RESEARCH ARTICLE

Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria

Sandeep K. Malyan¹ • Arti Bhatia¹ **D** • Ritu Tomer¹ • Ramesh Chand Harit¹ • Niveta Jain¹ • Arpan Bhowmik² • Rajeev Kaushik³

Received: 24 May 2020 / Accepted: 27 April 2021 / Published online: 13 May 2021 \copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Irrigated transplanted flooded rice is a major source of methane (CH4) emission. We carried out experiments for 2 years in irrigated flooded rice to study if interventions like methane-utilizing bacteria, Blue-green algae (BGA), and Azolla could mitigate the emission of CH_4 and nitrous oxide (N_2O) and lower the yield-scaled global warming potential (GWP). The experiment included nine treatments: T₁ (120 kg N ha⁻¹ urea), T₂ (90 kg N ha⁻¹ urea + 30 kg N ha⁻¹ fresh Azolla), T₃ (90 kg N ha⁻¹ urea + 30 kg N ha⁻¹ Blue-green algae (BGA), T₄ (60 kg N ha⁻¹ urea + 30 kg N ha⁻¹ BGA + 30 kg N ha⁻¹ Azolla, T₅ (120 kg N ha⁻¹ urea + Hyphomicrobium facile MaAL69), T_6 (120 kg N ha⁻¹ by urea + Burkholderia vietnamiensis AAAr40), T_7 (120 kg N ha⁻¹ by urea + Methylobacteruim oryzae MNL7), T₈ (120 kg N ha⁻¹ urea + combination of Burkholderia AAAr40, Hyphomicrobium facile MaAL69, Methylobacteruim oryzae MNL7), and T_9 (no N fertilizer). Maximum decrease in cumulative CH₄ emission was observed with the application of *Methylobacteruim oryzae* MNL7 in T_7 (19.9%), followed by Azolla + BGA in T_4 (13.2%) as compared to T_1 control. N₂O emissions were not significantly affected by the application of CH₄-oxidizing bacteria. However, significantly lower (P<0.01) cumulative N₂O emissions was observed in T_4 (40.7%) among the fertilized treatments. Highest yields were observed in Azolla treatment T_2 with 25% less urea N application. The reduction in yield-scaled GWP was at par in T_4 (Azolla and BGA) and T_7 (Methylobacteruim oryzae MNL7) treatments and reduced by 27.4% and 15.2% in T_4 and T_7 , respectively, as compared to the T_1 (control). K-means clustering analysis showed that the application of *Methylobacteruim oryzae* MNL7, Azolla, and Azolla + BGA can be an effective mitigation option to reduce the global warming potential while increasing the yield.

Keywords Rice . Plant growth–promoting bacteria . Yield-scaled GWP emission . Methane . Nitrous oxide . Mitigation

Introduction

Climate change is undoubtedly a result of the enhanced greenhouse effect. IPCC ([2014](#page-13-0)) reported that anthropogenic

Responsible Editor: Philippe Garrigues

 \boxtimes Arti Bhatia artibhatia.iari@gmail.com

- ² Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
- ³ Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India

greenhouse gas (GHG) emission reached 49 Gigatons of $CO₂$ equivalent in 2010 at the global level. Agriculture is a source of anthropogenic emission of two of the major GHGs methane (CH_4) and nitrous oxide (N_2O) to the atmosphere. Emission from agriculture has been increasing with time due to increased requirement for feeding more than 7.6 billion global population leading to an intensification of farming practices. Anthropogenic emission from agricultural soil occupy over 13% of the total global GHG emission (Zhao et al. [2019\)](#page-14-0) and play a significant role in global warming and climate change. Emission of CH_4 and N_2O from agriculture are about 47.5% and 72.3%, respectively, of the total emission (Ritchie and Roser [2018](#page-13-0)). Rice (Oryza sativa L.) is a stable food for more than 50% of the world's population and rice fields are a major source of $CH₄$ emission from agricultural soils (Shin et al. [2020;](#page-13-0) Bhatia et al. [2013](#page-12-0)). Generally, water

¹ Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India

management and nitrogen fertilizer application govern CH4 and $N₂O$ emission from rice. Standing water in lowland and irrigated rice provides suitable anaerobic environment which facilitates the process of methanogenesis by methanogenic bacteria (strictly anaerobic) consuming soil organic matter and liberating CH_4 as an end product (Malyan et al. [2016\)](#page-13-0). Higher soil redox (Eh) potential existing in upland rice or aerobic condition during the cropping period favor higher N₂O emission (Kumar et al. [2020](#page-13-0); Yu et al. [2001\)](#page-14-0). Emission of CH_4 and N_2O from rice soil are effected by several factors such as soil Eh, pH, temperature, organic matter, fertilizer application, and water management (Bhattacharyya et al. [2019](#page-12-0); Yao et al. [2019;](#page-14-0) Tan et al. [2018;](#page-13-0) Jain et al. [2016](#page-13-0); Hussain et al. [2015](#page-13-0)).

Mid-season drainage for mitigation of $CH₄$ from submerged rice (Tariq et al. [2017\)](#page-13-0) and N fertilizer management for lowering $N₂O$ emission has been widely recommended for rice soils (Aliyu et al. [2021](#page-12-0); Malla et al. [2005](#page-13-0)). This practice though has a limitation, as water management is a difficult task in lowland rice conditions. The farmers growing rice cannot risk draining their flooded fields, as there is no certainty of the next rainfall event and thus this practice is not followed by the farmers. Some chemical and fertilizer interventions such as application of sulfate and nitrate fertilizers for CH₄ mitigation have been reported from rice soil (Hussain et al. [2015;](#page-13-0) Ali et al. [2015](#page-12-0)), but a few of them may have environmental concerns. The application of nitrate-based fertilizer may be a source of $N₂O$ emission through the denitrification pathway and may result in increased leaching of nitrate in frequently irrigated rice. Leaching and runoff of nitrate into ground and surface water, respectively, may impact human health. The application of ammonium sulfate may lead to a potential increase in ammonia volatilization (Choudhaury and Kenneday [2005](#page-12-0)). Ammonia volatilization is also an indirect potential source of N_2O emission (Inubushi et al. [1996](#page-13-0)) which contributes to global warming.

