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Abstract
Green supply chain management considers the environmental effects of all activities related to the supply chain, from obtaining
raw materials to the final delivery of finished goods. Selecting the right supplier is a critical decision in green supply chain
management. We propose a fuzzy green supplier selection model for sustainable supply chains in reverse logistics. We define a
novel hierarchical fuzzy best-worst method (HFBWM) to determine the importance weights of the green criteria and sub-criteria
selected. The fuzzy extension of Shannon’s entropy, a more complex evaluation method, is also used to determine the criteria
weights, providing a reference comparison benchmark. Several hybrid models integrating both weighting techniques with fuzzy
versions of complex proportional assessment (COPRAS), multi-objective optimization by ratio analysis plus the full multipli-
cative form (MULTIMOORA), and the technique for order of preference by similarity to ideal solution (TOPSIS) are designed to
rank the suppliers based on their ability to recycle in reverse logistics. We aggregate these methods’ ranking results through a
consensus ranking model and illustrate the capacity of relatively simple methods such as fuzzy COPRAS and fuzzy MOORA to
provide robust rankings highly correlated with those delivered by more complex techniques such as fuzzy MULTIMOORA.We
also find that the ranking results obtained by these hybrid models are more consistent when HFBWM determines the weights. A
case study in the asphalt manufacturing industry is presented to demonstrate the proposed methods’ applicability and efficacy.

Keywords Green supply chain . Reverse logistics . Hierarchical fuzzy best-worst method . Shannon’s entropy . Maximize
agreement heuristic . Consensus ranking

Introduction

Environmental issues related to waste and toxic gas emissions
have raised concerns over the environment and public health

(Khor and Udin 2013). Globalization and legal environmental
provisions have forced companies and organizations to pro-
mote environmental performance (Abdel-Basset et al. 2019).
One of the critical matters in this area is recycling, which begs
attention. The pressures posed by regulators and stakeholders
for recycling benefit the environment and lead to a sustainable
competitive advantage (Bai et al. 2019). The principal goal of
recycling is to reduce the waste and efficient use of resources,
which has both economic and environmental benefits. Due to
severe environmental impacts, manufacturers have been en-
couraged to change their reverse logistics (RL) networks into
green concepts and reduce harmful ecological impacts (Haji
et al. 2015).

RL refers to operations collecting used goods for reuse,
repair, remanufacturing, recycling, or disposal to produce
new products (Alkahtani et al. 2021; Chen et al. 2021).
Also, RL is a process of moving a typical product in an inverse
path from the mainstream logistics to retrieve value or ensure
proper disposal (Hansen et al. 2018; Tavana et al. 2016a, b).
Furthermore, it is a tool to recover and recycle or green dis-
posal of goods to reduce pollution (Zarbakhshnia et al. 2019).
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RL helps companies gain a competitive advantage by creating
economic value through reuse and retrieval. Being the main
step in green supply chain initiatives, RL allows manufac-
turers to enter the reused products into the production cycle
(Mavi et al. 2017). In RL, materials used can be transformed
into new products that could return to the samemarket or other
markets (Ribeiro et al. 2021). The core objectives of RL are
cost minimization, profit maximization, and environmental
benefits (Liao 2018). Companies pursue three main activities
in RL: (i) gathering, where consumers discard their used prod-
ucts; (ii) reconstruction, where separation, rehabilitation, or
recycling is done; and (iii) demand centers, where restored
products are sold (Ravi 2014).

Many manufacturing companies with limited capabilities
outsource some of their reconstruction activities to their sup-
pliers. Suppliers rebuild, repair, and recycle the collected
products and reconstruct the final products that can be reused
in the manufacturing process within RL companies. As envi-
ronmental agencies and organizations control the industry ac-
tivities, suppliers play a critical role in the RL companies.
Hence, evaluating suppliers and assessing their impacts on
the company’s productivity are of great importance for RL
companies.

In the tire industry, companies operate RL processes to
recycle worn-out tires as raw material. In tire and rubber
recycling, the process takes place on worn or ruptured tires,
which are not repairable and not suitable for use. There are
crucial concerns about this process as worn-out tires are
among the leading causes of environmental contamination.
The spoiled tires are considered hazardous wastes since burn-
ing them emanate black and harmful smoke causing air pol-
lution. Burying tires is also detrimental to the environment as
they produce dangerous gas bubbles (also known as cavita-
tion), which contaminates underground water resources. Tires
can be recycled for different types of products; for instance,
they can be used in the hot asphalt production process, where
they improve the asphalt durability and increase the asphalt
compressive strength. Moreover, recycled tires can also be
used in Portland cement, production of new tires, sports fields,
shoe industry, flooring, and artificial grass. This study aims to
shed light on the waste recycling processes and the environ-
mental pollution concerns in the asphalt manufacturing com-
panies. In this regard, the main empirical contribution of this
research focuses on the recycling process of worn-out tires
and their use as raw material.

The model proposed to evaluate and rank the set of poten-
tial green suppliers incorporates two main novel features.
First, it extends the fuzzy best-worst method (BWM) into a
hierarchical structure, defining a relatively simple weighting
technique whose performance is more consistent than that of
more complex methods such as the fuzzy version of
Shannon’s entropy. Second, we design a hybrid ranking mod-
el that incorporates the previous weights into the fuzzy

extensions of evaluation techniques such as the complex pro-
portional assessment of alternatives (COPRAS), multi-
objective optimization on the basis of ratio analysis
(MOORA), MOORA plus full multiplicative form
(MULTIMOORA), and the technique for order of preference
by similarity to ideal solution (TOPSIS). The empirical results
obtained allow for a direct comparison of the rankings provid-
ed by these techniques and their aggregation into a unique
consensus ranking via the maximize agreement heuristic
(MAH) method.

The main contributions of this research can be summarized
as follows:

& Our study case focuses on tire recycling and the use of
recycled tires as raw materials, an important problem that
has received relatively little attention in the literature.
Tires are made of polymeric materials that do not decom-
pose easily in nature, constituting a severe long-term prob-
lem that cannot be initially solved by burning or burying
them. Two main sets of consequences follow from their
correct re-utilization. From an environmental viewpoint,
worn-out recycling tires reduce waste and reinforces the
material cycle in nature. From a financial viewpoint,
recycled tires can be incorporated into production cycles,
becoming a source of economic profitability and helping
industrial development; a particularly important feature is
less developed countries.

& We develop a novel hierarchical extension of the fuzzy
best-worst method, denoted by HFBWM, which allows
for the simultaneous determination of the weights of
criteria and sub-criteria within a fuzzy environment.

& We propose several enhanced hybrid ranking models that
incorporate HFBWM and fuzzy Shannon’s entropy,
allowing for direct comparisons across methods and
resulting in more accurate aggregate results.

The rest of this research is arranged in the following order:
In the second section, this study reviews the current literature
on RL, tire recycling, and evaluation and assortment of green
suppliers. The literature review generates the supplier evalua-
tion criteria for tire recycling in RL. In the third section, this
research presents the suggested fuzzy green supplier selection
model. In the fourth section, a case study in the asphalt
manufacturing industry is presented to stress the proposed
method’s applicability and efficacy. In the final section, we
conclude with a discussion and conclusions.

Literature review

In this part, the present study provides a concise review of the
literature on RL, tire recycling, and green supplier evaluation
and selection.
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Reverse logistics

Today, RL has attracted many manufacturers (Ramírez and
Morales 2014), and the RL operations refer to all restructuring
actions in which the factory directly or indirectly benefits from
the changes. RL is related to the process of retrieval of goods
at the final stage of the lifecycle for regeneration, recycling, or
green disposal (Zarbakhshnia et al. 2019). RL is the efficient
control of rawmaterials, finished goods, and in-process inven-
tory from production to consumption to regain value from the
disposed goods (Rogers and Tibben-Lembke 1999). Figure 1
presents an RL system. A typical RL system involves product
acquisition, collection, examination and classification, dispos-
al, and redistribution processes. The disposition process in-
cludes five steps of repair, refurbish, remanufacture, cannibal-
ize, and recycle. In this research, the focus is on the recycling
step of the disposition process. Next, this study presents the
RL processes from a literature perspective (Agrawal et al.
2016a, b; Rachih et al. 2019).

Reverse logistic processes encompass different stages that
include product acquisition (gatekeeping), collection (-
gathering), inspection and sorting, disposition, and redistribu-
tion, all of which are described below.

Product acquisition (gatekeeping)

Product acquisition refers to operations in which goods are
collected and returned from the end-users (Jayaraman et al.
2008). In this process, companies use agents in the purchasing
sector to identify the market for consumer goods and buy the
used or returned products (Agrawal et al. 2016b).

Collection (gathering)

Collection or gathering refers to goods received from the in-
terior and exterior end-users and includes the processes of

delivery of the returned goods and their transport (Lambert
et al. 2011). In this process, the company takes ownership of
the products by purchasing them from retailers (Agrawal et al.
2016a). After the purchase, products are harvested and pre-
pared for recycling, repair, or disposal (Agrawal et al. 2016b).
Three methods of the collection include direct contact with
customers, retailers, or a third party.

Inspection and sorting

The collected products often have different qualities and ap-
pearances. Therefore, inspection and isolation are needed to
sort these products. In this step, a separate inspection is carried
out to categorize these products accordingly (Agrawal et al.
2016b). Generally, sorting involves deciding on the goods and
products returned (Lambert et al. 2011). This process can be
complex when hazardous goods are being sorted.

Disposition

Disposition refers to goods that are either defective or have
reached the end of their lifetime so that they can be re-
produced and enter the consumption cycle. Returned products
can also be used as raw material in the production of new
products (Jayaraman et al. 2008). Generally, this process in-
volves deciding whether to repair, refurbish, remanufacture,
cannibalize, or recycle the product.

Redistribution

Redistribution is the process of diverting reusable goods to a
market for resale purposes. Reusable goods can be traded
through redistribution on a secondary market (Agrawal et al.
2016a).

Product acquisition/
Gate keeping Collection Inspection / 

sorting Disposition Redistribution

.

.
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Fig. 1 The process flow in RL

53955Environ Sci Pollut Res (2021) 28:53953–53982



Tire recycling

The primary consumers of tire products are asphalt
manufacturing and automotive industries. Tire waste is usual-
ly obtained from the tire production process or products con-
sumed by customers (Fukumori et al. 2002). Tire waste
recycling is an example of recycled solids that has received
considerable attention due to its environmental benefits (Price
and Smith 2015). The natural destruction of tires is often time-
consuming, expensive, and causes environmental pollution.
The environmentally conscious approach to tackle this prob-
lem is recycling and reusing the tire waste (Adhikari 2000).
These tire recycling approaches lead to economic and social
benefits such as reducing energy consumption, diminishing
production cost by combining rubber powder from recycled
rubber, and reducing rubber waste (Fang et al. 2001).

Tire recycling methods are divided into mechanical and
chemical approaches. In the mechanical approach, tires are
divided into smaller pieces. This process is done in several
steps by shredder and granulator machines. Each step pro-
duces different products, which are used in various industries.
Some industries use coarse granules, and others use a very soft
tire powder. In the chemical approach, the tire is burned, and
the metal wires or the tire become pyrolyzed. In pyrolysis, the
tire is burned in a vacuum, and several products are extracted,
such as diesel fuel and oil. Recycled tire products vary based
on the mechanical or chemical recycling: rubber granulate,
rubber powder, recycled metal, reclaimed tire, asphalt and
bitumen polymer, gasoline fuel, and the car battery.

Green supplier assessment and assortment

Supplier assessment and assortment have a significant role in
creating an impressive and competitive chain (Freeman and
Chen 2015; Ghadimi et al. 2019). Due to outsourcing activi-
ties, companies’ dependence on suppliers has increased; thus,
supplier evaluation and selection have become of great impor-
tance. The supplier evaluation and selection procedure are
done with different objectives (Govindan et al. 2015b). In
addition, as public awareness about the environmental im-
pacts increases, principles and strategies for green supply
chain activities happen to be the key success factors for com-
panies (Liao et al. 2016). One of the critical principles in green
activities is removing or reducing wastes, which causes haz-
ardous solid waste, energy losses, and greenhouse gas emis-
sions. Improving waste management can turn into a core com-
petency for suppliers (Torabzadeh Khorasani 2017). This re-
search conducted a thorough literature review to explore the
environmental dimensions and the primary standards for
assessing and selecting the best suppliers for tire recycling
presented in Table 1.

