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Abstract
Hourly measured PM2.5-bound species, gases, and meteorological data were analyzed by the PMF receptor model to quantify
source contributions, and by the random forest to estimate decisive factors of variations of PM2.5, sulfur oxidation ratio (SOR),
and nitrogen oxidation ratio (NOR) during different haze episodes. PM2.5 variation was influenced by CO (17%), SO2 (19%),
NH3 (12%), O3 (10%), air pressure (P, 9.9%), and temperature (T, 10%) during the whole period. SOR was determined by SO2

(15%), temperature (T, 9.8%), relative humidity (RHU, 15%), and pondus hydrogenii (pH, 35%), and NOR was influenced by
NOx (19%), O3 (14%), NH3 (13%), and RHU (15%). Three types of pollution episodes were captured. Process I was charac-
terized by high CO (contributing 40% of PM2.5 concentration variation estimated by the random forest) due to coal combustion
for heating during winter in northern China. According to the PMF, coal combustion (32%) and secondary sources (38%) were
both the most important contributors in the first stage, and then, when the RHU increased to above 80%, the highest contribution
was from secondary sources (40%). Process II was during the Spring Festival and was characterized by 8.8 μg m−3 firework
contribution. High SO2 during this process, especially on the CNY’s Eve, was observed due to the firework displays, and SO2

gave a high contribution (24%) to PM2.5 variation. Process III showed high ions and high RHU in summer with sulfate and nitrate
contributing 44% and 22%, respectively. Furthermore, meteorological parameters and NH3 play a key role on SOR and NOR.
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Introduction

Particulate matter (PM) and gaseous pollutants have led to major
environmental problems in the last few decades in southern and
eastern Asia (Huang et al. 2014; Zhang et al. 2017). In the recent
year, China has experienced extremely severe and persistent
haze pollution, especially in the North China Plain (Wang
et al. 2016; Cheng et al. 2016; Zou et al. 2017). Severe pollution

is accompanied by extremely poor air quality and poor visibility,
which threatens human health (Jerrett et al. 2017; Li et al. 2018;
Almetwally et al. 2020). Considerable research has reported that
the mechanisms are very complex and differ for different pollu-
tion episodes (Wu et al. 2019). However, pollution mechanisms
and influence factors during different pollution episodes are still
not well understood (Cheng et al. 2016; Xie et al. 2019). In order
to investigate pollution mechanisms, severe pollution episodes
were captured and studied by environmentalist.

The origins of PM, which can be emitted from primary
sources and formed through chemical reactions from precursors,
may rapidly change during haze episode (Notario et al. 2013;
Zheng et al. 2014; Wu et al. 2020). So as to perform source
apportionment of PM, receptor models based on high time-
resolved species data have been used to investigate timely vari-
ations of source contributions (Eatough et al. 2008; Pancras et al.
2013; Gao et al. 2016; Han et al. 2016;), which is fundamental to
understanding the influence factors of heavy pollution episodes.
Meteorologists have confirmed that gaseous pollutants and me-
teorological parameters play important roles in haze (Kuwata
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et al. 2017; Wang et al. 2019a). Gaseous pollutants can act as
precursors of secondary aerosol (Schelden et al. 2017; Yao et al.
2018). Adverse meteorological conditions can lead to accumu-
lation of pollutants and favor formation of secondary aerosol
(Wang et al. 2019b). Thus, gaseous pollution andmeteorological
parameters are important for PM2.5 heavy pollution and forma-
tion of secondary aerosol, but their relationships are very com-
plex (Trivedi et al. 2014;Wang et al. 2014a). Nevertheless, there
is nonlinear relationship between the decisive influencing factors
(e.g., gaseous pollution and meteorological parameters) and
PM2.5 concentration variation. At present, machine learning al-
gorithmwould be used to better identify the decisive influencing
factors on PM2.5 levels and secondary formation. The algorithm
provides novel machine learning–based framework for data
analysis. In this study, random forest algorithm, a classification
and regression tool (Svetnik et al. 2003), is introduced to study
the formation mechanism and important influencing factors of
air pollutants based on gaseous pollutants and meteorological
parameters. In brief, this study has one main contribution that
the research attempts to investigate the relationships between
PM2.5 concentrations and the gaseous pollution and between
PM2.5 and meteorological factors by machine learning method
from the macroscopic perspective.