The application of Azolla-based biofertilizers may have beneficial effects on growth and yield of rice (Kollah et al. [2016;](#page-13-0) Dubey [2005\)](#page-13-0). Azolla is a floating pteridophyte, occurs in symbiotic association with a nitrogen-fixing cyanobacterium Anabaena azollae (Nostocaceae family), and has been reported to reduce plant nitrogen requirement, but their impact on CH_4 and N_2O emission has been less reported. Some studies conducted in eastern India (Bharati et al. [2000](#page-12-0)) and in Southern China (Xu et al. [2017\)](#page-14-0) have shown that the application of $Azolla$ may reduce $CH₄$ emission, whereas opposite results were reported in the studies conducted in Northeastern China (Chen et al. [1997\)](#page-12-0). In addition, Azolla may reduce NH3 volatilization by lowering the pH of floodwater when urea is applied (Liu et al. [2017](#page-13-0)). Blue green algae (BGA) are photosynthetic nitrogen fixers and are free living. Azolla and BGA cyanobacteria both are oxygen-liberating biofertilizers and can reduce CH_4 emission by directly stimulating CH₄ oxidation at the soil–water interface and indirectly by promoting CH₄ oxidation in flooded paddy soils by increasing soil Eh and thereby inhibiting CH_4 production. Their impact on N_2O emission has not been reported in literature.

In addition, methane-oxidizing/utilizing bacteria (MOB) prevailing in aerobic zone of paddy ecosystem may utilize $CH₄$ produced by the methanogenic archaea. Methane emission from soil is the net balance of $CH₄$ production by methanogens in anaerobic layer followed by $CH₄$ oxidation by methanotrophs or MOB under aerobic conditions (Conrad [2007\)](#page-12-0). MOB inhabits flooded rice soil due to the presence of $CH₄$ at the soil–water interface and near root hairs as a result of CH4 leakage from root hairs (Aulakh et al. [2000](#page-12-0); Dubey and Singh [2001](#page-13-0)). Methanotrophs have generally been considered to be obligate in nature, i.e., growing only on $CH₄$ as their sole source of carbon and energy. However, facultative methylotrophic organisms also have been found in major clades of microbial life such as gram-negative methylotrophs, belonging to the α , β , and γ subgroups of the proteobacteria, firmicutes, archaea, and yeasts which utilize C1 compounds including CH4 to generate energy (Rani et al. [2021a](#page-13-0), [b;](#page-13-0) Iguchi et al. [2015](#page-13-0)). Methanotrophs and methylotrophs oxidize CH4 to form formaldehyde, which is at the diverging point for further oxidation to $CO₂$ for energy source and assimilation for biosynthesis. The facultative methane- and/or methanolutilizing bacteria can play a significant role in reducing the net methane flux by utilization of emitted methane at the source level (Rani et al. [2021a,](#page-13-0) [b](#page-13-0); Davamani et al. [2020\)](#page-12-0). Previously, we isolated and characterized a large number of facultative methane-utilizing bacteria having plant growth–promoting traits from different rice-growing regions of India (Rani et al. [2021a](#page-13-0), [b\)](#page-13-0). Among these isolates, the three isolates which showed significant methane utilization potential, i.e., Methylobacterium oryzae MNL7, Hyphomicrobium facile MaAL69, and Burkholderia vietnamiensis AAAr40, were used in the present study as bio-inoculant. Hyphomicrobium facile, an aerobic chemoorganotroph, has been used for denitrification of nitrate in drinking water treatment facilities (Liessens et al. [1993](#page-13-0)). Fewer reports on utilization of methane-utilizing bacteria as bioinoculant for reducing methane emission through its oxidation at the source level are available in the literature; however, no significant findings have been reported on the role of different algal and bacterial based interventions in reducing the emissions of CH_4 and N_2O from the rice ecosystem.

Based on previous studies, we hypothesize that (1) application of biofertilizers alone and in combination may have a differential impact on CH_4 and N_2O emission and yield-scaled GWP emission and (2) microbial inoculations of methaneutilizing bacteria may result in significant reduction of CH4 emission in submerged rice and on overall yield-scaled GWP

emission. To test our hypothesis, a 2-year field study was conducted for quantifying CH_4 and N_2O emission, rice yield, and yield-scaled GWP under Azolla, BGA, and methaneutilizing bacteria in rice.

Materials and methods

Experimental site

The 2-year study was conducted during Kharif season of 2014 and 2015 at the research farm of Indian Agricultural Research Institute (IARI) (28°40′ N latitude and 77°12′ E longitude), New Delhi, India. The soil of experimental site had 46% sand, 32% silt, and 22% clay and bulk density of 1.39 g cm^{-3} . The initial soil had soil organic carbon of 0.59%, pH (1:2 soil/water) of 8.10, electrical conductivity of 0.43 dS m^{-1} , and CEC of 7.3 C mol (P^+) kg⁻¹. The climatic condition of the region is sub-tropical, semi-arid characterized by prolonged hot summer and rainfall occurring during late June to mid-September. Metrological data of the study site for both years are presented in Fig. 1. The average minimum and maximum temperature during the first and second growing season was 21.7 °C; 22.1 °C and 33.8 °C; 34.9 °C, respectively (Fig. 1). The rainfall was higher in the month of July during both years.

Experimental design and treatment details

Twenty-three-day-old seedlings of rice variety Pusa-1509 were transplanted at 20×15 cm spacing in the month of July during both cropping years. The experiment consisted of nine treatments in three replications arranged in randomized block design (Table 1). Nitrogen was

*BGA—Blue-green algae

**Seedling was dipped in culture for 2 h which was later transplanted. Similar culture was sprayed two more times (2 days before second and third split of urea application)

***In this treatment, all the three cultures were uniformly mixed and applied

applied through urea in three split of 50% (basal) and 25% each as two top dressings at tillering and panicle initiation stages. Phosphorus (60 kg P₂O₅ ha⁻¹) and potassium (40 kg K_2O ha⁻¹) was applied as basal dose in all the treatments. The Azolla and commercial formulation blue green algae (BGA) biofertilizer (Anabaena torulosa) for treatments T_2 , T_3 , and T_4 procured from the Centre for Conservation and Utilization of Blue Green Algae, Indian Agriculture Research Institute, New Delhi, India was applied to the standing water in puddled plots 15 days before transplanting. The methane-utilizing/plant growth– promoting bacterial cultures of Hyphomicrobium facile