Different approaches have been suggested and applied for
green supplier assessment and assortment, including grey-based

Decision-Making Trial and Evaluation Laboratory (DEMATEL)
(Fu et al. 2012), grey analytic network process (ANP) (Dou et al.
2014), data envelopment analysis (DEA) (Dobos and
Vörösmarty 2014), fuzzy additive ratio assessment and multi-
segment goal programming (Liao et al. 2016), the qualitative
flexible multiple method (Wang et al. 2017), DEMATEL-ANP
(Jiang et al. 2018), TOPSIS (Shafique 2018), elimination and
choice expressing reality (Gitinavard et al. 2018),
Visekriterijumska Optimizcija I Kaompromisno Resenje
(VIKOR) (Demir et al. 2018), TOPSIS-VIKOR-grey relational
analysis (Banaeian et al. 2018), the preference ranking organiza-
tion technique for improving assessments (Abdullah et al. 2018),
fuzzy analytic hierarchy process (AHP) (Zafar et al. 2019),
BWM and TOmada de Decisao Interativa Multicriterio
(TODIM) (Bai et al. 2019), and hybrid FUll COnsistency
Method (FUCOM) and rough simple additive weighting
(SAW) techniques (Durmić et al. 2020).

Prakash and Barua (2015) studied RL obstacles and used
AHP and TOPSIS to rank barriers. Similarly, Bouzon et al.
(2016) investigated RL obstacles in Brazil’s electronic indus-
try, identified barriers based on expert opinion using the fuzzy
Delphi method, and ranked them by applying the AHP
approach. Govindan et al. (2016) used a model of multi-
objective particle swarm optimization for an effective and
viable RL network outline considering the environmental,
social, and economic domains. Moreover, Mangla et al.
(2016) used DEMATEL and AHP approaches to examine
the RL critical success elements in Indian industries. Ravi
and Shankar (2017) investigated RL principles in the automo-
bile industry using interpretive structural modeling.

COPRAS, MULTIMOORA, and TOPSIS

MCDM models are applied to identify and select the best
possible solution from a set of alternatives based on different
decision criteria. For example, prior research has used
COPRAS to plan water transfer between basins (Roozbahani
et al. 2020), rank hybrid wind farms (Dhiman and Deb 2020),
select green suppliers (Kumari and Mishra 2020), evaluate the
performance of contractors (Jasim 2021), assess construction
project safety (Wei et al. 2021), rank effective risks in natural
gas supply projects (Balali et al. 2021), and evaluate COVID-
19 regional safety (Hezer et al. 2021). In addition, previous
studies have used MULTIMOORA for selecting suppliers
(Tavana et al. 2020a, b) and logistic service providers
(Sarabi and Darestani 2021), examining the barriers to the
adoption of renewable energy (Asante et al. 2020), selecting
car subscription station sites (Lin et al. 2020a, b), choosing
stable battery suppliers (Wang et al. 2021a, b), and evaluating
technology project review experts (Wang et al. 2021c, d). A
similar range of applications arises when considering previous
research works that implement TOPSIS, including supplier
selection (Lei et al. 2020), the evaluation of unusual
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emergency events (Zhan et al. 2020), the assessment of lake
eutrophication levels (Lin et al. 2020a, b), sustainable supply
chain risk management (Abdel-Basset and Mohamed 2020),
risk analysis of cutting system (Kushwaha et al. 2020), trans-
portation management (Sarkar and Biswas 2021), risk priori-
tization in self-driving vehicles (Bakioglu and Atahan 2021),
and the evaluation of renewable energy production capabili-
ties (Wang et al. 2021a, b, c, d).

BWM and fuzzy Shannon’s entropy

BWM, proposed by Rezaei (2016), is anMCDM technique used
to determine the weights of criteria. BWM has been developed
and applied by researchers across several disciplines. For
instance, Bonyani and Alimohammadlou (2019) integrated
BWM with ANP to improve pair-wise comparison processes.
Amiri et al. (2020) developed a group BWM and integrated it
with a fuzzy preference programming method to examine hospi-
tal performance. Other studies have also used BWM for evalua-
tion purposes, including the performance of solid waste

management (Behzad et al. 2020), insurance companies
(Dwivedi et al. 2021), and healthcare departments (Torkayesh
et al. 2021), driver’s behavior in road safety (Moslem et al.
2020), the green performance of airports (Kumar et al. 2020),
selection of providers (Muravev and Mijic 2020), and ship
recycling (Soner et al. 2021). Similarly, the method based on
Shannon’s entropy is an appropriate technique for specifying
the relevance of weights in multiple attribute decision-making
methods. For instance, this method has been used to rank cities
(Storto 2016), assess flood vulnerability (Yang et al. 2018a, b),
analyze barriers to the implementation of continuous improve-
ment (Tavana et al. 2020a, b), study surface air temperature and
rainfall (Ray and Chattopadhyay 2021), and rank the structural
analysis of software applications (Jarrah et al. 2021).

Methodology

This study uses a fuzzy green supplier selection model for
sustainable supply chains in RL. To prioritize those green

Table 1 Environmental dimensions and criteria for green supplier selection

Environmental dimensions Environmental criteria Objective References

Pollution controls
C1

C11 Energy consumption MIN Cao et al. 2015; Kannan et al. 2015; Datta et al.
2012; Lee et al. 2009; Noci 1997; Fallahpour
et al. 2016; Qin et al. 2017; Shaik and
Abdul-Kader 2011; Yeh & Chuang, 2011

C12 Use of harmful material MIN Kannan et al. 2015; Datta et al. 2012; Lee et al.
2009; Govindan et al. 2015a

C13 Pollution control initiatives MAX Kannan et al. 2015

C14 Pollution decrease capability MAX Kannan et al. 2015; Humphreys et al. 2006;
P. Humphreys et al. 2003

Green product
C2

C21 Recycle MAX Kannan et al. 2015; Datta et al. 2012; Lee et al.
2009; Büyüközkan and Çifçi 2012; Govindan
and Sivakumar 2016; Jabbour and Jabbour
2009; Shaik and Abdul-Kader 2011;
P. Humphreys et al. 2006; P. K. Humphreys
et al. 2003

C22 Reuse MAX Jabbour and Jabbour 2009; Shaik and
Abdul-Kader 2011; P. Humphreys et al. 2006

C23 Remanufacture MAX Hashemi et al. 2015; Kannan et al. 2015;
Jabbour and Jabbour 2009; Datta et al. 2012;
Shaik and Abdul-Kader 2011; P. Humphreys
et al. 2006; P. K. Humphreys et al. 2003

Environment
protection/environment
management

C3

C31 The capability of preventing pollution MAX Kannan et al. 2015

C32 Continuous pursuit and regulatory compliance Kannan et al. 2015

C33 Environmental management system MAX Kannan et al. 2015; Çifçi and Büyüközkan 2011;
Rezaei et al. 2016; Yazdani 2017

C34 Environmental protection plans MAX Kannan et al. 2015

Pollution production
C4

C41 Production of polluting agents MIN Bai and Sarkis 2010

C42 Production of toxic products MIN Bai and Sarkis 2010

C43 Waste production MIN Bai and Sarkis 2010
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suppliers with a robust ability to recycle in RLs, we use fuzzy
extensions of COPRAS, MULTIMOORA, and TOPSIS.
COPRAS, MULTIMOORA, and TOPSIS are robust
MCDM techniques applied to evaluate the performance of a

series of alternatives according to different criteria. The rela-
tive importance assigned to these criteria is determined by the
separate implementation of the fuzzy extension of Shannon’s
entropy and our proposed approach, namely, HFBWM. This

Phase 4: Fuzzy MULTIMOORA

Phase 2: Fuzzy Shannon’s Entropy and hierarchical fuzzy Best Worst Method
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Literature review Identify the green supplier 
selection criteria

Classify the green supplier selection 
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Calculate the importance weight 
of the green supplier selection 
criteria using fuzzy Shannon’s 

entropy

Determine the  importance weights of 
the green supplier selection criteria 

for the  tire recycling industry

Phase 3: Fuzzy COPRAS

Calculate the optimality function 
values

Calculate the total aggregate
with the maximum value

for each alternative

Calculate the total aggregate 
with the minimum value 

for each alternative

Compute the relative 
significance of each 

alternative
Select the best supplier

Determine the fuzzy decision 
matrix

Determine the weighted 
normalized decision matrix

Normalize the fuzzy decision 
matrix

Determine the fuzzy 
decision matrices for the 

risks and benefits

Determine the normalized 
performance values for the risks 

and benefits

Determine the overall 
performance index for 
the risks and benefits 
and for each supplier

Rank the suppliers based 
on the overall 

performance index

dohte
M

oita
R

yzzuF

Determine the maximum and 
minimum and optimal reference 

for the risk and benefits

Calculate the distances between 
all the normalized decision 

matrix and multiply them in the 
weights of the risks and benefits

Rank the suppliers based 
on the best non-fuzzy

Performance

Fu
zz

y 
R

ef
er

en
ce

M
et

ho
d

Fuzzy full multiplicative
based on fuzzy decision matrices

Calculate the total 
utility

Rank the suppliers based 
on the best non-fuzzy 

performanceFu
zz

y 
Fu

ll 
M

ul
tip

lic
at

iv
e

Use fuzzy MULTIMOORA
To rank the suppliers

Phase 6: Overall ranking

Fuzzy MULTIMOORA rankingsFuzzy COPRAS rankings

Determine the 
normalized  fuzzy 

decision matrix for the 
risks and benefits

Determinetheweighted
normalizedfuzzydecisionmatrix

forrisksandbenefits

Final rankings

MAH

C
on

se
ns

us
 

R
an

ki
ng

Identifying the best 
and worst Criteria

Identifying the best 
and worst Sub-

criteria

Determine the fuzzy preference the 
best criterion over each of other 

criteria and  all criteria over the worst 
criterion

Determine the fuzzy preference the 
best sub-criterion over each of other 
sub-criteria and  all sub-criteria over 

the worst sub-criterion

Calculate the weights of 
the criteria and sub-criteria

Calculate the final weights 
of sub-criteria as

j c sj
S j SGw w w

Phase 6:Fuzzy TOPSIS

Fuzzy TOPSIS rankings

Determine 
the fuzzy 
decision 

matrix

Normalize
thefuzzy

decision
matrix

The weighted
normalized

decision matrix

fuzzy positive ideal 
solution and the fuzzy 
negative ideal solution

Calculate the 
closeness coefficients 

and select the best 
supplier

Fig. 2 Proposed framework

53958 Environ Sci Pollut Res (2021) 28:53953–53982



latter method constitutes one of the main contributions of the
current study. We extend FBWM into HFBWM to evaluate
the weights of the criteria and sub-criteria used to rank alter-
natives through COPRAS, MULTIMOORA, and TOPSIS.
Integrating these MCDM methods into hybrid evaluation
techniques aims to improve the accuracy and robustness of
the results compared to those obtained when applying a single
method. We also use fuzzy Shannon’s entropy to determine
the weights of the criteria and sub-criteria of the different
hybrid models, allowing us to compare the rankings derived
from both weighting techniques. The comparisons performed
both across hybrid MCDM models and between weighting
techniques aim at improving the quality of decision-making
and the reliability of the results obtained.

As depicted in Fig. 2, the procedure of the current research
entails six phases. First, this research reviews the literature and
identifies the green supplier assortment benchmarks. In addi-
tion, the green supplier assortment benchmarks for the tire
recycling industry are classified accordingly. Second, this re-
search uses fuzzy Shannon’s entropy and HFBWM to com-
pute the importance weight of the green supplier assessment
benchmarks. Third, this study uses fuzzy COPRAS in phase 3,
fuzzy MULTIMOORA in phase 4, and fuzzy TOPSIS in
phase 5 to rank the suppliers. We compare the rankings pro-
vided by the set of methods implemented throughout the eval-
uation procedure, illustrating fuzzy COPRAS and fuzzy
MOORA’s capacity to deliver sufficiently robust rankings
relative to more complex techniques such as fuzzy
MULTIMOORA. Finally, in phase 6, this research aggregates
the rankings obtained from the fuzzy COPRAS, fuzzy

MULTIMOORA, and fuzzy TOPSIS techniques using the
maximize agreement heuristic (MAH) method proposed by
Beck and Lin (1983) to reach an agreement for the rankings
produced by the different hybrid methods. Several consensus
ranking methods, such as the Copeland approach, exist. MAH
is commonly used since it provides an effective consensus
ranking framework that maximizes agreement in decision-
making. It is a practical method that has been introduced to
motivate the application of our integrated model by future
researchers. We conclude by highlighting the hybrid models’
capacity based on HFBWM to provide consistent ranking re-
sults while requiring a simpler evaluation framework than
those based on the fuzzy extension of Shannon’s entropy.