Comprehensive observations of chemical species, gases, PM
mass concentrations, and meteorological parameters at a 1-h
time resolution were conducted to explore influence factors of
haze episodes. Different types of pollution episodes were ob-
served during the sampling period. The levels of PM2.5-bound
species (such as NO3

−, Cl−, SO4
2−, NH4

+, Ca2+, Na+, Mg2+, K+,
OC, EC), pollutants (such as PM1, PM2.5, PM10, TSP, SO2, O3,
NH3, NOx, CO), and meteorological parameters (such as wind
speed, relative humidity, temperature) were investigated.
PositiveMatrix Factorization (PMF)would be applied for source
apportionment of PM2.5 based on chemical species. Then, ran-
dom forest method was applied to estimate the impacts of gas-
eous pollutants andmeteorological parameters on PM2.5 concen-
trations, sulfur oxidation ratio (SOR), and nitrogen oxidation
ratio (NOR). Our work used the machine learning algorithm to
reveal the characteristics and the reasons for the formation of
typical heavy pollution episodes. The severe pollution episodes
provide researchers an opportunity to study different mecha-
nisms of pollution. The methods and influence factors reported
in this paper are applicable to other emerging economies or
developing countries and have significance for efforts to design
effective management strategies.

Methodology

Sampling site and study period

The high time-resolved measurements of chemical species,
gases, and PM mass concentrations were conducted on the

rooftop of a five-story building (the Tianjin Environmental
Protection Bureau) in downtown Tianjin, which is a munici-
pality directly under the Central Government of China.
Tianjin, near the capital of China (Beijing), is in the Bohai
Economic Circle. Tianjin is a megacity under rapid industri-
alization and urbanization in the last few decades and current-
ly has a population of over 14 million and an area of 11,947
km2. The sampling site was located in a mixed residential and
commercial area surrounded by few direct industrial sources,
high vehicular emissions, and construction areas. The obser-
vations were conducted in February, March, June, July,
August, and September of 2015 and produced data for 4,344
h. The details of sampling have been reported in our previous
publication (Tian et al. 2018a).

Sampling methods and instrumentation

To obtain high time-resolved speciate data for PM2.5, instru-
ments were used to detect ambient PM2.5. Hourly concentra-
tions of elemental carbon (EC) and organic carbon (OC) were
detected through a semi-continuous EC/OC carbon aerosol
analyzer (Model-4, Sunset Laboratory Inc., USA) (Dall'Osto
et al. 2014) using the basic thermal/optical transmittance mea-
surement protocol of the National Institute for Occupational
Safety and Health (NIOSH). Two temperature stages were
used to determine OC and EC: an aliquot of sample filter
(2.1 cm2) was heated stepwise to 820 °C in a furnace in a
non-oxidizing atmosphere (100% He); the oxidizing oven
was then cooled to 550 °C, and the filter was again gradually
heated to 870 °C in an oxidizing atmosphere (98% He, 2%
O2). Evolved carbon was oxidized to CO2 and detected by a
non-dispersive infrared detector (NDIR) during each temper-
ature step. The split point was quantified as the carbon
evolved after the introduction of oxygen but before the point
where transmittance became equal to its initial value.
Calibration was performed by introducing a known amount
of methane into the oven and measuring its constant response.
The carbon that evolved before the split point was OC, where-
as EC was measured as the carbon evolved after this point but
prior to the methane calibration peak (Tiwari et al. 2013).

Hourly concentrations of ionic species in PM2.5, including
NO3

−, Cl−, F−, SO4
2−, NH4

+, Ca2+, Na+, Mg2+, and K+, were
measured using a URG 9000D ambient ion monitor (AIM)
(Chapel Hill, NC). The AIM separated and analyzed each anion
and cation through a particle collection system and ion chro-
matographs (ICs). The PM2.5 samples were collected at a flow
rate of 3 L min-1 by using a sharp cut cyclone (Manigrasso et al.
2010). Then, a liquid diffusion parallel-plate denuder was used
to separate the gases from the aerosol samples. The water-
soluble compositions of aerosol and gaseous pollutants were
collected through four syringes installed into pre-concentrators
and then injected into the ICs. Anion detection was conducted in
a gradient elution program using a KOH solution at a flow rate
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of 1.0 mL min-1, and the cation analyzer was run with methane
sulfonic acid at a flow rate of 0.5 mL min-1.