Fig. 1 Meteorological data of the study site during the two study years

MaAL69 (NCBI accession no. KY810635), Methylobacterium oryzae MNL7 (NCBI accession no. KY810615), and Burkholderia vietnamiensis AAAr40 (NCBI accession no. KY810624) were obtained from Division of Microbiology, IARI, New Delhi. These cultures were previously isolated from rice rhizosphere and phyllosphere and characterized for methane oxidation potential and plant growth–promoting attributes such as indole acetic acid production, and P, K, and Zn solubilization (Rani et al. [2021a\)](#page-13-0). The liquid culture of the three bacterial isolates was raised individually in ammonium mineral salt medium (Whittenbury et al. [1970\)](#page-14-0) to get a population density of 10^8 cells/mL. The liquid culture of each of the bacterial isolate was applied alone $(T_5, T_6, \text{ and})$ T_7) and in combination (T_8) (having each culture in 1:1:1 ratio) during nursery preparation through seed treatment, at the time of transplanting by root dip, and spray inoculated at the tillering and panicle initiation stage as per methodology described by Rani et al. ([2021b](#page-13-0)). Then 150 mL of liquid formulation of these cultures was diluted to 1 L with irrigation water for root dip treatment for 2 h before transplanting. In the standing crop, the culture broth of these microbes was mixed with water at 20% and was sprayed two times during the crop period (2 days before second and third split of urea application) for maintaining the population of the $CH₄$ -utilizing bacteria. The water level of 6 ± 4 cm was maintained by irrigation during rice growth period. The field was allowed to get dry naturally about 15–20 days before rice harvesting. No pesticide and herbicide was applied to avoid any additional effects. Number of panicles and leaf area index was quantified at flowering stage and the grain yield and test weight (average weight of 1000 grains of rice) were recorded at harvest.

Greenhouse gas sampling and analysis

Air sampling for determination soil CH_4 and N₂O fluxes was carried out using static-closed chamber technique (Bhatia et al. [2011\)](#page-12-0). The air sampling was performed between 8:30 AM and 11:30 AM once a week throughout the crop season except after the three events of urea fertilization when air sampling was performed four times a week. Gas samples were collected from the top of the static closed chamber using 50 mL air-tight syringes at 0, 1/2, and 1 h. Temporal increases of the $CH₄$ and N₂O concentration in the air within the close chamber represented $CH₄$ and N₂O fluxes (Pathak et al. [2002](#page-13-0), [2003\)](#page-13-0). Concentration of CH_4 and N₂O gases in the collected gas samples were measured by using gas chromatograph equipped with a flame ionization detector and electron capture detector, respectively. Nitrogen was used as carrier gas and hydrogen and air were used for igniting the

flame for analysis. Emission of $CH₄$ and N₂O from soil was calculated from the increase in $CH₄/N₂O$ concentrations per unit surface area of the chamber within a specific time interval by the following equation:

$$
F = \rho \times (V/A) \times (\Delta c/\Delta t) \times (273/T)
$$

where F is the CH₄/N₂O flux (mg CH₄ m⁻² h⁻¹/µg N₂O m^{-2} h⁻¹), ρ is the gas density, V is the volume of the close chamber (m^3) , "A" is the surface area of the closed chamber (m²), $\Delta c/\Delta t$ is the rate of increase of CH₄/N₂O gas concentration in the chamber (mg/μg m⁻³ h⁻¹), and T (absolute temperature) is calculated as $273 +$ mean temperature in $(^{\circ}C)$ of the chamber. Total CH₄/N₂O flux for the entire cultivation period was computed by linear interpolation (Bhatia et al. [2012](#page-12-0)) using the following equation:

Total gas flux = $\sum_i^n (R_i \times D_i)$

where R_i was the CH₄/N₂O emission flux (g m⁻² day⁻¹) on the i^{th} sampling interval, D_i is the number of days in the ith sampling interval, and *n* is the number of sampling intervals.

Global warming potential (GWP) and yield-scaled GWP

Global warming potential (GWP) is the quantification of warming potential of a mole of trace gas released into the atmosphere relative to a mole of $CO₂$ as a standard gas. GWP of CH₄ is 21 and that of N₂O oxide is 310 on a 100years time horizon (Gupta et al. [2016;](#page-13-0) Bhatia et al. [2005](#page-12-0)). The GWP and the yield-scaled GWP that is carbon emitted per unit of grain yield of rice was estimated using the following equations:

GWP (kg CO₂ equivalent ha⁻¹) $=$ seasonal CH₄ emission (kg CH₄ ha⁻¹) \times 21 + seasonal N₂O emission (kg N₂O ha⁻¹) \times 310 Yield–scaled GWP (kg $CO₂$ eq.ha⁻¹ grain yield) $=$ GWP (kg CO₂ eq.ha⁻¹)/ grain yield (kg ha⁻¹)

Soil redox potential and dissolved oxygen

Soil redox potential (Eh) and dissolved oxygen (DO) were measured weekly at regular intervals by a multi-parameter portable ORP meter (CONTECH-Cor-1) during the cropping period.

Statistical analysis

Statistical analysis of the experimental data was performed using SPSS (16.0, USA). ANOVA was carried out to check if the variations between the means were statistically significant. When the ANOVA was found significant at 5% level of significance and the error variances were homogeneous, we followed it up with Tukey's post hoc test to compare which treatment means were significantly different.

We carried out non-hierarchical cluster analysis using the k-means clustering algorithm using the data. For determining the optimal number of clusters, average silhouette method was used which determines how well each object lies within its cluster. A high average silhouette width indicates a good clustering. Average silhouette method computes the average silhouette of observations for different values of k . The optimal number of clusters is the one that maximizes the average silhouette over a range of possible values for k.

Results

Nitrous oxide emission

The daily N₂O flux ranged from 136 to 1850 μg m⁻² day⁻¹ during the rice growth period (Fig. [2a](#page-5-0)). Three main peaks of $N₂O$ emission were observed during the rice growth period after each split fertilizer application. The peak N_2O flux was observed 2 to 3 days after each N fertilizer application. The magnitude of cumulative N₂O emission was highest in T₁ (120 kg N ha⁻¹) treatment. The presence of plant growth–promoting, methaneutilizing bacteria $(T_5$ to T_8) did not have any significant impact on the N_2O emission. Lowest cumulative N_2O emission was observed in the T_4 (Azolla + BGA) treatment. The substitution of 30 kg N ha⁻¹ with *Azolla* and BGA biofertilizers significantly $(P < 0.01)$ reduced the mean cumulative N₂O emission by 8.7% and 12.0%, respectively, over the T_1 treatment in the 2 years, respectively. The substitution of 60 kg N ha⁻¹ by Azolla and BGA in T_4 treatments resulted in 40.7% less cumulative N₂O emission (significant at $P < 0.01$) as compared to T_1 treatment over the [2](#page-6-0) years (Table 2). The daily average N_2O flux during the whole rice growth period varied from 275 to 868 μ g N₂O day⁻¹ (Fig. [3b](#page-7-0)) under the different treatments. The mean cumulative N₂O emission varied from 0.245 kg N₂O ha⁻¹ to 0.785 kg N₂O ha^{-1} (Table [2](#page-6-0)).