In phase 1, this study conducted a rigorous literature review
and explored the benchmarks and environmental dimensions
to assess and assort the best suppliers for tire recycling. As
depicted in Fig. 3, the green supplier selection benchmarks
chosen in this study were classified into the four environmen-
tal dimensions of pollution control, green product, environ-
ment management, and pollution production.

Fuzzy Shannon’s entropy method

Entropy refers to the quantitative measure of information
(Shannon 1948), leading to a higher degree of compression
(Naidu et al. 2018). According to Pourhamidi (2013), the en-
tropy approach has its roots in the Boltzmann entropy of con-
ventional statistical methods. Fuzzy entropy refers to the fuzzy
information obtained from the fuzzy system (Al-Sharhan et al.
2001), and it differs from Shannon entropy, which is an
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estimate of unpredictability. The difference is mainly the
probabilistic nature of Shannon entropy. According to Lotfi
and Fallahnejad (2010), it is a good technique in specifying
the relevant weights in multiple attribute decision-making
methods. Previous research improved this method for fuzzy
data (Lotfi and Fallahnejad 2010). The steps of the fuzzy
Shannon’s entropy approach are presented as follows:

Step 1: This step involves transforming the fuzzy numbers to

set-level data. In a fuzzy variable xije, the α-level set
indicates a class of intervals that has a participation

o f m i n i m u m v a l u e α , i . e . , xije� �
α ¼

X ij∈Rl u
xije X ij
� �

≥α
� �

. The following formula in-

dicates the α-level set:

xije� �l
α; xije� �u

α

h i
¼ Minxij xij∈R uxij

�� X ij
� �

≥α
� �

;Maxxij xij∈R uxij
�� X ij

� �
≥α

� �	 

in which 0 <α ≤ 1.

Through the different levels of confidence interval limits in
terms of 1-α, the fuzzy data is transformed to the different

interval set values of xeij� �
α 0 < α≤1j

n o
.

Step 2: In this step, the plij and puij values are calculated
through the parameters of Eq. (1):

plij ¼
xlij

∑m
j¼1x

u
ij
; puij ¼

xuij
∑m

j¼1x
u
ij
; j ¼ 1;…;m; i

¼ 1;…; n ð1Þ

Step 3: In the following stage, the hli and hui formulas
as min and max interval values are computed
through Eq. (2):

hli ¼ Min −h0∑m
j¼1p

l
ij:lnp

l
ij;−h0∑

m
j¼1p

u
ij:lnp

u
ij

n o
; i ¼ 1;…; n

hui ¼ Max −h0∑m
j¼1p

l
ij:lnp

l
ij;−h0∑

m
j¼1p

u
ij:lnp

u
ij

n o
; i ¼ 1;…; n

ð2Þ

in which h0 = (lnm)−1 and plij:lnp
l
ij or p

u
ij:lnp

u
ij are

zero in case plij ¼ 0 or puij ¼ 0.

Step 4: In this step, the dli and dui diversification interval
values are assigned in Eq. (3):

dli ¼ 1−hui ; dui ¼ 1−hli; i ¼ 1;…; n ð3Þ

Step 5: In this step, the wl
i and wu

i values are assigned as the
base and upward value limits of the interim weights of
the attribute i, where i = 1,…, n, as shown in Eq. (4):

wl
i ¼

dli
∑n

s¼1d
u
s
;wu

i ¼
dui

∑n
s¼1d

l
s

ð4Þ

Step 6: This research calculates w
0
i ¼ wl

iþwu
i

2 ;, then computes

∑n
i w

0
i, and finally calculateswi using Eq. (5) to obtain

the final weight:

wi ¼ w
0
i

∑n
i w

0
i

ð5Þ

Hierarchical fuzzy best-worst method

Rezaei (2015) proposed the best-worst method as an MCDM
technique used to determine the weights of criteria via pair-
wise comparisons of the best criterion relative to all the other
criteria and all the criteria relative to the worst criterion
(Bonyani and Alimohammadlou 2019). Immediate extensions
were developed by Tabatabaei et al. (2019), who introduced
the Hierarchical BWM, and Guo and Zhao (2017), who pro-
posed a fuzzy version of the BWM. The HBWM allows con-
sidering the weights of the criteria and sub-criteria within a
simultaneous programmingmodel so as to calculate the global
weights of the set of sub-criteria (Ren and Toniolo 2021).

We propose the Hierarchical Fuzzy Best-Worst Method
(HFBWM) based on the fuzzy BWM (FBWM) introduced
by Guo and Zhao (2017) and the HBWM defined by
Tabatabaei et al. (2019). The steps of the HFBWM can be
summarized as follows:

Step 1: Identify the set of criteria {C1,C2,…,Cn} and sub-
criteria {C1S,C2S,…,CnS}.

Step 2: Identify the best (most important) criteria and sub-
criteria, B, and the worst (least important) criteria
and sub-criteria, W.

Step 3: Determine the fuzzy preference for the best criterion
over each of the other criteria on a scale from 1 to 5.
The fuzzy best-to-others criteria are defined as fol-
lows:

AeB ¼ aeB1; aeB2;…; aeBn� � ð6Þ

where aeBj is the fuzzy preference of B over Cj (j = 1,

2, …, n) and aeBB ¼ 1; 1; 1ð Þ.
Step 4: Determine the fuzzy preference of all the criteria

over the worst criterion on a scale from 1 to 5. The
fuzzy others-to-worst criteria are defined as follows:

AeW ¼ ae1W ; ae2W ;…; aenW� � ð7Þ

where aejW is the fuzzy preference of Cj (j = 1, 2,…,

n) over W and aeWW ¼ 1; 1; 1ð Þ.
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Step 5: Determine the fuzzy preference of the best sub-
criterion over each of the other sub-criteria in a scale
from 1 to 5. The fuzzy best-to-others sub-criteria are
defined as follows:

AeBS ¼ ajeB1; a jeB2;…; ajeBn� � ð8Þ

where ajeBS is the fuzzy preference of the best sub-
criterion over the S-th sub-criterion within the j-th

criterion and ajeBB ¼ 1; 1; 1ð Þ.
Step 6: Determine the fuzzy preference of all sub-criteria over

theworst sub-criterion on a scale from1 to 5. The fuzzy
others-to-worst sub-criteria are defined as follows:

AeSW ¼ aje1W ; a je2W ;…; ajenW� � ð9Þ

where ajeSW is the fuzzy preference of the S-th sub-
criterion over the worst sub-criterion within the j-th

criterion and a jeWW ¼ 1; 1; 1ð Þ.
Step 7: Calculate the weights of the criteria (wc

1,w
c
2,…,

wc
n) and sub-criteria (w

j
1,w

j
2,…,wj

S), and then cal-
culate the final weights of the sub-criteria asGwj

S =
wc

j ×wsj
S:

min ξeþ ∑
j
ξ je s:t

: wB=w j−aeBj�� ��≤ ξe; ∀ j ¼ 1;…; n w j=wW−aejW�� ��
≤ ξe; ∀ j ¼ 1;…; S w j

B

.
w j
S

− aj
BS
e���� ����≤ ξ je;

∀ j ¼ 1;…; S w j
S

.
w j
W

−ae j
SW

���� ����≤ ξ je; ∀ j ¼ 1;…;

nGwj
S ¼ wj � wj

S ∑
n

j¼1
R wj
� � ¼ 1; ∑

n

j¼1
R wj

S

� �
¼ 1; lwj ≤m

w
j ≤u

w
j ; ∀ j ¼ 1;…; nlwj ;m

w
j ; u

w
j ≥0;∀ j

¼ 1;…; n

ð10� 1Þ

min ξeþ ∑
j
ξ je s:t : wB−aeBjw j

�� ��≤ ξe; ∀ j

¼ 1;…; n wj−aejWwW
�� ��≤ ξe; ∀ j

¼ 1;…; S wj
B− a

j
BSw

j
S
e�� ��≤ ξ je; ∀ j

¼ 1;…; S wj
S−ae j

SWw
j
W

��� ���≤ ξ je; ∀ j

¼ 1;…; nGwj
S ¼ wj � wj

S ∑
n

j¼1
R wj
� �

¼ 1; ∑
n

j¼1
R wj

S

� � ¼ 1; lwj ≤m
w
j ≤u

w
j ; ∀ j

¼ 1;…; nlwj ;m
w
j ; u

w
j ≥0; ∀ j ¼ 1;…; n ð10� 2Þ

R wj
� �

;R wj
S

� � ¼ lwj þ 4mw
j þ uwj

6
ð11Þ

In Model (10-2), R(wj) and R wj
S

� �
are the average weights

of the criteria and sub-criteria, wj and wj
S , respectively:

The consistency ratio of the comparisons is calculated ac-
cording to Eq. (12) and Table 2 as follows:

Consistency Ratio ¼ ξ*

Consistency Index
ð12Þ

where ξ* ¼ ξeþ ∑
j
ξ je for all criteria and sub-criteria.

Fuzzy COPRAS

COPRAS is a multiple attribute decision-making approach
developed by Zavadskas et al. (1994). The COPRAS ap-
proach calculates the solution by considering the best solution
ratio. This approach surmises the proportionate and direct as-
sociation between the importance-efficiency measures of
checked versions and a system of criteria in which it explains
the alternatives, weights, and values of the criteria accordingly
(Yazdani et al. 2015). Zavadskas and Antucheviciene (2007)
developed the fuzzy COPRAS approach. The phases of the
ranking process used for fuzzy COPRAS (Zarbakhshnia et al.
2018) are appended below:

Step 1: According to Table 3, the fuzzy decision matrix
(DM) is built in this step:

Xe ¼

xl11; x
m
11; x

u
11

	 

xl12; x

m
12; x

u
12

	 

…

:
:
:

:
:
:

…

xlm1; x
m
m1; x

u
m1

	 

xlm2; x

m
m2; x

u
m2

	 

…

xl1n; x
m
1n; x

u
1n

	 

:
:
:

xlmn; x
m
mn; x

u
mn

	 


266664
377775

ð13Þ

The m parameter in the matrix outlines how many alterna-
tives are assigned, and the n parameter highlights the existing
benchmarks, and the xmn parameter indicates the efficiency of
alternative i in criteria j. Table 3 shows the guidelines used for
the conversion process of fuzzy membership functions (M. P.
Amiri 2010; Zarbakhshnia et al. 2018).

Step 2: In this stage, the fuzzy normalization DM is calcu-
lated for estimating its analogous sufficiency. As

X *
ij

e ¼ xl*ij ; x
m*
ij ; x

u*
ij

� �
and ∀i, j,

xl*ij ¼ xlij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 xlij
� �2

þ xmij
� �2

þ xuij
� �2

� �s
ð14Þ

xm*ij ¼ xmij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 xlij
� �2

þ xmij
� �2

þ xuij
� �2

� �s
ð15Þ
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xu*ij ¼ xuij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 xlij
� �2

þ xmij
� �2

þ xuij
� �2

� �s
ð16Þ

Step 3: In this stage, the weight of the benchmarks that were
calculated utilizing the fuzzy Shannon is computed.

Step 4: In this stage, the weighted normalized DM is
calculated.