Gaseous pollutants included SO2, O3, NO, NO2, and CO,
and PM mass concentrations were of four sizes: PM1, PM2.5,
PM10, and TSP. Mass concentrations of PMs were continu-
ously measured by a tapered element oscillating microbalance
(TEOM) mass sensor. The SO2 in the atmosphere was deter-
mined by pulsed fluorescence technology. The O3 was ana-
lyzed by a dual cell photometer, a concept adopted by the US
NIST as a national standard. Atmospheric NOx was measured
by chemiluminescence technology; the analyzer had isolated
outputs for NO and NO2 that could be individually calibrated.
The CO was quantified based on the absorption of infrared
radiation at a 4.6-μm wavelength.

For quality assurance and quality control (QA/QC), the par-
ticle stream entered an aerosol super-saturation chamber to in-
crease particle growth to obtain higher efficiencies. After collec-
tion through four syringes, the aerosols and the gaseous pollut-
ants were injected into the ICs within 1 h. Anion/cation calibra-
tion solutions were used for the calibration of the ICs on theAIM
for at least 1month. Theminimumdetection limits (MDLs)were
as follows: 0.2μgm-3 (Cl−), 0.2μgm-3 (F−), 0.2μgm-3 (NO3

−),
0.2 μg m-3 (NO2

−), 0.3 μg m-3 (SO4
2−), 1.8 μg m-3 (NH4

+),
2.3 μg m-3 (Ca2+), 0.8 μg m-3 (Mg2+), 0.5 μg m-3 (K+), and
0.6 μg m-3 (Na+). The EC/OC carbon aerosol analyzer was
calibrated each month through a blank punch of a pre-heated
quartz fiber filter and standard sucrose solutions (3.2 μg C
μl-1). The quartz fiber filter was changed each week during the
analysis process. The MDLs were 0.45 μg cm-2 and 0.06 μg
cm-2 forOC andEC, respectively. TheMDLs for PM,NO,NO2,
SO2, CO, andO3were as high as 0.1μgm

-3, 0.40 ppb, 0.40 ppb,
0.5 ppb, 0.04 ppm, and 0.50 ppb, respectively. The flow calibra-
tion, gas tightness test, blank filter test, and standard sample
calibration were all conducted for QA/QC.

Meteorological parameters, including temperature (T), rel-
ative humidity (RHU), air pressure (P), wind speed (WS), and
wind direction (DD), used to evaluate the impact of meteoro-
logical conditions were acquired from an online database at
http://rp5.by. The meteorological parameters were available
for 2:00 AM, 5:00 AM, 8:00 AM, 11:00 AM, 2:00 PM, 5:
00 PM, and 8:00 PM each day. Themeteorological parameters
were acquired at the Beimalu Weather Station in downtown
Tianjin. It is about 7 km far away from the Tianjin
Environmental Protection Bureau Building.

Except for chemical species, gases, and PM mass concen-
trations, SOR and NOR were also used as follows:

SOR=SO4
2-/(SO4

2-+SO2)

NOR=NO3
-/(NO3

-+NOx)

where SO4
2- is the S mass in SO4

2-, SO2 is the S mass in
SO2, NO3

- is the N mass in NO3
-, and NOx is the N mass in

NOx. TS and TNwere used to indicate the total emissions of S
and N (Chen and Xie 2014). SOR and NOR were used to
indicate the reaction of sulfur and nitrogen (Chen and Xie
2014; Wang et al. 2018).

In this research, the aerosol pH was calculated by utilizing
the thermodynamic model ISORROPIA-II (Fountoukis and
Nenes 2007), which could predict the physical state and com-
position of atmospheric inorganic aerosols. The ISORROPIA-
II model can solve forward problems in which T, relative
humidity, and the concentrations of gas + aerosols were
known (e.g., NH3

+ NH4
+), and reverse problems in which T,

relative humidity, and the concentrations of aerosol (but not
gas) species were known. The pH calculation utilized mea-
surements of NH3, NH4

+, Na+, K+, Mg2+, Ca2+, SO4
2-, NO3

-,
and Cl- for Tianjin from February to September of 2015. In
this study, the ISORROPIA-II model was run in the forward
mode and assumed that the aerosol solutions were metastable,
as a high degree of accuracy determined on the basis of mea-
surements of semivolatile partitioning of certain species (e.g.,
NH3/NH4