Methane emission

Methane (CH₄) emission from rice soil varied considerably among the treatments and the dynamics of CH₄ flux during both cropping years is presented in Fig. $2b$. The CH₄ flux increased significantly with plant growth in all the treatments. Irrespective of the treatments, the highest CH₄ fluxes were observed around

35 days after transplanting (DAT) in both years. The highest peak (79.1 mg CH₄ m⁻² day⁻¹) was observed in T₈ (Hyphomicrobium facile MaAL69, Methylobacterium oryzae MNL7, and Burkholderia vietnamiensis AAAr40) treatments and lowest peak (41.0 mg CH₄ m⁻² day⁻¹) was recorded in T₂ (Azolla) treatments, respectively, in the first year (Fig. [2b](#page-5-0)). The second highest CH₄ peak was recorded around 63 DAT in both years (Fig. $2b$). The CH₄ flux rates decreased sharply at rice maturity in all the plots.

The daily average $CH₄$ flux during the entire crop growth period (seasonal daily average) varied from 29.0 to 39.98 mg CH₄ m⁻² day⁻¹ (Fig. [3a\)](#page-7-0) in the different treatments. The highest daily average CH₄ flux was recorded in T_8 treatment and the lowest in T_7 treatment (Fig. [3a\)](#page-7-0). Among the treatments, application of Azolla–BGA and Methylobacterium $oryzae$ MLN7 significantly reduced the rate of CH₄ flux during the study period (Fig. [2b\)](#page-5-0).

In Pusa Basmati-1509, being a short cycle variety, the total crop cycle varied from 106 to 110 days after transplanting in the two cropping years. We partitioned the $CH₄$ emission in three agronomic phases (Moldenhauer and Slaton [2001](#page-13-0)): vegetative phase (transplanting to panicle initiation), reproductive phase (panicle initiation to heading), and ripening phase (heading to maturity). Vegetative phase was observed up to 42–46 DAT; subsequently, reproductive phase was observed up to 72–76 DAT and the ripening phase was observed up to harvest. Among the different growth phases of rice, $CH₄$ emission was the highest during the vegetative growth phase and lowest during the ripening phase (Fig. [4\)](#page-7-0). During the vegetative phase, the average CH_4 emission in the 2 years ranged from 55% (T_2) to 67% (T_8) of the total emission (Fig. [4](#page-7-0)), while in the reproductive phase, $CH₄$ emission ranged from 26% $(T₉)$ to 33% $(T₂)$ of the total emission and varied from 7% to 13% during the ripening phase in the different treatments.

There was a significant impact of different treatments on $CH₄$ emission in both years and is presented in Table [2.](#page-6-0) Among the treatments, T_7 (Methylobacterium oryzae MNL7), T_4 (Azolla + BGA), and T_2 (Azolla) significantly (P $<$ 0.05) reduced total seasonal CH₄ emission by 19.9%, 13.3%, and 9.7%, respectively (Table [2\)](#page-6-0) as compared to the T_1 control averaging over the 2 years. Treatment T_3 , T_5 , and T_6 , reduced CH₄ emission by 7.1%, 4.9%, and 4.1%, respectively, as compared to T_1 (Table [2\)](#page-6-0) over the 2 years. The cumulative CH_4 emission under T_8 treatment (Hyphomicrobium facile MaAL69 + Burkholderia vietnamiensis AAAr40 +Methylobacterium oryzae MNL7) was 10.3% higher than T_1 (Table [2](#page-6-0)).

Soil redox potential, dissolved oxygen, and soil carbon and nitrogen

Soil Eh decreased sharply 2 weeks after transplanting in all the treatments (Fig. [2c](#page-5-0)). Eh declined sharply under flooding Fig. 2 a Nitrous oxide flux, **b** methane flux, c soil redox potential under different treatments during the crop growth period. T₁—control, T₂—Azolla, T_3 —BGA, T_4 —Azolla + BGA, T_5 —Hyphomicrobuim facile, T_6 —Burkholderia, T_7 Methylobacteruim oryzae, T_s all methanotrophs, T₉—no fertilizer

condition and lowest Eh was observed at 35 DAT irrespective of the treatments (Fig. 2c). Lowest Eh was observed in T_8 (−240 mV) at 35 DAT (Fig. 2c). Eh showed less fluctuation between 35 and 63 DAT, and it sharply rose after 63 DAT (Fig. 2c). The DO values ranged from 3.06 to 0.85 mg L^{-1} in the first year while it was slightly lower in the second year and ranged from 2.90 to 0.94 mg L^{-1} during the crop growth period. Average DO levels were observed to be the highest in T₂ (1.74 mg L⁻¹) and lowest in T₁ (1.65 mg L⁻¹) (Fig. [3a\)](#page-7-0).

We measured the change in soil organic carbon, total N, and pH after rice harvest in both years. There was a slight increase in soil organic carbon and total N in the T_2 and T_4 treatments; however, the increase was not statistically significant (results not shown).