Step 5: In this stage, higher values of the sum of attributes p j
e

are preferred for each alternative (optimization direc-
tion is maximization), with k representing the num-
ber of attributes that must be maximized:

pj
e ¼ ∑

k

i¼1
xije ð17Þ

Step 6: In this stage, lower values of the sum of attributes Rje
are preferred for each alternative (optimization direc-
tion is minimization), with (m−k) representing the
number of attributes that must be minimized:

Rje ¼ ∑
m

i¼Kþ1
xije ð18Þ

Step 7: In this stage, the lower bound of Rje as Re minimum is
calculated:

Rmine ¼ min j R je; j ¼ 1; 2;…; n ð19Þ

Step 8: In this stage, the comparative importance of every
variable is calculated:

Qi
e ¼ pj

eþ Rmine ∑n
j¼1 Rje

Rje∑n
j¼1

Rmine
Rje

; j ¼ 1; 2;…; n ð20Þ

Step 9: In this stage, the function to a non-fuzzy value
using Eq. (21) is defuzzified:

xij ¼
xuij−xlij

� �
þ xmij −xlij
� �

3
þ xlij ð21Þ

Step 10: In this stage, the best alternative is chosen accord-
ing to Eq. (22) in which the upper weight limit of
the alternatives is calculated according to the pref-
erence value:

K ¼ max jQ j; j ¼ 1; 2;…; n ð22Þ

Step 11: In this stage, the scope of parameters in every var-
iable is computed with Eq. (23). Furthermore, all
numbers are defuzzified in this phase:

K j ¼
Qj

Qmax
� 100%; j ¼ 1; 2;…; n ð23Þ

In this equation, Qj and Qmax are referred to as the non-
fuzzified comparative importance of each alternative as well
as the best alternative value. With regard to the Kj parameter,
the alternative values are classified and graded downward so
that the superior value of Kj is the best alternative.

Table 3 Linguistic variables for fuzzy COPRAS, fuzzy MULTIMOORA, fuzzy BWM, and Shannon’s entropy methods

Linguistic variables for rating the
suppliers

Linguistic variables for the weighting of each criterion Interval values for
linguistic
variables

Linguistic
variables

Triangular fuzzy
number for fuzzy
COPRAS and
fuzzy
MULTIMOORA

Linguistic variables
(priority weights)

Triangular fuzzy
numbers of the
fuzzy BWM
(Guo
and Zhao 2017)

Linguistic variables
(priority weights)

Triangular fuzzy
number for fuzzy
Shannon

Interval data
at 0.3α

Very low (VL) (0,0,0.25) Equally importance (EI) (1,1,1) Unimportant (UI) (0,0,0.2) [0,0.17]

Low (L) (0,0.25,0.5) Weakly importance (WI) (2/3,1,3/2) Slightly important
(SI)

(0,0.2,0.4) [0.07,0.42]

Medium (M) (0.25,0.5,0.75) Fairly importance (FI) (3/2,2,5/2) Fairly important (FI) (0.2,0.4,0.6) [0.32,0.67]

High (H) (0.5,0.75,0.1) Very importance (VI) (5/2,3,7/2) Important (I) (0.4,0.6,0.8) [0.57,0.92]

Very high (VH) (0.75,1,1) Absolutely importance
(AI)

(7/2,4,9/2) Very important (VI) (0.6,0.8,1) [0.82,1]

Table 2 Consistency index in BWM

aBW, a
j
BW Exactly equal (E) Slightly strong (SS) Fairly strong (FS) Very strong (VS) Absolutely strong (AS)

CI 3.00 3.80 5.29 6.69 8.04
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Fuzzy MULTIMOORA

The MULTIMOORA approach is a combination of multi-
objective optimization with ratio analysis (MOORA) and the
full multiplicative form (FMF) of multiple objectives.
MULTIMOORA is a vigorous method in multiple objective
optimizations (Brauers and Zavadskas 2011). Previous studies
had applied the MULTIMOORA approach in various disci-
plines such as risk assessment (Fattahi and Khalilzadeh 2018),
project management initiatives (Dorfeshan et al. 2018), auto-
mobile selection (Wu et al. 2017), choosing home structure

and fabric (Zavadskas et al. 2017), logistics (Awasthi and
Baležentis 2017), supplier selection (Liu et al. 2018a),
recycling (Ding and Zhong 2018), entertainment (Wu et al.
2018), automobile design (Liu et al. 2018b), ERP (Tian et al.
2017), robotics (You et al. 2018), agriculture (Hafezalkotob
et al. 2018), and housing industry (Zavadskas et al. 2017).

Fuzzy MOORA

Brauers and Zavadskas (2006) initially recommended the
MOORA for improving two or more contradicting attributes
that are bound to specific limitations. The MOORA approach
is a multicriteria decision-making method commonly used to
solve business challenges such as manufacturing, gas and oil
industry, process design, or every flawless decision that con-
siders several other contradicting attributes (Akkaya et al.
2015). According to Ceballos et al. (2016), the MOORA
method builds a ranking system that is resorted to three com-
putations: the reference point (RP), the ratio system, and the
FMF of multiple objectives (Ceballos et al. 2016). The fuzzy
MOORA approach as a multicriteria decision-making tech-
nique for privatization research in a subsistence economy is
proposed by Brauers and Zavadskas (2006). The stages of the
fuzzy ratio approach used in this research are identical in the
previous applications of this method by Karande and
Chakraborty (2012), Gupta et al. (2017), and Akkaya et al.
(2015):

Step 1: In this stage, a DM is formed using triangular fuzzy
numbers:

Xe ¼

xl11; x
m
11; x

u
11

	 

xl12; x

m
12; x

u
12

	 

…

:
:
:

:
:
:

…

xlm1; x
m
m1; x

u
m1

	 

xlm2; x

m
m2; x

u
m2

	 

…

xl1n; x
m
1n; x

u
1n

	 

:
:
:

xlmn; x
m
mn; x

u
mn

	 


266664
377775

ð24Þ

Step 2: In this stage, the DM is changed to a normalized
fuzzy DM (FDM) utilizing Eqs. (25), (26), and (27):

As X *
ij

e ¼ xl*ij ; x
m*
ij ; xu*ij

� �
and ∀i, j,

xl*ij ¼ xlij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 xlij
� �2

þ xmij
� �2

þ xuij
� �2

� �s
ð25Þ

xm*ij ¼ xmij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 xlij
� �2

þ xmij
� �2

þ xuij
� �2

� �s
ð26Þ

xu*ij ¼ xuij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 xlij
� �2

þ xmij
� �2

þ xuij
� �2

� �s
ð27Þ

Table 4 Interval DM for the fuzzy Shannon’s entropy method

Criteria DM1 DM2 DM3 DM4 DM5 DM6 Aggregate DMs

C11 H VH H VH VH VH [0.7366 0.9733]

C12 VH I M VH H H [0.6116 0.9066]

C13 H VI H H H H [0.57 0.92]

C14 H VH H VH VH VH [0.7366 0.9733]

C21 VH VH VH H H H [0.659 0.96]

C22 VH VH H H H H [0.6533 0.946]

C23 VH VH VH VH H VH [0.7783 0.9866]

C31 H H H H H H [0.57 0.92]

C32 M H H M H H [0.4866 0.84]

C33 VH H H H H VH [0.6533 0.9466]

C34 H H VH VH H H [0.6533 0.9466]

C41 VH H VH H H VH [0.695 0.96]

C42 H M H M H H [0.4866 0.84]

C43 VH H H H H M [0.57 0.8933]

C11 H VH H H H H [0.6116 0.9333]

Note: Green supplier selection and evaluation (GSSE)

Table 5 Final weights for the fuzzy Shannon entropy’s method

Criteria [hl hu] [dl du] [w l W u] w’i

C11 [0.0573 0.0686] [0.9313 0.9426] [0.0654 0.0673] 0.0664

C12 [0.0506 0.0656] [0.9343 0.9493] [0.0656 0.0678] 0.0667

C13 [0.0482 0.0662] [0.9337 0.9517] [0.0656 0.0679] 0.0668

C14 [0.0573 0.0686] [0.9319 0.9426] [0.0654 0.0673] 0.0664

C21 [0.0551 0.0686] [0.9319 0.9448] [0.0655 0.0676] 0.0665

C22 [0.0529 0.0674] [0.9325 0.9470] [0.0655 0.0676] 0.0666

C23 [0.0594 0.0691] [0.9308 0.9405] [0.0654 0.0671] 0.0663

C31 [0.0482 0.0662] [0.9337 0.9517] [0.0656 0.0679] 0.0668

C32 [0.0432 0.0624] [0.9375 0.9567] [0.0659 0.0683] 0.0671

C33 [0.0529 0.0674] [0.9325 0.9470] [0.0655 0.0676] 0.0666

C34 [0.0529 0.0674] [0.9325 0.9470] [0.0655 0.0676] 0.0666

C41 [0.0551 0.0680] [0.9319 0.9448] [0.0655 0.0674] 0.0665

C42 [0.0432 0.0624] [0.9375 0.9567] [0.0659 0.0683] 0.0671

C43 [0.0482 0.0649] [0.9350 0.9517] [0.0657 0.0679] 0.0668
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Step 3: In this stage, the weighted normalized FDM is deter-
mined by using Eqs. (28), (29), and (31):

Vij ¼ vlij; v
m
ij ; v

u
ij

� �
;

vlij ¼ wjχ
l*
ij ð28Þ

vmij ¼ wjχ
m*
ij ð29Þ

vuij ¼ wjχ
u*
ij ð30Þ

This research used the weights calculated previously by the
fuzzy Shannon entropy to compute the weighted normalized
FDM.

Step 4: In this stage, Eq. (31) is used to compute the normal-
ized performance measures where the total cost mea-
sures are deducted from overall benefit measures as
follows:

Vij ¼ vlij; v
m
ij ; v

u
ij

� �
;

yi ¼ ∑
g

j¼1
Vij− ∑

n

j¼gþ1
Vij

ð31Þ

where ∑
g

j¼1
Vij shows the benefit measures (for 1,…,g)

and ∑
n

j¼gþ1
Vij indicates the cost measure (for g+

1,…,n), where g and (n − g) show the maximum
and the minimum number of measures, respectively.
For the benefit measures, the total ratings of an alter-
native can be computed for the low, center, and high
limits of the triangular membership function, which
are appended below:

yþl
i ¼ ∑

n

j¼1
vlij j∈J

maxj ð32Þ

yþm
i ¼ ∑

n

j¼1
vmij j∈Jmaxj ð33Þ

yþu
i ¼ ∑

n

j¼1
vuij j∈J

maxj ð34Þ

In addition, the cost measures are computed in the same
way for the entire ratings of an objective, as shown below:

y−li ¼ ∑
n

j¼1
vlij j∈J

maxj ð35Þ

y−mi ¼ ∑
n

j¼1
vmij j∈Jmaxj ð36Þ

y−ui ¼ ∑
n

j¼1
vuij j∈J

maxj ð37Þ

Step 5: In this stage, the entire performance index (yi) for
each objective is identified by computing the

Table 6 Linguistic terms for
fuzzy preferences of the criteria
by experts

Criteria

Best criterion Worst criterion C1 C2 C3 C4

C1 - (1,1,1) (2.5,3,3.5) (1.5,2,2.5) (0.67,1,1.5)

- C2 (2.5,3,3.5) (1,1,1) (0.67,1,1.5) (1.5,2,2.5)

Table 7 Linguistic terms for
fuzzy preferences of the sub-
criteria by experts

Best criterion Worst criterion Sub-criteria

C1 C11 C12 C13 C14

C11 - (1,1,1) (0.67,1,1.5) (2.5,3,3.5) (1.5,2,2.5)

C13 (2.5,3,3.5) (1.5,2,2.5) (1,1,1) (0.67,1,1.5)

C2 C21 C22 C23

C21 - (1,1,1) (2.5,3,3.5) (1.5,2,2.5)

- C22 (2.5,3,3.5) (1,1,1) (0.67,1,1.5)

C3 C31 C32 C33 C34

C31 - (1,1,1) (0.67,1,1.5) (2.5,3,3.5) (1.5,2,2.5)

- C33 (2.5,3,3.5) (1.5,2,2.5) (1,1,1) (0.67,1,1.5)

C4 C41 C42 C43

C42 - (1.5,2,2.5) (1,1,1) (0.67,1,1.5)

- C41 (1,1,1) (1.5,2,2.5) (0.67,1,1.5)
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defuzzified boundaries of the total ratings of the
benefit and cost measures for all the alternatives uti-
lizing the vertex approach appended below:

yi ¼ yli; y
m
i ; y

u
i

� �
;

BNPi yið Þ ¼ yui −yli
� �þ ymi −yli

� �
3

þ yli
ð38Þ

within which Eq. (38) indicates the total perfor-
mance value of the i-th alternative (objective).