+) (Guo et al. 2015; Song et al. 2018)

Source apportionment

EPA PMF 5.0model (Paatero and Tapper 1994; Paatero 1997;
EPA 2014) was applied for PM2.5 source apportionment based
on hourly measured PM2.5-bound chemical species. The PMF
is used to solve the mass balance between observed species
concentrations X, estimated source profiles F, and estimated
contributions G (Ogulei et al. 2006; Tian et al. 2014):

X ij ¼ ∑p
h¼1gih f hj þ eij

where xij is the measured concentration of the jth species in the
ith sample, fhj (g g

-1) is the estimated species profile of the hth
source, gih is the estimated contribution by the hth factor to
each sample, eij is the residuals, and p is the number of factors.
Moreover, ME-2 can incorporate prior information such as
chemical properties to apportion sources through auxiliary
equations (Tian et al. 2018b).

In this work, the random forest algorithm, a non-linear,
data-driven model, is employed to study the influence factor
of PM2.5, NOR, and SOR. Random forest performs tree-
ensemble of Classification and Regression Trees (CART).
Regression tree is trained to perform differentiable mapping
from the m-dimensional input x to its leaf index (Chen and
Guestrin 2016):

f xð Þ ¼ ωq xð Þ q : ℝm→T;ω∈ℝT
� �

Here, f is parameterized by the learned tree structure q (of
T leaves) and leaf weights ω. Independent regression trees
f can be trained by corresponding tree structure q and leaf
weights ω.
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Results and discussion

Concentrations

It was calculated that the average concentrations of PM1,
PM2.5, PM10, and TSP were 57, 96, 104, and 152 μg m−3,
respectively, from February 1, 2015, to September 30, 2015.
The PM1/PM2.5, PM2.5/PM10, and PM10/TSP ratios were
0.59, 0.92, and 0.70, respectively. These ratios usually varied
with different pollution processes and can indicate different
pollution mechanisms. As reported by Alastuey et al. (2004),
the fine particles can be caused by a low proportion of sec-
ondary and primary combustion emitted species, and the high
coarse part can be caused by the high load of other contribu-
tions such as natural and anthropogenic mineral dust.

The important components of PM2.5 include NO3
- (13%),

SO4
2- (11%), NH4

+ (14%), OC (9.5%), EC (2.7%), and Cl-

(2.5%). And the hourly data were collected from February 1,
2015, to September 30, 2015. The annual average concentra-
tion of Cl-, NO3

-, NO2
-, SO4

2-, NH4
+, Ca2+, Mg2+, K+, Na+,

OC, EC, CO, SO2, NOx, O3, and NH3 were 2.5 μg m
-3, 11 μg

m-3, 0.40 μg m-3, 9.7 μg m-3, 13 μg m-3, 0.18 μg m-3, 0.07 μg
m-3, 0.87 μg m-3, 0.77 μg m-3, 9.4 μg m-3, 2.7 μg m-3, 1.3 μg
m-3, 28 μg m-3, 56 μg m-3, 103 μg m-3, and 29 μg m-3, respec-
tively. Moreover, RHU, pH, and WD were recorded and their
annual mean were 58%, 4.2, and 2.7 m/s, respectively.

Influence factors on PM2.5, SOR, and NOR

To comprehensively analyze the role of meteorological factors
and gaseous pollutant for affecting local PM2.5 concentration,
NOR and SOR, we employed random forest model. A number
of factors were selected as follows: T, RHU, P, WS, DD, pH,
CO, SO2, NOx, O3, and NH3. By analyzing variables through
multiple nonlinear regression, the model quantitatively calcu-
lated the relative importance of different factors about PM2.5,
NOR, and SOR. As shown in Table 1.