Table 2 Effect of different treatment on global warming potential (GWP) and yield-scaled GWP

Treatment	CH_4 (kg CH_4 ha ⁻¹) [*]			N_2O (kg N_2O ha ⁻¹)*			GWP (kg $CO2$ eq. ha ⁻¹)			Yield-scaled GWP $(\text{kg CO}_2 \text{ equivalent kg}^{-1} \text{ grain yield})$		
	ΥI	ΥII	Mean	ΥI	YП	Mean	ΥI	YП	Mean	ΥI	YП	Mean
T_1	33.83	32.07	$32.95^{\rm B}$	0.780	0.731	0.756^{AB}	952	900	926^{AB}	0.245	0.229	$0.237^{\rm BC}$
T ₂	30.37	29.20	29.78 ^{BC}	0.714	0.666	$0.690^{\rm BC}$	859	820	839^{BCD}	0.192	0.182	0.187^{DE}
T_3	31.23	30.01	$30.62^{\rm BC}$	0.670	0.660	0.665°	863	835	$849^{\rm BC}$	0.208	0.201	0.204^{BCDE}
T ₄	29.44	27.73	28.58°	0.469	0.428	0.448^D	763	715	739 ^{DE}	0.175	0.169	0.172^E
T_5	31.21	31.44	$31.32^{\rm BC}$	0.764	0.721	0.742 ^{ABC}	892	884	$888^{\rm BC}$	0.226	0.208	0.217^{BCD}
T_6	31.83	31.37	$31.60^{\rm BC}$	0.755	0.782	0.768^{AB}	903	901	902^{ABC}	0.226	0.240	0.233 ^{BC}
T ₇	27.32	25.46	26.39°	0.799	0.772	0.785^{A}	821	774	$798^{\rm CDE}$	0.209	0.193	0.201^{CDE}
T_8	35.83	36.93	36.38^{A}	0.763	0.732	0.748 ^{ABC}	989	1002	996 ^A	0.242	0.245	$0.244^{\rm B}$
T ₉	29.96	30.60	30.28 ^{BC}	0.265	0.225	$0.245^{\rm E}$	711	712	712^E	0.339	0.321	0.330^{A}
P value of significance	0.02	0.009	0.0008	0.032	0.006	0.002	0.001	0.002	0.001	0.002	0.001	0.0008
Tukey's HSD at 5%	3.52	4.01	3.26	0.158	0.108	0.089	148.4	168.9	105	0.051	0.070	0.040

Means with at least one letter common are not statistically significant using Tukey's honest significant difference (HSD)

Y I—year 1, Y II—year 2

*Cumulative seasonal emission

Growth and yield attributes

The highest leaf area index (LAI) was observed in T_2 (4.2) with $Azolla$ substitution and was significantly higher ($P <$ 0.05) than all the other treatments followed by T_4 (4.1) treatment. No significant difference was observed in plant height and tillers/hill among the treatments. The test weight did not change significantly, but the number of productive panicles was significantly higher under $Azolla$ treatment $(T₂)$ as compared to control. The number of panicles varied under the different treatments from 186 to 240 panicles m^{-2} . Number of tillers was observed to be the highest in T_4 with Azolla and BGA application (12.2 per hill) and was the lowest in unfertilized control $T₉$ (10.3 per hill) (result not shown); however, the differences were not significant. Highest grain yield was observed in T_2 treatment with substitution of 30 kg N ha⁻¹ with *Azolla*. The application of plant growth–promoting bacteria with $CH₄$ -utilizing ability did not have any significant effect on rice yield (Table 2). The rice yield was higher in T_2 (14.8%) followed by T_4 (9.9%) as compared to T_1 . In T_9 treatment which was having no fertilizer, the rice yield was significantly (44.8 %) lower than T_1 (control).

Global warming potential (GWP) and yield-scaled GWP

In the present study, the GWP in the two rice-growing years was the highest in the combined methane-utilizing bacteria treatment T_8 (996 kg CO₂ eq. ha⁻¹) and lowest in combined BGA and Azolla treatment T_4 (739 kg CO₂ ha⁻¹) (Table 2).

The mean GWP during the 2 years was significantly higher (P < 0.001) in T₈ by 7.5% as compared to the T₁ treatment. The share of CH_4 in the total GWP ranged from 554 (kg CO_2 eq. ha⁻¹) to 764 (kg CO₂ eq. ha⁻¹) in the different treatments (Fig. [5](#page-7-0)). N₂O share in total GWP was the highest in T_6 (238 kg CO₂) eq. ha⁻¹) treatment. The share of CH₄ to the total GWP ranged from 74 to 89% among the different treatments (Fig. [5\)](#page-7-0), and for N₂O it was the lowest in T1 (11%) and the highest in T_7 treatment (31%).

The yield scaled GWP was the least in T_4 (0.172 kg CO_2) equivalent kg⁻¹ grain yield) and the highest in T₉ (0.329 kg) $CO₂$ equivalent kg⁻¹ grain yield) (Table 2). In T₁, yield-scaled emission was 0.237 kg $CO₂$ eq. kg⁻¹ grain yield and was significantly (P<0.001) reduced by 21.1%, 13.8%, and 27.4%, respectively, with the application of T_2 (Azolla), T_3 (BGA), and T_4 (Azolla + BGA). The application of plant growth–promoting, methane-utilizing bacteria reduced the yield-scaled GWP by 8.6%, 1.8%, and 15.1% in T_5 , T_6 , and T_7 treatments, respectively, over T_1 . The application of combination of bacteria (T_8) , however, did not reduce the yieldscaled emission and were statistically at par with the control (T_1) .

Non-hierarchical k-means clustering

We carried out non-hierarchical k -means clustering to analyze data and for finding subgroups (clusters) within treatments and for identifying the outliers. The k-means clustering was done on the mean data of the 2-year experiment and the cluster plot obtained is shown in Fig. [6](#page-8-0). The clustering segregated the

Fig. 3 Average daily emission a methane and b nitrous oxide and dissolved oxygen under different treatments during the crop growth period. *Pooled data for 2 years

treatments into four subgroups. Out of these, there were two major subgroups and two outliers. The grouping showed that

Fig. 4 Contribution of different growth rice phases to seasonal methane emissions. *Pooled data for 2 years. T_1 —control, T_2 —Azolla, T_3 —BGA, T_4 —Azolla + BGA, T_5 —Hyphomicrobuim facile, T_6 —Burkholderia, T_7 —Methylobacteruim oryzae, T_8 —all methanotrophs, T_9 —no fertilizer

Fig. 5 Share of methane and nitrous oxide to the total global warming potential. *Pooled data for 2 years

the treatments T_2 , T_4 , and T_7 having GHG mitigation potential were grouped in one cluster. The control (T_1) , T_3 , T_5 , and T_6 treatments were clustered together. The no-fertilizer N treatment T_9 was another subgroup. The treatment T_8 (combines bacteria) formed a separate subgroup and was an outlier among the treatments.