Step 6: In this stage, the total performance index is arranged
from high to low values, and this study ranks all the
alternatives from the excellent to the inferior.
Among the alternatives, the most preferred choice
is the alternative with the highest total performance
index.

Fuzzy reference point method

Equations (25), (26), and (27) compute the RP method. This
method utilizes the normalized performance of the i-th objec-
tive on the j-th measure based on the aforementioned

equations. In addition, a maximum measure RP is identified
between the normalized performances as a non-subjective and
feasible to the coordinates (rj). In Eq. (39), the minimum–
maximum metric formula is described, and previous research
highlights that this is the appropriate formula for the RP (Adalı
and Işık 2017) as follows:

reþj ¼ max
i

xijl*;max
i

xijm*;max
i

xiju*
� �

; j≤g; for criteria to be maximized

re¼j ¼ min
i

xijl*;min
i

xijm*;min
i

xiju*
� �

; j〉g; for criteria to be minimized

8>><>>:
ð39Þ

On condition that decision-makers decide to assign a
higher value to a particular measure, Eq. (39) is
recalculated through examining the weights of the mea-
sures as follows:

min
i

max
j

W j � re j−xe*ij��� ���� �
ð40Þ

The objectives are eventually ranked based on Eq.
(38), and the most attractive objective is selected based
on the lowest overall distance from the RPs (Adalı and
Işık 2017).

Table 8 Weights of the sub-criteria determined by HFBWM

Sub-criteria C11 C12 C13 C14 C21 C22 C23

Gwj
S 0.015852 0.012362 0.005945 0.007132 0.037442 0.013576 0.016744

Sub-criteria C31 C32 C33 C34 C41 C42 C43

Gwj
S 0.012847 0.010018 0.004818 0.00578 0.026442 0.044879 0.034449

Table 9 Fuzzy DM results for each supplier

Criteria Supplier

S1 S2 S3 … S11 S12

C11 0.3125 0.5625 0.8125 0.0625 0.3125 0.5625 0.0625 0.3125 0.5625 … 0.375 0.625 0.875 0.25 0.5 0.75

C12 0.25 0.5 0.75 0.0625 0.1875 0.4375 0.125 0.375 0.625 … 0.75 1 1 0.3125 0.5625 0.8125

C13 0.1875 0.4375 0.6875 0.625 0.875 1 0.3125 0.5625 0.8125 … 0.125 0.375 0.625 0.125 0.375 0.625

C14 0.0625 0.3125 0.5625 0.5 0.75 1 0.25 0.5 0.75 … 0.0625 0.3125 0.5625 0.125 0.375 0.625

C21 0.3125 0.5625 0.8125 0.5 0.75 1 0.5 0.75 1 … 0.0625 0.25 0.5 0.0625 0.25 0.5

C22 0.375 0.625 0.875 0.625 0.875 1 0.4375 0.6875 0.9375 … 0.0625 0.25 0.5 0.0625 0.3125 0.5625

C23 0.375 0.625 0.875 0.5 0.75 1 0.4375 0.6875 0.9375 … 0.0625 0.25 0.5 0.125 0.375 0.625

C31 0.1875 0.4375 0.6875 0.5625 0.8125 1 0.375 0.625 0.875 … 0.0625 0.1875 0.4375 0.0625 0.1875 0.4375

C32 0.1875 0.4375 0.6875 0.625 0.875 1 0.25 0.5 0.75 … 0.1875 0.4375 0.6875 0.0625 0.25 0.5

C33 0.25 0.5 0.75 0.5 0.75 1 0.25 0.5 0.75 … 0.25 0.5 0.75 0.0625 0.25 0.5

C34 0.125 0.375 0.625 0.5 0.75 1 0.4375 0.6875 0.9375 … 0.1875 0.4375 0.6875 0.1875 0.4375 0.6875

C41 0.4375 0.6875 0.9375 0.0625 0.25 0.5 0.125 0.375 0.625 … 0.4375 0.6875 0.9375 0.5625 0.8125 1

C42 0.3125 0.5625 0.8125 0.0625 0.125 0.375 0.0625 0.3125 0.5625 … 0.4375 0.6875 0.9375 0.5 0.75 1

C43 0.1875 0.4375 0.6875 0.0625 0.125 0.375 0.0625 0.125 0.375 … 0.25 0.5 0.75 0.4375 0.6875 0.9375
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Fuzzy full multiplicative form

The third phase of theMULTIMOORA approach is FMF. This
approach was initially proposed byMiller and Starr (1969), and
it is both consisted of max and min values of a completely
multiplicative utility formula. The key features of the FMF
include not using attribute weights, being non-additive, and
non-linear (Adalı and Işık 2017). The appended formula, based
on the guidelines of Hafezalkotob et al. (2019), calculates the
FMF’s utility function as a fraction of the weighted normalized
alternatives’ ratings on the benefit measures over the weighted
normalized alternatives’ ratings on the cost measures:

U
0ei ¼ Aei

Bei ð41Þ

where Aei ¼ Ai1ð ;Ai2 ;Ai3Þ ¼ ∏g
j¼1 x*ij

� �w j represents the re-

sult of the number of objectives of the i-th alternative to get

augmented with terms of g = 1, 2, … , n and Bei ¼

Bi1;Bi2;Bi3ð Þ ¼ ∏m
j¼gþ1 x*ij

� �w j represents the result of the

objectives for the i-th alternative to get reduced with the con-
dition of n − g. In Eq. (41), propagating the weights with the
normalized ratings is conducive to a similar outcome in which
no weights are evaluated. Therefore, weights need to be re-
ferred to as the exponents of Eq. (41) in the FMF. Since the

result of the overall utility function U
0ei� �

has a fuzzy digit,
defuzzification is required based on Eq. (38) to grade each of
the alternatives. According to Akkaya et al. (2015), the rank of
each of the i-th alternative is greater if the BNPi receives a
greater value.

According to the FMF, the most advantageous alternative
contains the maximum utility (which is retrieved from Eq.

(41)) U
0ei� �
, and the ranking procedure for this approach is

computed in the following formula:

RFMF ¼ Aijmaxuii > … > Aijmaxuii

� �
: ð42Þ

Table 10 Alternative rankings with fuzzy COPRAS-FShannon

Supplier pj
e Rje Qj

e Non-fuzzy Qj
e Kj Fuzzy COPRAS

ranking

1 0.0383 0.0801 0.1219 0.0279 0.0511 0.0744 0.0572 0.1201 0.182 0.1198 0.5158 7

2 0.0759 0.1105 0.1383 0.0048 0.0154 0.0346 0.1853 0.2436 0.2676 0.2322 1 1

3 0.0589 0.0996 0.1404 0.0079 0.0272 0.0499 0.1252 0.1748 0.2301 0.1767 0.7611 2

4 0.0438 0.0876 0.1314 0.017 0.0402 0.0645 0.0746 0.1385 0.2007 0.1379 0.5941 3

5 0.0254 0.0711 0.1168 0.0318 0.0572 0.0826 0.0419 0.1069 0.1709 0.1066 0.4591 8

6 0.0315 0.0705 0.1096 0.038 0.0597 0.0804 0.0453 0.1048 0.1652 0.1051 0.4527 9

7 0.0634 0.0942 0.119 0.0291 0.0463 0.0617 0.0814 0.1384 0.1915 0.1371 0.5906 5

8 0.0617 0.0934 0.1208 0.0282 0.0459 0.0609 0.0804 0.138 0.1942 0.1375 0.5925 4

9 0.0212 0.0614 0.1016 0.0448 0.0671 0.085 0.033 0.0919 0.1543 0.093 0.4008 10

10 0.0625 0.0929 0.1157 0.0321 0.049 0.0617 0.0789 0.1346 0.1882 0.1339 0.5768 6

11 0.0203 0.0572 0.1 0.0429 0.0668 0.0858 0.0325 0.0878 0.1521 0.0908 0.3912 11

12 0.0174 0.0559 0.1007 0.0411 0.066 0.0897 0.0302 0.0869 0.1506 0.0892 0.3844 12

Table 11 Alternative rankings with fuzzy COPRAS-HFBWM

Supplier pj
e Rje Qj

e Non-fuzzy Qj
e Kj Fuzzy COPRAS

ranking

1 0.0086 0.0166 0.0245 0.0112 0.0205 0.0298 0.0158 0.0317 0.0482 0.0319 0.4489 7

2 0.0142 0.0208 0.0264 0.0019 0.0055 0.0132 0.0561 0.0773 0.0798 0.0711 1 1

3 0.0127 0.0205 0.0282 0.0029 0.0103 0.0194 0.0403 0.0506 0.0646 0.0518 0.7293 2

4 0.0108 0.0191 0.0275 0.0066 0.0158 0.0256 0.0229 0.0387 0.0551 0.0389 0.5475 3

5 0.005 0.0137 0.0224 0.0139 0.0241 0.0344 0.0108 0.0265 0.0429 0.0267 0.3763 8

6 0.0053 0.0128 0.0202 0.0159 0.0246 0.0328 0.0104 0.0254 0.0418 0.0258 0.3637 9

7 0.011 0.0169 0.0221 0.0105 0.0174 0.0239 0.0187 0.0347 0.0516 0.035 0.4924 5

8 0.0112 0.0173 0.0229 0.0096 0.0167 0.0232 0.0196 0.0358 0.0533 0.0363 0.5104 4

9 0.0039 0.0116 0.0193 0.0192 0.0281 0.0346 0.0082 0.0226 0.0397 0.0235 0.3305 10

10 0.0113 0.0171 0.0218 0.0114 0.0182 0.024 0.0184 0.0342 0.0512 0.0346 0.4868 6

11 0.003 0.0095 0.0176 0.0157 0.0253 0.034 0.0081 0.0217 0.0384 0.0227 0.3201 11

12 0.0029 0.01 0.0185 0.018 0.028 0.0375 0.0074 0.0211 0.0373 0.0219 0.3087 12
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Final ranking

The trio approaches of the MULTIMOORA method are
equally important. Several approaches are applied to combine
the rankings of the three supporting approaches. The final
ranking of this research (in terms of measures used) is rooted
in the dominance theory. This theory is a popular ranking
aggregation method in MULTIMOORA related research
(Hafezalkotob et al. 2019). As suggested by previous research,
to get the final ranking of the measures, transitiveness princi-
ples, general dominance approaches, and absolute dominance
are applied (Brauers and Zavadskas 2011).