Influence factors on PM2.5

Based on the random forest, the results displayed that CO had
the most important influence on PM2.5 concentration and con-
tributed 17% to PM2.5 concentration variations. SO2 and NOx

(totally 24%) also strongly linked with PM2.5 concentration. It
has been reported that in the condition of stable meteorological
and enough residence time, SO2 and NOx can be transformed
into sulfate and nitrate. P (9.9%) made the great contribution to
PM2.5 concentration among meteorological parameters. It may
happen that when there was high pressure, down draft impeded
going up of PM2.5 and led to accumulation of particles. T (10%)
was also an important factor for PM2.5 concentration variation.
Luo et al. (2017) noted that air convection relied on temperature,
high temperature could lead to dilution of and PM2.5, and it was

on the contrary when temperature reduction, at the same time,
high temperature could elevate formation rates of secondary
aerosols. RHU (6.7%) and pH (4.8%) could accelerate formation
of secondary aerosol and increased the chance of collision and
adsorption between particles, which resulted in decreasing PM2.5

concentration. DD (4.7%) and WS (1.1%) can also influence on
PM2.5 concentration variations.Wind speed could favor particles
spread and diffusion of PM2.5 and low PM2.5 concentration
(Wang et al. 2019b; Karimian et al. 2019). And different speed
directions had a significant effect on the spatial distribution of
PM2.5 and could change transport of atmosphere pollutants.

Influence factors on SOR and NOR

The importance analysis of gaseous pollutants (CO, SO2,
NOx, O3, NH3) and meteorological parameters (T, RHU, P,
DD, WS, and pH) on SOR and NOR were also constructed
based on random forest method. It was found that pH (35%),
SO2 (15%), RHU (15%), T (9.8%), and O3 (9%) played im-
portant role on SOR. As reported in this work and related
work, SOR in the atmosphere was closely related to pH
(Fuzzi 1978; Brimblecombe and Spedding 1972). Sakamoto
et al. (2004) found that O3 had noticeable effect on the amount
of SO2 oxidation. And RHU was significantly positively cor-
related with SOR and NOR (Yao et al. 2020). In addition,
temperature could promote the rate of sulfur oxidation.
Meanwhile, NOx (19%), O3 (14%), NH3 (13%), and RHU
(15%) had a greater influence on NOR. Seinfeld and Pandis
(1998) have found that the formation of nitrogen oxidation
was dominated by the following reaction:

NO2 þ OH þM→HNO3 þM
NO2 þ O3→NO3 þ O2
NO2 þ O3 þM→N2O5 þM
N2O5 þ H2O→2HNO3

NH3 þ H2O→NHþ
4 þ OH

Table 1 Different influence factors on PM2.5, SOR andNOR during the
whole period

Influence factors PM2.5 SOR NOR

CO 0.17 0.030 0.080

SO2 0.19 0.15 0.070

NOx 0.050 0.020 0.19

O3 0.10 0.090 0.14

NH3 0.12 0.050 0.13

Temperature (T) 0.10 0.098 0.050

air pressure (P) 0.099 0.030 0.080

Relative humidity (RHU) 0.067 0.15 0.15

Wind direction (DD) 0.047 0.020 0.040

Pondus hydrogenii (pH) 0.048 0.35 0.060

Wind speed (WS) 0.011 0.010 0.020
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Characteristics of typical pollution episodes

During the sampling period, three typical pollution episodes
were captured and selected for further analysis. The
concentrations of species in PM2.5 during each episode were
introduced into the USEPA PMF 5.0 model for source
appor t ionment , and the gaseous pol lu tan ts and
meteorological parameters were introduced into the random
forest model to explore the influence factors. The factor
profiles of three episodes estimated USEPA PMF 5.0 is
exhibited in Fig. 1. Coal combustion, traffic emission, and
resuspended dust were consistently identified for three
pollution episodes. Tian et al. (2020) has explored how to
better conduct PMF during haze episodes, showing that the
PMF performance was poor for some episodes through

whole-based mode (using all data of whole sampling period
as input). Thus, the episode-based mode (using data of each
episode) was used in this work to conduct PMF. In addition,
the consistent results of PMF and random forest based on
different datasets demonstrate the reliability of two methods.
We add the bootstrapping (BS) to estimate the uncertainty of
the PMF solution. BS involves resampling the input dataset,
fitting PMF model parameters for this resampled dataset, and
then using the variations among these resampled or
“bootstrapped” fitted profiles to estimate the uncertainty of
the initial PMF solution (Norris et al. 2014). The BS results
of each episode are listed in Table 2. Thus, 4, 6, and 5 factors
were selected for episodes I, II and III, respectively, because
the BS values were all higher than 75%, indicating the BS
uncertainties can be interpreted. The coal combustion was