Discussion

Variation in CH_4 and N_2O emission during crop growth

In the present study, $CH₄$ flux pattern was similar in both cropping years. The cumulative $CH₄$ fluxes under all treatments during year I was higher as compared to year II (Fig. [2b\)](#page-5-0). This was likely due to higher rainfall (Fig. [1](#page-2-0)) in the first year as compared to the second year. Rainfall enhances the methanogenic activity by maintaining optimum soil temperature and increases CH_4 flux (Hussain et al. [2015](#page-13-0)). Kim et al. (2016) reported enhanced CH₄ emission from paddy soil due to occurrence of rainfall during the crop growth period. Variations in CH4 emission were observed in the different treatments; however, maximum fluxes of $CH₄$ were observed during tillering and reproductive stages in all the treatments in both years (Fig. [2b\)](#page-5-0). It might be due to the combined effect of high root exudation during tillering that provided substrate for methanogenesis (Singh et al. [2009\)](#page-13-0) and direct transport of generated CH4 to the atmosphere by the rice tiller through parenchyma, reducing chances of oxidation near the surface soil (Sass and Cicerone [2002\)](#page-13-0). At the beginning of the crop cycle, when rice plants were little developed, bubble formation and vertical movement in the bulk of the soil was the main transfer mechanism. After tillering, diffusion through the parenchyma becomes the dominant process, and was responsible for more than 90% of the CH_4 emission during active

tillering and reproductive stages (Tyler et al. 1997). The N₂O fluxes were driven by the fertilizer application events. Peaks of N2O flux were obtained after each fertilization event. Malyan et al. [\(2019\)](#page-13-0) reported that applied urea fertilizer was hydrolyzed to ammonium and further nitrified and denitrified producing high fluxes of N_2O .

Impact of methane-utilizing bacteria on $CH₄$ and $N₂O$ emission

In the present study, three plant growth–promoting bacteria capable of utilizing $CH₄$ as sole C source were evaluated for their ability to consume $CH₄$ in rice. In our previous work, a commercial liquid formulation of these cultures was developed. They were isolated from the rhizosphere and phyllosphere of different rice-growing regions of India and were evaluated for their plant growth–promoting attributes and CH4 oxidation potential by culturing them in NMS media having different CH₄ concentration from (0.5 to 5%) as sole C source (Rani et al. [2021a](#page-13-0), [b](#page-13-0)). Facultative methylotrophy in all the three bacterial cultures have been reported earlier by various workers (Van Aken et al. [2004](#page-14-0); Mcdonald et al. [2001](#page-13-0)); however, genetic analysis of the ability to utilize $CH₄$ as sole C source by bacteria belonging to these genera is a topic of further research (Dedysh and Dunfield [2011](#page-12-0); Theisen and Murrell 2005). In order to reduce $CH₄$ emission in rice rhizosphere under flooded condition, it is essentially required for methanotroph population to be maintained above the threshold level not only in rhizosphere but also in phyllosphere (Iguchi et al. [2015](#page-13-0)). In the present study, while carrying out rhizosphere and phyllosphere inoculations, the populations of all the three bacteria, whether inoculated alone or in combination, were maintained above >10⁸ cells mL⁻¹.

Inoculation of Methylobacterium oryzae MNL7 (T_7) caused significant reduction in CH₄ emission by \sim 20% as compared to un-inoculated treatment (T_1) . Previously certain strains of Methylobacterium sp. have been reported to have the ability to utilize CH_4 as sole C source of energy. Methylobacterium strain, BJ001T, had been isolated from poplar tissues and has been reported to be able to use CH4 as the sole source of carbon and energy (Van Aken et al. [2004](#page-14-0)). In contrast, inoculation of Hyphomicrobium facile (T_5) and *Burkholderia* sp. (T_6) did not cause any significant reduction in $CH₄$ emission. Difference in the ability of the isolates to act differently under field conditions can be attributed to several factors such as decline in population due to competition with native population, utilization of C sources other than $CH₄$ due to their facultative methylotrophy in nature, survival under anoxic conditions, etc. (Iguchi et al. [2015\)](#page-13-0).

In order to avoid population decline two spray schedules were carried out as stated earlier. Dubey [\(2005\)](#page-13-0) observed that temperature, $CH₄$ concentration, soil moisture, oxygen availability, nitrogenous compounds, and soil pH play a significant role in CH4 oxidation by bacteria. Results showed that inoculation with *Methylobacterium oryzae* MNL7 (T_7) alone was capable of significantly reducing $CH₄$ emission and could be used for developing commercial-scale technology for use in flooded paddies. From this study, it was observed that the stage of bacterial inoculation was also important in getting the desired level of reduction in $CH₄$ emission. Spraying of cultures to enrich the population in phyllosphere and on water surface at the right stage of the crop may also be important for

significant reduction in CH₄ emission. The growth and activity of CH4-oxidizing microbes in the rice rhizosphere may also be stimulated by ammonium-based fertilization. Urea has been reported to enhance the activity and population size of methanotrophs in rice rhizosphere (Dong et al. [2011](#page-13-0); Xie et al. [2010\)](#page-14-0). No effect of plant growth–promoting bacteria on N₂O emission was observed in our study.

Effect of Azolla and BGA on $CH₄$ and N₂O emission

Azolla–BGA biofertilizers in rice are globally used and are known to liberate oxygen in flooded water (Kollah et al. [2016;](#page-13-0) Bharati et al. [2000](#page-12-0)). In our study, the application of Azolla biofertilizer in treatment T_2 and in combination with BGA in T_4 reduced cumulative CH₄ and N₂O emission from the rice soils. This was due to liberation of photosynthetic oxygen in paddy water by Azolla and BGA (Malyan et al. [2016\)](#page-13-0) which increased the DO concentration in flooded water, and eventually decreased the $CH₄$ emission from paddy soil by enhancing the CH₄ oxidation (Ali et al. [2015\)](#page-12-0).