Fuzzy TOPSIS

Hwang and Yoon (1981) proposed the TOPSIS method as an
MCDM technique to rank alternatives by considering positive
and negative ideal solutions. Chen (2000) was the first to extend
TOPSIS into a fuzzy environment (Tavana et al. 2016a, b). We
implement the fuzzy TOPSIS extension developed by Sun
(2010), whose steps can be summarized as follows:

Step 1: Determine the fuzzy decision matrix.
Step 2: Calculate the normalized fuzzy decisionmatrix using

Eqs. (43) and (44) below:

Table 12 Alternative rankings with the fuzzy ratio method-FShannon

Supplier yi ¼ ∑
g

j¼1
veij− ∑

n

j¼gþ1
veij BNPi Fuzzy

ratio ranking
Benefits Cost yi

l m u l m u yli ymi yui

S1 0.1443 0.3155 0.4867 0.0965 0.1799 0.2633 −0.119 0.1356 0.3902 0.1356 7

S2 0.2355 0.3433 0.431 0.0434 0.1296 0.3032 −0.0677 0.2137 0.3875 0.1778 1

S3 0.1906 0.3273 0.4641 0.0459 0.153 0.2914 −0.1008 0.1744 0.4182 0.1639 2

S4 0.1487 0.3166 0.4844 0.0694 0.1704 0.277 −0.1283 0.1461 0.415 0.1443 6

S5 0.1056 0.3049 0.5042 0.0987 0.1804 0.2621 −0.1565 0.1245 0.4055 0.1245 9

S6 0.1293 0.3109 0.4925 0.1161 0.1852 0.2513 −0.1221 0.1257 0.3765 0.1267 8

S7 0.2275 0.3417 0.4356 0.1156 0.1864 0.2506 −0.0231 0.1553 0.32 0.1507 4

S8 0.2219 0.3387 0.4411 0.1108 0.1858 0.2522 −0.0303 0.1528 0.3303 0.1509 3

S9 0.1008 0.3033 0.5059 0.1254 0.1898 0.243 −0.1422 0.1136 0.3805 0.1173 10

S10 0.2284 0.3436 0.4331 0.122 0.1899 0.2439 −0.0156 0.1537 0.3111 0.1498 5

S11 0.0963 0.2862 0.5157 0.1181 0.1878 0.2471 −0.1508 0.0984 0.3976 0.1151 11

S12 0.086 0.2833 0.5201 0.1129 0.1845 0.2532 −0.1671 0.0987 0.4072 0.1129 12

Table 13 Alternative rankings with the fuzzy ratio method-HFBWM

Supplier yi ¼ ∑
g

j¼1
veij− ∑

n

j¼gþ1
veij BNPi Fuzzy ratio ranking

Benefits Cost yi

l m u l m u yli ymi yui

S1 0.031 0.061 0.091 0.039 0.072 0.106 −0.075 −0.011 0.053 −0.011 7

S2 0.044 0.065 0.083 0.018 0.049 0.123 −0.078 0.016 0.064 0.001 1

S3 0.039 0.063 0.087 0.018 0.06 0.118 −0.079 0.003 0.069 −0.002 2

S4 0.032 0.061 0.09 0.028 0.068 0.111 −0.079 −0.007 0.062 −0.008 3

S5 0.021 0.058 0.096 0.042 0.073 0.104 −0.084 −0.015 0.054 −0.015 8

S6 0.023 0.059 0.095 0.047 0.075 0.1 −0.077 −0.016 0.047 −0.015 9

S7 0.041 0.064 0.085 0.044 0.074 0.102 −0.061 −0.01 0.041 −0.01 5

S8 0.041 0.064 0.085 0.041 0.073 0.104 −0.063 −0.01 0.044 −0.009 4

S9 0.019 0.058 0.097 0.052 0.077 0.096 −0.077 −0.019 0.044 −0.017 10

S10 0.043 0.065 0.084 0.046 0.075 0.101 −0.058 −0.01 0.038 −0.01 6

S11 0.016 0.052 0.1 0.045 0.074 0.101 −0.086 −0.022 0.055 −0.018 11

S12 0.015 0.053 0.1 0.047 0.075 0.101 −0.085 −0.022 0.053 −0.018 12
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ð43Þ

ð44Þ

Step 3: Calculate the weighted normalized fuzzy decision
matrix.

Step 4: Calculate the fuzzy positive ideal solution and the
fuzzy negative ideal solution.

Step 5: Calculate the fuzzy positive and fuzzy negative dis-

tances deþi and de−i for the different alternatives.
Step 6: Calculate the closeness coefficients by applying Eq.

(45) below:

CCi ¼ di�
di�þdþi

ð45Þ

Consensus ranking: maximize agreement heuristic

In mathematics, the term consensus is ambiguous, susceptible
to a myriad of explanations, and Emond and Mason (2002)
indicate that little is known about consensus ranking. Beck
and Lin (1983) showed that the maximization of rater agree-
ment is considered as a rational measure for a consensus func-
tion, and they proposed the maximize agreement heuristic
(MAH) method for representing consensus or collective
agreement in decision-making problems. In ranking the ob-
jects, they also show how agreement and disagreement are
achieved in the final consensus ranking (FCR). This study

Table 14 Alternative rankings with fuzzy RP-FShannon

Supplier max
j

W j � re j−xe*ij��� ���� �
BNPi Fuzzy reference point

ranking

S1 0.0137 0.0155 0.0049 0.0124 4
S2 0.0022 0 0.0191 0.0053 1
S3 0.0048 0.0078 0.0147 0.0088 2
S4 0.0062 0.0124 0.0119 0.0107 3
S5 0.0156 0.0159 0.0038 0.0128 5
S6 0.0163 0.0178 0.004 0.0139 7
S7 0.0203 0.0125 0.0058 0.0128 8
S8 0.0203 0.0125 0.0058 0.0128 9
S9 0.0195 0.02 0 0.0149 11
S10 0.022 0.0137 0.0038 0.0133 10
S11 0.0248 0.0156 0 0.014 12
S12 0.0184 0.0164 0.0021 0.0134 6

Table 15 Alternative rankings with fuzzy RP-HFBWM

Supplier max
j

W j � re j−xe*ij��� ���� �
BNPi Fuzzy reference point

ranking

S1 0.009 0.01 0.003 0.008 7
S2 0.003 0 0.01 0.003 1
S3 0 0.008 0.007 0.006 2
S4 0.003 0.009 0.006 0.007 3
S5 0.01 0.011 0.003 0.009 8
S6 0.012 0.011 0.001 0.009 10
S7 0.008 0.01 0.004 0.008 5
S8 0.008 0.01 0.004 0.008 4
S9 0.014 0.012 0 0.009 12
S10 0.009 0.01 0.003 0.008 6
S11 0.011 0.011 0.002 0.009 9
S12 0.012 0.011 0.001 0.009 11
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mainly resorts to Beck and Lin (1983)’s guidelines for con-
sensus ranking. Emond and Mason (2002, p. 17) provide a
solution to the consensus ranking problem by coming up with
a measure of agreement between pairs of ranking and choos-
ing those rankings which maximize overall average agree-
ment. The MAH is an effective consensus ranking method
used within a wide span of multi-criteria decision-making
problems (Kengpol and Tuominen 2006; Tavana 2002,
2003, 2004; Tavana et al. 1996; Tavana and Banerjee 1995).

In this research, the MAH method is applied to arrive at a
final ranking of the alternatives (objects) selected by different
raters (methods, i.e., fuzzy FM rankings, fuzzy COPRAS,
fuzzy RP rankings, and fuzzy ratio method rankings). Given
kmulti-criteria methods that have all ranked n alternatives, an
agreement matrix, A, is defined, where aij indicates the num-
ber of methods which prefer alternative i over j. If the sum-
mation for each alternative i is calculated for all the columns, a

column vector in which each element shows the total number
of times alternative i is favored over all other alternatives are
created. This vector is called the positive preference vector P:

Pi ¼ ∑
n

j¼1
aij; i ¼ 1; 2; 3;…; n: ð46Þ

In addition, if the summation for each alternative j is cal-
culated for all rows, a row vector in which each element shows
the total number of times alternative j isn’t favored over all
other alternatives is created. This vector is called the negative
preference vector N:

Ni ¼ ∑
n

j¼1
aji; i ¼ 1; 2; 3;…; n: ð47Þ

This study uses Eqs. (46) and (47) and formulate the fol-
lowing selection criterion. If alternative i receives a zero-value

Table 16 Alternative rankings with the fuzzy full multiplicative form-FShannon

Supplier Aei Bei Non-fuzzy
Aei Non-fuzzy

Bei U
0ei ¼ Aei

Bei

Fuzzy full
multiplicative
ranking

S1 0.4111 0.68 0.8819 0.6587 0.8138 0.924 0.6577 0.7988 0.8233 7

S2 0.5702 0.7154 0.8199 0.5036 0.7256 0.9685 0.7018 0.7325 0.9581 1

S3 0.5004 0.6955 0.8573 0.5102 0.767 0.9557 0.6844 0.7443 0.9195 2

S4 0.422 0.6814 0.8792 0.5786 0.7991 0.9397 0.6609 0.7725 0.8556 6

S5 0.3422 0.6664 0.901 0.6636 0.8146 0.9226 0.6365 0.8003 0.7954 8

S6 0.3726 0.6738 0.8881 0.7009 0.8216 0.9096 0.6448 0.8107 0.7954 9

S7 0.5564 0.7134 0.8249 0.7001 0.8233 0.9088 0.6983 0.8107 0.8613 4

S8 0.5489 0.7096 0.8312 0.6878 0.8224 0.9102 0.6966 0.8068 0.8634 3

S9 0.3297 0.6642 0.9028 0.7197 0.8282 0.8992 0.6322 0.8157 0.7751 10

S10 0.5571 0.7157 0.8218 0.7116 0.8283 0.9 0.6982 0.8133 0.8585 5

S11 0.3211 0.6399 0.913 0.7033 0.8252 0.9037 0.6247 0.8107 0.7705 11

S12 0.3055 0.6362 0.9179 0.6943 0.8207 0.9118 0.6199 0.8089 0.7663 12

Table 17 Alternative rankings with the fuzzy full multiplicative form-HFBWM

Supplier Aei Bei Non-fuzzyAei Non-fuzzy Bei U
0ei ¼ Aei

Bei

Fuzzy full multiplicative ranking

S1 0.856 0.931 0.975 0.845 0.921 0.969 0.921 0.911 1.01 7

S2 0.897 0.938 0.964 0.765 0.872 0.988 0.933 0.875 1.066 1

S3 0.882 0.934 0.969 0.76 0.895 0.983 0.929 0.879 1.056 2

S4 0.861 0.931 0.973 0.806 0.914 0.976 0.922 0.899 1.026 3

S5 0.819 0.926 0.98 0.854 0.922 0.967 0.908 0.914 0.994 8

S6 0.824 0.927 0.979 0.869 0.925 0.962 0.91 0.919 0.991 9

S7 0.889 0.936 0.966 0.86 0.923 0.965 0.931 0.916 1.016 5

S8 0.889 0.936 0.967 0.852 0.922 0.966 0.931 0.914 1.019 4

S9 0.811 0.925 0.981 0.88 0.929 0.956 0.906 0.922 0.983 10

S10 0.892 0.937 0.965 0.865 0.925 0.962 0.931 0.917 1.015 6

S11 0.793 0.914 0.985 0.863 0.924 0.963 0.897 0.917 0.979 11

S12 0.791 0.915 0.985 0.869 0.924 0.962 0.897 0.919 0.977 12
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entry in the negative preference vector N, it indicates that
alternative i isn’t ranked lower than other alternatives.
Therefore, if alternative i is entered in the upcoming obtain-
able value from the uppermost of FCR, there is no disappoint-
ment when the result of the objective function is reached.
However, suppose alternative i receives a zero-value entry in
the positive preference vectorP. In that case, this indicates that
this alternative isn’t ranked ahead of other alternatives, follow-
ing Beck and Lin’s (1983) guidelines. Thus, alternative i has
no positive impact on the objective function and should be
placed in the lowest available consensus ranking position,
according to Beck and Lin (1983). The quantity (Pi −Ni) pro-
vides a reasonable selection criterion for cases in which there
exist no zero entries in each negative and positive preference
vectors. Therefore, it seems more logical to consider the max

|Pi −Ni|. when concentrating on max |Pi −Ni|; if (Pi −Ni) is
positive, alternative i should be put at the top of the FCR
because alternative i has the greatest positive impact on the
objective function. Similarly, if for the max |Pi −Ni|, the (Pi −
Ni) gets a negative value, alternative i should be placed at the
upcoming obtainable position at the bottom of the ranking
because this placement of alternative i reduces that alterna-
tive’s negative effect on the objective function. The following
algorithm formulates the discourse above:

Step 1: In this step, the agreement matrix A is produced, and
parameter n is set equal to the number of alternatives.

Step 2: In this step, Eqs. (48) and (49) are used to compute
the entries for the negative and positive preference
vectors N and P:

Table 18 Fuzzy MULTIMOORA rankings (aggregation and comparison)-FShannon

Supplier Fuzzy ratio method rankings
(Table 12)

Fuzzy reference point rankings
(Table 14)

Fuzzy full multiplicative rankings
(Table 16)

Fuzzy MULTIMOORA
ranking

S1 7 4 7 7

S2 1 1 1 1

S3 2 2 2 2

S4 6 3 6 6

S5 9 5 8 8

S6 8 7 9 9

S7 4 8 4 4

S8 3 9 3 3

S9 10 11 10 10

S10 5 10 5 5

S11 11 12 11 11

S12 12 6 12 12

Table 19 Fuzzy
MULTIMOORA rankings
(aggregation and comparison)-
HFBWM

Supplier Fuzzy ratio method
rankings (Table 13)

Fuzzy reference point
rankings (Table 15)

Fuzzy full multiplicative
rankings (Table 17)

Fuzzy
MULTIMOORA
ranking

S1 7 7 7 7

S2 1 1 1 1

S3 2 2 2 2

S4 3 3 3 3

S5 8 8 8 8

S6 9 9 10 9

S7 5 5 5 5

S8 4 4 4 4

S9 10 10 12 10

S10 6 6 6 6

S11 11 11 9 11

S12 12 12 11 12
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Pi ¼ ∑
n

j
aij ð48Þ

Ni ¼ ∑
n

j
aji ð49Þ

Step 3: In this step, any alternatives with zero-value entries
in each of both negative and positive preference vec-
tors are candidates for entry into the FCR. In line
with the guidelines of Beck and Lin (1983), if the
zero-value entry takes place in the positive prefer-
ence vector P, this study enters alternative i in the
upcoming obtainable value from the lowermost of
consensus ranking. However, if the zero-value entry

takes place in the negative preference vector N, cur-
rent research enters alternative i in the upcoming
obtainable value in the uppermost of the ranking.
In either case, this research reduces the row and col-
umn effects of the alternatives in matrix A and sub-
sequently moves to Step 5, as shown below.

Step 4: In this step, this study examines thePi −Ni difference
for all i in case there is no zero-value entries in both
N or P. Furthermore, alternative i is chosen with the
largest absolute difference, and alternative i is en-
tered in the upcoming obtainable value from the up-
permost of the ranking in case a positive difference is
achieved. In this step, alternative i is entered in the
upcoming obtainable value from the lower level of
the ranking if the difference is negative, according to
Beck and Lin (1983). In case of a tie where more
than one alternative is a candidate for the FCR, the
tie is broken arbitrarily. In the next step, the row and
column results of the agreement matrix A are subse-
quently removed for alternative i accordingly.

Step 5: In this step, set n = n − 1
Step 6: In this step, if n > 1, move to Step 2, and if n = 1,

enter the last alternative in the upcoming obtainable
position on the top of the ranking and stop.

Finally, the above exploratory process in this study is ap-
plied to solve both incomplete and complete ranking prob-
lems. In a complete ranking problem, all methods have
ordinally or cardinally ranked every alternative. In contrast,
in an incomplete ranking problem, each method ranks only a
subset of the alternatives (Beck and Lin 1983).

Case study

In this section, this research presents a case study in the asphalt
manufacturing industry to signify the adequacy and applica-
bility of the suggested model of this study. Technopave1 is the
largest asphalt manufacturing company in southern
Pennsylvania using tire powder recycled by suppliers to pro-
duce road-paving asphalt. The tire powder is the main asphalt
ingredient with several advantages, including increasing
strength and stability, decreasing thickness, increasing life
span, reducing maintenance costs, improving bitumen adhe-
sion, reducing crack, and having more resistant to high tem-
peratures. In summary, using tire powder in asphalt creates
rubberized asphalt, which has much better quality than ordi-
nary asphalt. Technopave is considering twelve alternative
suppliers with tire recycling capabilities for their rubberized
asphalt line. This research used the model proposed in this
study to help Technopave choose the most preferred suppliers.

1 The name of the company is changed to protect its anonymity.

Table 20 Fuzzy TOPSIS rankings-FShannon

Supplier d+ d- Fuzzy full multiplicative
rankings (Table 10)

S1 13.2678 0.014 7

S2 12.7863 0.0334 1

S3 13.0154 0.0232 5

S4 13.2215 0.0158 6

S5 13.3849 0.0102 9

S6 13.3533 0.0118 8

S7 12.9701 0.0271 2

S8 13.0294 0.0243 4

S9 13.4205 0.0097 10

S10 13.0087 0.0256 3

S11 13.4457 0.0091 11

S12 13.4521 0.009 12

Table 21 Fuzzy TOPSIS rankings-HFBWM

Supplier d+ d- Fuzzy full multiplicative
rankings (Table 10)

S1 13.814 0.001 7

S2 13.697 0.003 1

S3 13.735 0.003 2

S4 13.796 0.002 4

S5 13.85 0.001 8

S6 13.857 0.001 11

S7 13.773 0.002 3

S8 13.786 0.002 6

S9 13.863 0.001 10

S10 13.784 0.002 5

S11 13.869 0.001 12

S12 13.866 0.001 9
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Fuzzy Shannon results

Technopave appointed six managers to this project. This study
used their expert opinions to compute the weight of the green
supplier assessment benchmarks, according to Eqs. (1) to (5)
and the linguistic variables presented in Table 4. As tabulated
in Table 4, this study used Eq. (1) to normalize the interval
DM. In addition, this research used Eq. (2) to calculate the
lower and upper limits, respectively. Next, Eq. (3) is utilized
to assign the base and upper value limits of the diversification
intervals. In the next step, this study used Eqs. (4) and (5) to
compute the weights of the benchmark presented in Table 5.
These benchmarks weights were applied in this research for
the fuzzy COPRAS, fuzzy MULTIMOORA, and fuzzy
TOPSIS methods for the sake of ranking the suppliers.

HFBWM results

In this section, the weights of the criteria and sub-criteria are
calculated using HFBWM. We asked several experts to iden-
tify the best and worst criteria and sub-criteria to determine the
fuzzy preference of the best criterion relative to the other
criteria and that of all criteria relative to the worst criterion
on a scale from 1 to 5. The same procedure was applied to the
different sub-criteria.

The resulting fuzzy preferences are presented in Tables 6
and 7. The model proposed in Eq. (10) is then applied to
calculate the weights of the criteria and sub-criteria, as well
as the global weights of the sub-criteria. These latter weights,

described in Table 8, will be implemented within the fuzzy
COPRAS, fuzzy MULTIMOORA, and fuzzy TOPSIS
methods to rank the suppliers.

The consistency of the model is calculated using Eq. (12),
with ξ∗ determined by running the model in LINGO 18 soft-
ware. The optimal ξ∗ equals 0.56155, with CI = 6.69 (as de-
scribed in Table 2) and CR = 0.0839. The CR is close to 0,
implying that our model has high consistency.

Fuzzy COPRAS results

After determining the green supply chain criteria weights
based on expert opinions, we used the fuzzy Shannon entropy
approach, HFBWM, and the fuzzy COPRAS to rank the sup-
pliers according to Eqs. (13) to (23). This study first used Eq.
(13) to assess the FDM for every supplier (see Table 9).
Equations (14) to (16) are then applied to normalize the
FDM. Next, the fuzzy Shannon entropy weights presented in
Table 5 and the HFBWM weights presented in Table 8 are
utilized to calculate the weighted normalized FDM for each
supplier.

In the final step, Eqs. (17) to 23) and the fuzzy COPRAS
method are applied to rank the suppliers utilizing the weighted
normalized FDM tabulated. Equtations (17) and (18) were used
to estimate the total of the aggregate values of the parameters for
the maximum and minimum values, respectively. Next, Eq. (20)
is used to calculate the comparative importance of every option,
and Eq. (21) is computed to defuzzify them. To rank the sup-
pliers, as the next step, Eqs. (20) and (23) are applied

Table 22 The initial individual
rankings-FShannon Method Supplier

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Fuzzy COPRAS ranking
(Table 10)

7 1 2 3 8 9 5 4 10 6 11 12

Fuzzy MULTIMOORA
ranking (Table 18)

7 1 2 6 8 9 4 3 10 5 11 12

Fuzzy TOPSIS ranking
(Table 20)

7 1 5 6 9 8 2 4 10 3 11 12

Table 23 The initial individual rankings-HFBWM

Method Supplier

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Fuzzy COPRAS ranking (Table 11) 7 1 2 3 8 9 5 4 10 6 11 12

Fuzzy ratio method rankings (Table 13) 7 1 2 3 8 9 5 4 10 6 11 12

Fuzzy reference point rankings (Table 15) 7 1 2 3 8 10 5 4 12 6 9 11

Fuzzy full multiplicative rankings (Table 17) 7 1 2 3 8 9 5 4 10 6 11 12

Fuzzy TOPSIS ranking (Table 21) 7 1 2 4 8 11 3 6 10 5 12 9
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accordingly. The supplier rankings are tabulated in Tables 10 and
11. The findings of these tables, resulting from the fuzzy
Shannon entropy and HFBWM-FCOPRAS approaches, suggest
that supplier 2 is the most preferred provider.

Fuzzy MULTIMOORA

This study applies the fuzzy MULTIMOORA approach in
assessing the alternatives. Twelve different suppliers (S1,
S2, S3, …, S11, and S12) were considered in the evaluation
process. This research applied Eqs. (23), (24), and (25) to
normalize the FDM. In addition, Eqs. (26), (27), and (28)
are applied for the sake of computing the weighted normalized
FDMs for the benefits and cost. Equation (29) is used to com-
pute the total ratings of the benchmarks of the alternative.
Furthermore, Eqs. (30), (31), and (32) are used for the benefit

benchmarks to calculate the alternatives’ total ratings for the
lower–middle–upper measures of the triangular membership
formula. In addition, considering the cost measures, Eqs. (33),
(34), and (35) are applied to calculate the total score of an
alternative for the lower–middle–upper values of the triangu-
lar membership formula, respectively. Further, Eq. (36) is
used to defuzzify the overall score of the measures. By virtue
of the fuzzy ratio system approach, the results of the ranking
for suppliers are tabulated in Tables 12 and 13. Based on both
approaches, namely, fuzzy Shannon entropy and HFBWM,
supplier 2 is shown as the distinguished alternative provider
for the Technopave company.

Next, utilizing the fuzzy RP method, Eqs. (37) and (38) are
used to compute the overall performance measure of the alter-
natives (Adalı and Işık 2017). Equation (36) is then applied to
compute the fuzzy RPs rankings presented in Tables 14 and

Table 24 Consensus ranking calculations using MAH-FShannon

Supplier S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Pi Pi − Ni Rank (Pi − Ni)

S1 0 0 0 0 3 3 0 0 3 0 3 3 15 −3 7

S2 3 0 3 3 3 3 3 3 3 3 3 3 33 33 1

S3 3 0 0 3 3 3 2 2 3 2 3 3 27 21 2

S4 3 0 0 0 3 3 1 1 3 1 3 3 21 9 6

S5 0 0 0 0 0 2 0 3 3 0 3 3 14 −5 8

S6 0 0 0 0 1 0 0 0 3 0 3 3 10 −13 9

S7 3 0 1 2 3 3 0 1 3 3 3 3 25 −7 3

S8 3 0 1 2 0 3 2 0 3 2 3 3 22 11 4

S9 0 0 0 0 0 0 0 0 0 0 3 3 6 −21 10

S10 3 0 1 2 3 3 0 1 3 0 3 3 22 11 4

S11 0 0 0 0 0 0 0 0 0 0 0 3 3 −27 11

S12 0 0 0 0 0 0 0 0 0 0 0 0 0 −33 12

Ni 18 0 6 12 19 23 8 11 27 11 30 33

Table 25 Consensus ranking calculations using MAH-HFBWM

Supplier S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Pi Pi − Ni Rank (Pi − Ni)

S1 0 0 0 0 5 5 0 0 5 0 5 5 25 −5 7

S2 5 0 5 5 5 5 5 5 5 5 5 5 55 55 1

S3 5 0 0 5 5 5 5 5 5 5 5 5 50 45 2

S4 5 0 0 0 5 5 4 5 5 5 5 5 44 33 3

S5 0 0 0 0 0 5 0 0 5 0 5 5 20 −15 8

S6 0 0 0 0 0 0 0 0 4 0 4 4 12 −31 9

S7 5 0 0 1 5 5 0 1 5 5 5 5 37 19 5

S8 5 0 0 0 5 5 4 0 5 4 5 5 38 21 4

S9 0 0 0 0 0 1 0 0 0 0 4 3 8 −39 10

S10 5 0 0 0 5 5 0 1 5 0 5 5 31 7 6

S11 0 0 0 0 0 1 0 0 1 0 0 4 6 −43 11

S12 0 0 0 0 0 1 0 0 2 0 1 0 4 −47 12

Ni 30 0 5 11 35 43 18 17 47 24 49 51
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15. Based on the fuzzy RP approach, together with fuzzy
Shannon entropy and HFBWM, supplier 2 is the distin-
guished alternative provider for the Technopave
company.

In addition, the FMF of multi-criteria is computed using
Eq. (39). The FMF is non-additive and non-linear, and the
form doesn’t utilize the weights of the measures. The overall

utility functions of the alternatives utilizing the FMF (U
0ei ) are

tabulated in Table 16. Considering the fact that the overall
utility function has a fuzzy digit, defuzzification is required
based on Eq. (36) for the sake of computing BNPi values and

grade each of the alternatives. Table 16 highlights the overall
ranking for the suppliers. Based on the FMF approach, com-
bined with fuzzy Shannon entropy and HFBWM, supplier 2 is
the most distinguished alternative for the Technopave
company.

In addition, being rooted in dominance theory, the
final rankings presented in Tables 18 and 19 are com-
puted for al l the suppliers ut i l izing the fuzzy
MULTIMOORA, together with fuzzy Shannon entropy
and HFBWM. The results show that supplier 2 is the
most preferred supplier.

Fig. 4 Rank similarity among COPRAS, MOORA, and MULTIMOORA. a HFBWM framework. b Fuzzy Shannon entropy framework
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Fuzzy TOPSIS results

For comparative purposes, the fuzzy TOPSIS method is ap-
plied to assess the alternatives. Twelve different suppliers (S1,
S2, S3, … , S11, and S12) were considered in the evaluation
process, which applies the results described in Table 9 togeth-
er with Eqs. (43) to (45) to generate a ranking. Based on the
fuzzy TOPSIS approach, combined with fuzzy Shannon en-
tropy and HFBWM, supplier 2 is the most preferred one. The
corresponding results are presented in Tables 20 and 21.

As illustrated in these tables, the ranking results delivered
by FTOPSIS differ from those of FCOPRAS and
FMULTIMOORA. These latter techniques focus on the

maximum and minimum values of the attributes, as described
within Eqs. (17), (18), and (20) and Eqs. (31), (40) and (41),
respectively, to generate the corresponding rankings. On the
other hand, FTOPSIS is based on comparisons relative to the
positive and negative ideal solution benchmarks, increasing its
susceptibility to the weights assigned to the criteria. As a re-
sult, the rankings delivered by these techniques are expected
to differ whenever the weighting methods differ.

Consensus raking

Given the different results obtained, we use the MAH to reach
a consensus raking of the alternative rankings proposed by

Fig. 5 Rank similarity among full multiplicative, MOORA, and reference point. a. HFBWM framework. b Fuzzy Shannon entropy framework
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fuzzy MULTIMOORA, fuzzy COPRAS, and fuzzy TOPSIS.
The MAH evaluates alternatives simultaneously and builds

agreement matrices until all alternatives are ranked without
any prior ranked alternatives (Tavana et al. 2007). The

Table 26 Correlations among the different rankings under FShannon

COPRAS MOORA MULTIMOORA Reference point Full multiplicative TOPSIS

Spearman’s rho COPRAS Correlation coefficient 1.000 0.951** 0.958** 0.622* 0.958** 0.867**

Sig. (2-tailed) 0.000 0.000 0.031 0.000 0.000

N 12 12 12 12 12 12

MOORA Correlation coefficient 0.951** 1.000 0.993** 0.483 0.993** 0.937**

Sig. (2-tailed) 0.000 0.000 0.112 0.000 0.000

N 12 12 12 12 12 12

MULTIMOORA Correlation coefficient 0.958** 0.993** 1.000 0.497 1.000** 0.930**

Sig. (2-tailed) 0.000 0.000 0.101 0.000

N 12 12 12 12 12 12

Reference point Correlation coefficient 0.622* 0.483 0.497 1.000 0.497 0.315

Sig. (2-tailed) 0.031 0.112 0.101 0.101 0.319

N 12 12 12 12 12 12

Full multiplicative Correlation coefficient 0.958** 0.993** 1.000** 0.497 1.000 0.930**

Sig. (2-tailed) 0.000 0.000 0.101 0.000

N 12 12 12 12 12 12

TOPSIS Correlation coefficient 0.867** 0.937** 0.930** 0.315 0.930** 1.000

Sig. (2-tailed) 0.000 0.000 0.000 0.319 0.000

N 12 12 12 12 12 12

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed)

Table 27 Correlations among the different rankings under HFBWM

COPRAS MOORA MULTIMOORA Reference point Full multiplicative TOPSIS

Spearman’s rho COPRAS Correlation coefficient 1.000 1.000** 1.000** 0.965** 1.000** 0.916**

Sig. (2-tailed) 0.000 0.000

N 12 12 12 12 12 12

MOORA Correlation coefficient 1.000** 1.000 1.000** 0.965** 1.000** 0.916**

Sig. (2-tailed) 0.000 0.000

N 12 12 12 12 12 12

MULTIMOORA Correlation coefficient 1.000** 1.000** 1.000 0.965** 1.000** 0.916**

Sig. (2-tailed) 0.000 0.000

N 12 12 12 12 12 12

Reference point Correlation coefficient 0.965** 0.965** 0.965** 1.000 0.965** 0.902**

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000

N 12 12 12 12 12 12

Full multiplicative Correlation coefficient 1.000** 1.000** 1.000** 0.965** 1.000 0.916**

Sig. (2-tailed) 0.000 0.000

N 12 12 12 12 12 12

TOPSIS Correlation coefficient 0.916** 0.916** 0.916** 0.902** 0.916** 1.000

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000

N 12 12 12 12 12 12

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed)
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MAH is conducted by constructing first the matrices given in
Tables 22 and 23 to evaluate and compare all alternatives to
each other through the ranking results suggested by the
methods described in Tables 10–21. That is, Tables 22 and
23 summarize the rankings delivered by each technique.

Next, based on the MAH method, the number of prefer-
ences in each row is aggregated to obtain the total number of
methods agreeing on each supplier (Pi).. The same procedure
is applied to obtain the total number of methods disagreeing
on each supplier (Ni).. In case any entry in the P column
receives zero-value, the supplier with that entry is included
at the top of the FCR. The opposite takes place (the supplier
with that entry is included at the bottom of the FCR) in case
any entry in the N row receives a zero-value. Then, the
greatest positive difference (33 when considering the fuzzy
Shannon entropy setting and 55 in the HFBWM case) placed
supplier 2 at the top of the final consensus ranking. Following
this placement, supplier 2 was deleted, and a new matrix was
produced. As tabulated in the next matrix, (Pi), (Ni), and (Pi −
Ni) are calculated for the remaining suppliers. The same pro-
cedure is applied to the remaining suppliers. Tables 24 and 25
outline the outcome of the MAH process and indicate the
number of times each supplier is favored over the rest by each
method, resulting in the final consensus ranking.

We conclude by highlighting an important argument devel-
oped throughout the manuscript. Figure 4 illustrates the sub-
stantial similarity exhibited by the rankings generated through
the fuzzy ve rs ions of COPRAS, MOORA, and
MULTIMOORA when implementing the HFBWM weights.
This similarity contrasts with the lower one exhibited by these
ranking techniques when implementing Shannon’s entropy’s
fuzzy extension. A similar intuition follows from the analysis
of the rankings delivered by the methods implemented to ex-
tend fuzzy MOORA into fuzzy MULTIMOORA, particularly
the reference point one. The dissimilarities arising among the
corresponding rankings under both weighting techniques are
presented in Fig. 5.

Thus, when implementing the HFBWM weights, fuzzy
COPRAS suffices to generate rankings that display an identi-
cal order to fuzzy MULTIMOORA, a method requiring more
elaborated and complex computations. Note also that the
fuzzy MOORA and fuzzy MULTIMOORA techniques deliv-
er identical rankings, that is, the procedure required to extend
MOORA into MULTIMOORA is not always necessarily
justified.

However, this is not the case when implementing the
weights generated via fuzzy Shannon’s entropy. In this regard,
notice how, particularly in the TOPSIS and reference point
cases, the rankings obtained display higher variability than
those generated using the HFBWM weights. These results
are formally complemented through the Spearman rho corre-
lation tests presented in Tables 26 and 27, highlighting that
intuitively simpler techniques such as HFBWM can be

implemented in more complex evaluation structures while
preserving (indeed, improving) the consistency of the rank-
ings obtained.

Discussion

RL is one of the key factors determining the success of SC
sustainability (Wang et al. 2021a, b, c, d). On the one hand, the
worldwide existence of environmental pollution has increased
the pressure on companies to consider sustainability in RL
(Richnák and Gubová 2021). On the other hand, environmen-
tal protection has become a global issue (Daniels 2017), and
concerns about environmental protection have stimulated
researchers and practitioners to pay more attention to waste
recycling. For instance, Yang et al. (2018a, b) investigated
waste disposal and management to reduce poverty and pollu-
tion in low- and middle-income countries. Li et al. (2020)
studied effective policy tools to recycle the waste of
construction and demolition. Liu et al. (2020) considered the
effect of construction and demolition waste and its recycling
when minimizing waste and protecting natural resources.
Wang et al. (2020) examined sustainable waste management
for household solid waste to raise public awareness.

Even though these studies are informative, additional re-
search is required focusing on each particular industry dealing
with RL. Tire waste increases daily due to the increasing pop-
ulation and subsequent demand for tires, which are hazardous
to the environment and public health due to the fact that tire
waste is not biodegradable and is usually stored and disposed
of improperly (Svoboda et al. 2018). The best way to protect
the environment and prevent the improper burial of worn-out
tires is recycling and the reuse of tire waste. One of the most
important applications of tire recycling is its use in the pro-
duction of asphalt. Several industries, including the asphalt
manufacturing industry, have adopted green supply chain phi-
losophy and used recycled tires to produce various products
such as rubberized asphalt, rubberized bitumen, reclaim rub-
ber, and rubber ground flooring. Suppliers play an important
role in tire recycling as they mainly produce and deliver the
tire powder and granule to produce rubberized asphalt.
Therefore, finding the best supplier is critical for environmen-
tally conscious.

Research on RL is in its infancy in developing countries,
and there is a need for examining green RL initiatives in
emerging economies (Bouzon et al. 2016). Companies can
embark on RL initiatives by taking small steps and engaging
in simple implementation strategies (Hammes et al. 2020).
Recycling and green supply chain management are effective
strategies for protecting the environment and reducing pro-
duction costs (Zarbakhshnia et al. 2018). Choosing the right
green supplier is a critical success factor in RL systems, and
any initiative aimed at reducing production waste in the tire
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industry is beneficial to both the environment andmanufactur-
ing companies.

Conclusion, limitations, and future research

This study proposed a fuzzy green supplier selection model
for sustainable supply chains in RL. The HFBWM was ap-
plied to determine the importance weights of the green criteria
and sub-criteria. For comparative purposes, fuzzy Shannon’s
entropywas also used to determine the weights of criteria. The
fuzzy Shannon’s entropy approach and HFBWM were then
integrated with fuzzy COPRAS, fuzzy MULTIMOORA, and
fuzzy TOPSIS to prioritize and rank suppliers with a robust
ability to recycle in RL.

Finally, this research used the MAH method to find the
consensus ranking of the suppliers. A real-world case study
in the asphalt manufacturing industry was presented to high-
light the efficacy and show the applicability of the models
suggested in this study. The results derived from the different
hybrid models illustrate the higher ranking variability gener-
ated by the fuzzy Shannon’s entropy weighting method rela-
tive to HFBWM.

The main findings of the current paper are of substantial
importance for manufacturing companies moving towards a
closed-loop supply chain. Future research can extend the
methods proposed in this study to industries other than tire
recycling ones. Additional research is needed to integrate oth-
er relevant methods and expand the number of measures con-
sidered to strengthen the precision and accuracy of the pro-
posed assessment and selection model.

We conclude by emphasizing that relatively simple ranking
methods such as fuzzy COPRAS and fuzzy MOORAmanage
to provide sufficiently robust evaluations. In this regard, even
though having a larger number of methods at their disposal
may seem to endow managers with a complete picture of the
evaluation procedure, the use of multiple techniques can also
be confusing, particularly when dealing with complex ranking
methods implemented through several technical steps.
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