Fig. 1 The factor profiles of three
episodes estimated USEPA PMF
5.0. Episode I is characterized by
heavy coal combustion; the five
factors, coal combustion, traffic
emission, resuspended dust,
secondary sources, and other,
make different contributions to
various components in episode I;
episode II is characterized by the
Spring Festival; the seven factors,
coal combustion, traffic emission,
resuspended dust, sulfate, nitrate,
firework, and other, make
different contributions to various
components in episode II; episode
III is characterized by high
inorganic ions and high RH; the
six factors, coal combustion,
traffic emission, resuspended
dust, sulfate, nitrate, and other,
make different contributions to
various components in episode III
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identified by high loadings of Cl-, OC, and EC (Shen et al.
2010). The traffic emission was characterized by OC and EC
but low Cl- (Liu et al. 2017). The resuspended dust was iden-
tified by relatively high weights of Ca2+ and Mg2+ (Shen et al.
2011). Factors associated with NO3

-, SO4
2-, and NH4

+ were
distinguished as secondary sources or nitrate and sulfate
(Guan et al. 2019). The OC and EC in the secondary sources
may be linked with secondary organic carbon and transport of
combustion emissions (Guan et al. 2019).

Process I

The first interesting episode was found from February 14,
2015, 0:00 AM to February 15, 2015, 4:00 AM; PM2.5 con-
centrations ranged from 157 to 313 μg m−3; then, after a short
decrease, PM2.5 returned to relatively higher levels (February
15, 2015, 4:00 PM–February 16, 2015, 12:00 PM). As shown
in Fig. 2(b), the abundances of OC and EC were higher than
those for other sampling period. In general, OC and EC were
markers of combustion (Chow et al. 2004). According to the
PMF results in Fig. 1 (episode I), for PM2.5 concentration, the
average contributions of coal combustion, traffic emission,
resuspended dust, and secondary sources were 32%, 17%,
5.5%, and 38%, respectively. As demonstrated in Fig. 2(a),
in the first stage, coal combustion (88 μg m−3, 40%) and
secondary sources (98 μg m−3, 41%) were both the most im-
portant contributors, and in the second stage, the highest con-
tribution was from secondary sources (63 μg m−3, 38%). In
this stage, coal combustion had emitted high SO2, which
formed secondary SO4

2- under the high RH in the second
stage. And the secondary sources were primary pollution
source.

Based on the result of random forest in Fig. 2(c), CO (40%)
remained at a high contribution for PM2.5 concentration vari-
ation. Previous study noted that CO mainly resulted from the
coal combustion for heating during the winter in northern
China (Du et al. 2016;Wang et al. 2010). The results indicated
that P (20%) and T (16%) also had a great influence on PM2.5

contribution variation in the heavy pollution process.
Therefore, PMF and the random forest results were consistent
and both of them demonstrated that this heavy pollution was
characterized by coal combustion.

In addition, SOR was analyzed by in putting gaseous pol-
lutants and meteorological parameter in random forest model;

the results are shown in Fig. 2(d); it was obvious that, among
all the factors, SO2 (43%) was the most important factor for
SOR. In this pollution process, DD (22%) greatly affected the
SOR transformation and it was the second largest factor. A
suggested explanation is that wind direction determined gas-
eous pollutant pathway. Definitely, pH (6%) and RHU (7%)
also served as pivotal role. When it came to NOR in Fig. 2(e),
NOx (24%) and O3 (17%) occupied primary important factor
for NOR formation variation. Moreover, in this process, CO
(11%), DD (10%), and pH (12%) had more impact on NOR.

Process II

The second interesting episode was observed from February
18, 2015, 12:00 AM to February 21, 2019, 11:00 PM, which
covered the Spring Festival. During the period of sampling,
the concentration of PM2.5 ranged from 31 to 407 μg m-3. The
chemical compositions of PM2.5 during this process were
characterized by high K+ (3.9%) and Cl- (4.0%), which were
much higher than the average of the entire period (1.0% for K+

and 2.7% for Cl-). Compared with the episode one, NH4
+ and

SO4
2- were much less; however, both of them were slightly

higher than the annual average, respectively (as shown in Fig.
3 (b)). As reported in our previous work and the literature
(Tian et al. 2014; Sarkar et al. 2010), Cl- and K+ were consid-
ered as firework-related species and could be markers for fire-
works. K+ and Cl-, commonly in the form of perchlorate or
chlorate, are major components in black powder and act as the
main oxidizers during burning. The corresponding chemical
equations are 2KClO3 = 2KCl + 3O2 and KClO4 =KCl + 2O2.

Based on the PMF results in Fig. 1 (episode II), in process
II, for PM2.5 concentration, the average contributions of traffic
emission, coal combustion, nitrate, resuspended dust, sulfate,
firework, and unknown sources were 18%, 24%, 20%, 6.6%,
14%, 8.8%, and 7.5%, respectively. As demonstrated in Fig.
3(a), in this process, coal combustion (24 μg m−3) and nitrate
(20 μg m−3) were important contributors, followed by traffic
emission (18 μg m−3), sulfate (13 μg m−3), firework (8.6 μg
m−3), and resuspended dust (6.4 μg m−3). It was found that
firework was an important pollution source. A further discus-
sion that gaseous pollutants and meteorological parameter had
impact on PM2.5 concentration variation by the random forest,
as visualized in Fig. 3(c), the result showed that SO2 (24%)
kept at a high contribution for heavy pollution. Previous study
noted that the number of firework was lighted, and it became a
major pollution source in the Spring Festival (Wang et al.
2007; Li et al. 2017). CO (12%) and NOx (13%) were also
considered major contribution for PM2.5 contribution, and
both were closely to related to coal combustion emissions
and vehicle exhaust (Kota et al. 2014). Besides, P (25%) and
pH (11%) also had a great influence on the heavy pollution.
Therefore, combining PMF and the random results showed

Table 2 The bootstrapping (BS) results of three typical pollution
episodes

Episode I Episode II Episode III

4 factors 5 factors 6 factors 7 factors 5 factors 6 factors

BS 80–90% 50–90% 75–100% 30–100% 100% 50–100%
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that this heavy pollution was characterized by firework
combustion.

In terms of the random forest results for SOR in Fig. 3(d), it
was obvious that, among all the gaseous pollutants and mete-
orological parameters, precursor SO2 (27%) was the most im-
portant factor for SOR; in this pollution process, P (22%)
greatly affected the SOR transformation. Definitely, pH
(7%) and RHU (13%) also served as pivotal role. When it
came to NOR, as visualized in Fig. 3(e), NOx (35%) occupied
primary important factor, followed by P (20%), RHU (10%),
and O3 (8%).

Process III

The third pollution episode was characterized by high inor-
ganic ions and high RHU level (51–95%) in summer. The
PM2.5 mass concentrations were at relatively higher levels,

ranging from 81 to 291 μg m−3. The value of SOR and
NOR were 0.55 and 0.27, respectively. As visualized in Fig.
4(b), high fractions of NO3

- (15%) and SO4
2- (16%) during the

pollution episode can be found and their mass concentrations
were much higher than that during other sampling period.

Based on the PMF results, as demonstrated in Fig. 1 (epi-
sode III), the average contributions of traffic emission, coal
combustion, resuspended dust, nitrate, sulfate, and other
sources for PM2.5 mass concentration were 13%, 12%,
4.1%, 22%, 44%, and 3.9%, respectively. As shown in Fig.
4(a), sulfate (82 μg m−3) and nitrate (42 μg m−3) were the
most important contributors. Other source contributors were
traffic emission (25 μg m-3), coal burning (22 μg m-3), and
resuspended dust (7.7 μg m-3).

According to the results of the random forest in Fig. 4(c), in
process III, it was estimated that the relative importance of
CO, SO2, NH3, and RHU to PM2.5 concentration variation

Fig. 2 The abundance and concentration of chemical species, PMF result,
and random forest result during process I (episode characterized by heavy
coal combustion). a the concentration contribution from coal combustion,
traffic emission, resuspended dust, and secondary sources change over
time in episode I; b the difference between the average mass percent of

PM2.5 components in episode I and all year; c gases and meteorological
parameters have different contributions to PM2.5 variation in episode I; d
gases and meteorological parameters have different contributions to SOR
in episode I; e gases and meteorological parameters have different
contributions to NOR in episode I
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were 40%, 13%, 8.3%, and 15%, respec t ive ly .
Simultaneously, it was calculated that SO2 (24%), NH3

(28%), and T (19%) were the main influence factors for
SOR. And the results showed that NOR was greatly affected
by NOx and NH3, and the importance of both were 12% and
45%, respectively. NOx, NH3, and SO2 mainly came from
vehicle exhaust and coal burning (Xie et al. 2005; Meng
et al. 2011). Under the higher RHU, NH3 was an important
alkaline gas in the atmosphere, and it can react with acid gases
(SO2, NOx, etc.) to form secondary aerosols (Zhang et al.
2012). This episode can be identified as reaction caused by
high RH. The strong influence of RH on the reaction of inor-
ganic ions was worthy of notice. High RH was favorable for

the formation of sulfate and nitrate in the aqueous phase and
may also improve sulfate and nitrate partitioning into the liq-
uid phase formed by a gas-phase homogeneous reaction of
precursors. Alkaline aerosol particles in northern China have
been reported to lead to high PH values (Kulshrestha et al.
1998), which could also enhance the equilibria reactions.
Therefore, relative humidity provided a key catalyst to chem-
ically react to secondary aerosol formation. It was apparent
that this episodewas a common type of haze in northern China
with characteristic features of high inorganic aerosols, high
RH, stagnant meteorological conditions with low mixing
heights, and large emissions of primary air pollutants causing
secondary pollution.

Fig. 3 The abundance and concentration of chemical species, PMF result,
and random forest result during process II (episode characterized by the
Spring Festival). a The concentration contribution from coal combustion,
traffic emission, resuspended dust, sulfate, nitrate, and firework change
over time in episode II; b the difference between the average mass percent

of PM2.5 components in episode II and all year; c gases and
meteorological parameters have different contributions to PM2.5

variation in episode II; d gases and meteorological parameters have
different contributions to SOR in episode II; e gases and meteorological
parameters have different contributions to NOR in episode II
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Conclusions

Hourly measured PM2.5-bound species, gases, and meteoro-
logical data were analyzed by the PMF receptor model to
quantify source contributions and by the random forest regres-
sion method to identify the contribution of gaseous pollution
and meteorological parameters on the changes of PM2.5 con-
centrations, SOR, and NOR. It was found that CO, SO2, NOx,
P, and T played an important role in PM2.5 variation; pH, SO2,
RHU, and T were the dominating influence factors for SOR;
and NOx, O3, NH3, and RHU determined the NOR for the
whole sampling period. Proposed PMF-random forest method
was used to quantify the source contributions to PM2.5.

Three types of pollution episodes were captured. The first
pollution episode (process I) was characterized by heavy coal
combustion due to heating in the winter in northern China. CO
remained at a high level and contributed 40% of PM2.5 con-
centration variation. According to the PMF results, coal com-
bustion and secondary sources were the most important con-
tributors in the first stage, and then, the highest contribution
was from secondary sources. The second pollution episode
(process II) happened during the Spring Festival and was char-
acterized by high K+ and Cl-. Firework combustion contribut-
ed 8.8 μg m−3 estimated by PMF. High SO2 during process II,
especially on the CNY’s Eve, was observed due to the fire-
work displays, and SO2 gave a high contribution (24%) to

Fig. 4 The abundance and concentration of chemical species, PMF result
and random forest result during process III (episode characterized by high
inorganic ions and high RH). a The concentration contribution from coal
combustion, traffic emission, resuspended dust, sulfate, and nitrate
change over time in episode III; b the difference between the average
mass percent of PM2.5 components in episode III and all year; c gases

and meteorological parameters have different contributions to PM2.5

variation in episode III; d gases and meteorological parameters have
different contributions to SOR in episode III; e gases and
meteorological parameters have different contributions to NOR in
episode III
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PM2.5 concentration variation. The second pollution episode
(process III) was characterized by high inorganic ions and
high RH in summer. Sulfate (44 μg m−3) and nitrate (22 μg
m−3) were the most important contributors. It was estimated
that the relative importance of CO, SO2, NH3, and RHU to
PM2.5 concentration variation were 40%, 13%, 8.3%, and
15%, respectively. Through comparing the influence factors
for SOR and NOR during episode I in winter and episode III
in summer, DD was more important in episode I indicating
that this episode was strongly influenced by the transportation;
while NH3 was more important in episode III indicating alka-
line precursor strongly influence the episode in summer.
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