Among the treatments, seasonal cumulative $CH₄$ emission were reduced in T_2 and T_4 by ~9.7 and ~13.3%, respectively, as compared to T_1 , due to higher average DO concentration during the crop growth (Fig. $3a$) and higher soil redox potential (Fig. $2c$) which might have enhanced the activity of CH₄oxidizing bacteria (Kimani et al. [2018](#page-13-0)). Similar reductions in CH4 emission of 20.4% and 12.3% were observed by Ma et al. [\(2012\)](#page-13-0) and Xu et al. [\(2017](#page-14-0)), respectively, after incorporating Azolla in rice. Bharati et al. ([2000](#page-12-0)), however, observed up to 42.5% reduction in the cumulative CH₄ emission under $Azolla$ application. Methanogenesis is a multistep process in which methanogenic bacteria uses organic carbon and produces CH4 as an end product under anaerobic environment (Malyan et al. [2016;](#page-13-0) Ali et al. [2012](#page-12-0)). In the current study, the oxygen liberated by Azolla–BGA in standing water of rice increased the soil redox potential resulting in suppression of methanogenesis process leading to lower production of CH4 as compared to the T_1 control treatment (Fig. [7\)](#page-10-0). However, in some previous studies, Adhya et al. ([2000](#page-12-0)) and Ying et al. [\(2000\)](#page-14-0) reported that application of Azolla increased cumulative CH₄ emission from rice, probably due to decomposition of dead Azolla. Malyan et al. ([2019](#page-13-0)) reported that Azolla has a potential to mitigate the cumulative $CH₄$ emission. Kimani et al. (2018) (2018) observed significant reduction in CH₄ emission; however, no-significant effect of $Azolla$ on $N₂O$ emission was reported in a pot experiment growing rice.

Wagner ([1997](#page-14-0)) reported that *Azolla* having high photosynthetic ability could release copious amounts of oxygen in standing water thereby increasing the DO concentrations and improving the soil redox potential. Xu et al. ([2017](#page-14-0)) and Prasanna et al. ([2002](#page-13-0)) reported that application of Azolla with N fertilizers like urea has stronger capacity of $CH₄$ oxidation as compared to Azolla alone.

Biological decomposition of organic matter and N fertilizer application are two important sources of N_2O emission from agricultural soils (Bremner [1997\)](#page-12-0). In rice, applied Azolla after completing its life span undergoes rapid decomposition and enhanced the N_2O emission from rice (Chen et al. [1997\)](#page-12-0). Availability of oxygen is one of the major factors affecting the formation of N_2O in rice soil by denitrification pathway (Bhatia et al. [2012\)](#page-12-0). The dissolved oxygen was higher in T_2 and T_4 treatments due to photosynthesis by $Azolla$, thereby leading to lower denitrification N_2O flux in these treatments. In our study, the cumulative N_2O emission under $Azolla$ and BGA applied plots $(T_2, T_3,$ and T_4) were significantly (P < 0.01) lower than T_1 (Fig. [2a\)](#page-5-0). Another reason for lower emission was the reduced amount of fertilizer N application in these treatments (Table [2\)](#page-6-0). N_2O emission from soil depends on several factors including the rate of N fertilization, type of N applied, and soil-water content (Ladha et al. [2005](#page-13-0); Pathak et al. [2002](#page-13-0)). The urea N application was lower by 25% in T_2 and T_3 , and by 50% in T_4 as compared to T_1 ; however, the N_2O emission were reduced by 8.7 to 12% in T_2 and T_3 , and by 41% in T_4 as compared to T_1 treatment. The N fixed by Azolla and BGA was probably more efficiently used for plant growth as compared to 100% synthetic nitrogen applied in the control (T_1) treatment leading to reduced N₂O losses in T_2 , T_3 , and T_4 treatments. Kimani et al. [\(2018\)](#page-13-0) reported that $Azolla$ cover in northeastern Japan rice cultivation reduced the N_2O emission from 2.7 to 2.6 mg N m⁻². Malyan et al. [\(2019](#page-13-0)) observed that application of Azolla along with reduced dose of N fertilizer lowered the GHG intensity in rice by 16 to 19%. Xu et al. [\(2017\)](#page-14-0) also observed a reduction in N application by the application of Azolla in double rice cropping system in southern China due to nitrogen-fixing properties of these biofertilizers. They also observed lower yield-scaled CH4 emission on the application of Azolla along with nitrogenous fertilizer.

Effect of urea application on $CH₄$ and N₂O emission

There are contradictory reports on the effect of N fertilizers on methanotrophs in the rice soil (Hussain et al. [2015;](#page-13-0) Dubey [2005;](#page-13-0) Schimel [2000](#page-13-0)). Datta et al. ([2013](#page-12-0)) reported that cumulative $CH₄$ emission from rice soil increased with the addition of urea fertilizer, whereas Dong et al. [\(2011\)](#page-13-0) and Xie et al. [\(2010](#page-14-0)) reported the stimulation of methanotrophs with the addition of N fertilizers in rice rhizospheric soil (Dong et al. 2011 ; Xie et al. [2010\)](#page-14-0) leading to lower CH₄ emission. In this study, there was higher emission of $CH₄$ in the urea alone treatment (T_1) as compared to the no-fertilizer (T_9) application. This may be due to the rapid hydrolysis of applied urea fertilizer to ammonium ion. Ammonium ion being similar in chemical structure to CH_4 may compete with CH_4 for the binding site of methane monooxygenase enzyme, a key en-zyme for CH₄ oxidation (Bédard and Knowles [1989\)](#page-12-0) and can

Fig. 7 Mechanism of different treatments for the mitigation of greenhouse gas emission from rice

also lead to the competition between $CH₄$ and ammonium oxidizers for oxygen resulting in increased CH₄ emission. N application in the form of urea resulted in 8% higher cumulative CH₄ emission as compared to no N fertilizer application. Application of nitrogen fertilizer in T_1 resulted in higher below- and above-ground biomass over treatment $T₉$ (no fertilizer) and may have provided higher substrates in the form of root exudates for the methanogenic bacteria to produce more $CH₄$. Datta et al. [\(2013\)](#page-12-0) observed 26.9% higher $CH₄$ emission under 110 kg N ha^{-1} urea application over no N fertilizer application in rice fields of Cuttack, India. The high $CH₄$ flux from the urea applied plots could also be due to isostructural and isoelectric symmetry between $CH₄$ molecule and ammonium ion (Schimel [2000](#page-13-0)). Hanson and Hanson ([1996](#page-13-0)) reported that, due to the presence of high concentration of ammonium ions in soil (such as in urea application conditions), methanotrophic bacteria bind with ammonium ions as a substitute of CH₄ molecule and the methanotrophic activity is reduced resulting in higher $CH₄$ emission.

Across all the treatments, the lowest cumulative N_2O emission was observed under the $T₉$ (without N fertilizer) treat-ment in our study (Table [2\)](#page-6-0). In comparison to T_1 (control– 120 kg N ha⁻¹), the rice cropping without N fertilizer (T₉) decreased the cumulative N_2O emission by 67.6% (Table [2\)](#page-6-0). Pathak et al. (2002) (2002) (2002) also reported that total N₂O emission from no N fertilizer treatment were reduced by 56.0% as compared to urea-applied rice soils. Das and Adhya ([2014](#page-12-0)) observed a 78.9% decrease in N_2O emission in non–N-fertilized soils as compared to urea-applied rice soils. The higher N_2O emission in urea treatment is due to availability of mineral N to soil microorganisms which controls the nitrification and denitrification process.

Effects of different biological interventions on CH4 emission during rice phases

During both years, $CH₄$ emitted during the vegetative stage was higher as compared to the other two stages (Fig. [4\)](#page-7-0). The least amount of $CH₄$ was emitted during ripening stage of rice (Fig. [4\)](#page-7-0). The higher CH_4 emission from vegetative stage may be due to higher methanogenic activity (Ali et al. [2015\)](#page-12-0) and higher labile organic carbon present in rice during this stage due to growing plant biomass and more root exudation activity. The low CH₄ emission during ripening stage was due to higher soil Eh and lower soil temperature which may have suppressed methanogenesis activity. In our study, we found that there was slightly higher CH₄ emission from T_2 and T_4 treatment as compared to other treatments during ripening stage, which may be due to the degradation of Azolla in the last few weeks of the cropping period.

Impact of different interventions on growth and yield attributes

The application of plant growth–promoting methanotrophs did not lead to any significant impact on growth and yield attributes; however, the application of Azolla led to significant increase in growth and yield attributes of rice (Table [3](#page-11-0)). Under the Azolla treatments T_2 and T_4 , higher plant height, tillers/ hill, and LAI were observed as compared to urea (T_1) alone,

Table 3 Leaf area index (LAI) and rice grain yield and test weight of rice under different treatments

Y I—year 1, Y II—year 2, LAI—leaf area index

and this led to an increase in grain yield by 15.2% in the $T₂$ treatment over the control. The increase of growth attributes in $Azolla$ and $Azolla + BGA$ treatments may be due to nitrogen fixation and release of some growth-promoting metabolites (5-aminolevulinic acid and exopolymeric substances) in rice soil (Kantachote et al. [2016](#page-13-0)) that may have led to an increase in yield. Similar findings were also observed by Ali et al. [\(2015](#page-12-0)) and Bharati et al. [\(2000\)](#page-12-0), and they reported that Azolla plus BGA application increased yield in rice significantly due to its biofertilizer property (Bharati et al. [2000](#page-12-0)).

Effect of different treatments on GWP and yieldscaled GWP

In our study, maximum reduction in average GWP was observed in T₄ treatment ($Azolla + BGA$, 20.2%) as compared to T_1 (fertilized control) (Table [2](#page-6-0) and Fig. [5\)](#page-7-0). Higher average DO and higher soil Eh was observed in this treatment in both years. The application of Methylobacterium oryzae MNL7 in T_7 lowered the GWP by 13.8% due to reduction in CH₄ emission. The lowest yield-scaled GWP was observed in T_4 $(Azolla + BGA)$ followed by $T_2(Azolla)$ and T_7 (Methylobacterium oryzae MNL7) treatment, and it was 27.4%, 21.1%, and 15.1% lower than control, respectively (Table [2\)](#page-6-0). Lower CH₄ and N₂O emission in T₄ treatment decreased the GWP leading to lower yield-scaled GWP. Lower $CH₄$ and N₂O emission was observed due to higher DO concentrations in this treatment whereas lower urea N application (50% N at 60 kg N ha⁻¹) led to 41% less N₂O emission in T₄. A 25% reduction in application of N fertilizer by 30 kg N ha−¹ in T_2 and T_3 treatment decreased the N₂O emission by 9 and 12% as compared to T_1 .

The *k*-means cluster analysis grouped the treatments into subgroup having common features of reducing GHG emission and increasing the rice yield (Fig. 6). From the result of the kmeans clustering, it was evident that the three treatments T_2 , T_4 , and T_7 formed one cluster and were the most effective in reducing the GWP and the yield-scaled GWP. The next cluster was of T_3 , T_5 , and T_6 indicating that these treatments were similar to the control (T_1) and had no impact on the GWP. The T_8 and T_9 treatments were the outliers having very different treatment effects. T_8 significantly increased the CH₄ emission and T9 was the no-fertilizer treatment which had reduced rice yield and lower $N₂O$ emission.

Azolla, BGA, and methane-utilizing bacteria can be used for reducing the GWP of transplanted puddled rice cultivation in the Indo-Gangetic Plains region having around 10.5 Mha of land under rice cultivation. Earlier mitigation options like intermittent irrigation and direct seeded rice have been suggested for reducing the $CH₄$ emissions in this region. The rice yield penalty and weed growth are the major reasons for these options not being successfully implemented and taken up by the farmers of the region. However, the application of Azolla, blue green algae, and plant growth– promoting bacteria can be promoted among the farmers as they not only reduce the yield-scaled GWP but also lead to saving in N (Azolla and BGA substitution). The use of biofertilizers for promoting the growth of different crops is already popular among farmers. Farmers will only use microbial inoculants capable of reducing methane and nitrous oxide emission if they also promote the growth of crops. Hence, it is essential to integrate microbial cultures having dual ability of plant growth promotion and methane utilization with existing package and practices of biofertilizers. A suitable delivery mechanism of such biofertilizers needs to be worked out as it is essential to maintain the population of methane-utilizing microbes in the rhizosphere as well as phyllosphere at the critical stages of crop growth. Further research can be undertaken focusing only to develop suitable delivery mechanisms by integrating popularly used

algal and cyanobacteria-based paddy biofertilizers with methane-utilizing bacteria.

Conclusion

Plant growth–promoting bacteria Methylobacterium oryzae and biofertilizers Azolla and Blue-green algae can be effective interventions for reducing the global warming potential and yieldscaled GWP in flooded rice ecosystems by reducing the emission of both CH₄ and N₂O. Compared with control, Azolla, Azolla + BGA, and Methylobacterium oryzae decreased the yield-scaled GWP by 21.1%, 27.4%, and 15.2% from the rice fields, respectively. Thus, in irrigated flooded rice, the application of Methylobacteruim oryzae MNL7, Azolla alone, or along with BGA could be an effective option for mitigation of yield-scaled GWP, saving inorganic fertilizer and increasing rice yields for achieving the goal of sustainable agriculture. