), a secondmessenger respon-
sible for regulating pigment translocation in most melano-
phores (Tuma and Gelfand 1999). Low levels of cAMP lead
to kinesin motor inactivation and cell aggregation (Rozdzial
and Haimo 1986; Sammak et al. 1992; Sköld et al. 2002). Yeo
et al. (2017) reported that BaP administration decreased
cAMP levels in tumors with adjacent lung tissues, while in
our study, BaP may have triggered a similar response in rela-
tion to low levels of cAMP, which prevented kinesin
activation and maintained the melanosomes of MMs
aggregated.

In relation to the reduction of the melanin area of MMs,
Pronina et al. (2014) reported similar results in the common
Roach (Rutilus rutilus) from a lake contaminated with
cyanobacteria microcystin, while Payne and Fancey (1989)
observed a decreased number of MMs in the liver of
Pseudopleuronectes americanus kept in tanks with high levels
of PAHs. The anuran Hypsiboas albopunctatus exposed to 7
mg/kg BaP for 3 days (Fanali et al. 2017) and Physalaemus
cuvieri and Leptodactylus fuscus anurans exposed to 2 mg/kg
BaP for 7 days (Fanali et al. 2018) showed the same reduction
of melanin area. A possible explanation for these results was
suggested by Joo et al. (2015), who observed that BaP inhibits
the tyrosinase activity, an enzyme responsible for the regula-
tion of melanogenesis, induced by the melanocyte stimulating
hormone (a-MSH) (Park et al. 2009; Videira et al. 2013), and
consequently decreases melanin synthesis (Joo et al. 2015).
Another explanation is based on the results obtained in our
study regarding the analysis of actin filaments, where it was
possible to observe an aggregation of melanosomes in the
center of the cell, which may have triggered a reduction of
melanin area of the MMs.

BaP exposure also led to an increased frequency of
MN after 7 days of exposure. MN analysis is a widely
applied method to study genotoxicity since it is a conve-
nient, sensitive, and easy applicable method, in particular
for genotoxicological studies with aquatic organisms
(Kaur et al. 2018). A recent study indicated increased
frequency of MN in brown trouts (Salmo trutta fario)
captured in a polluted river contaminated mostly by
PAHs (Hariri et al. 2018). In vitro studies utilizing the
rainbow trout liver cell line RTLW1 revealed that the
exposure to the PAHs carbazole, acr id ine, and
dibenzothiophene resulted in increased MN frequency,
suggesting genotoxic impact (Brinkmann et al. 2014). In
Nile tilapia (Oreochromis niloticus) exposed to nitrated
PAHs, MN frequencies were significantly higher in the
exposure groups after 7 and 14 days (Bacolod et al.
2017). Similarly, two anuran species (Physalaemus
cuvieri and Leptodactylus fuscus) exposed to 2 mg/kg

BaP had increased frequency of MN after 7 days (Fanali
et al. 2018). Taken together, the results presented in this
study and previously published studies clearly show that
BaP has genotoxic potential.

Conclusion

The reduced melanin area of MMs is associated with the
aggregation of melanosomes, evidenced by the decrease
in the fluorescent cell area, corresponding to the actin
filaments. This is the first study that evaluated cytoskele-
ton components in the attempt of explaining the reduced
area of MMs after exposure to a contaminant, when the
expected would be an increase in this cell’s area, due to
its detoxification function. Our hypothesis was partly cor-
roborated, as we demonstrated that BaP has an influence
on the cytoskeleton and alters the movement of melano-
somes, not by disrupting the components of the cytoskel-
eton but possibly by an inactivation of the protein respon-
sible for the pigment dispersion. Further studies are nec-
essary to elucidate these mechanisms. Considering that
BaP induced an increase in the frequency of MN, it was
concluded that this contaminant is genotoxic to rainbow
trouts at a level of 2 mg/kg.
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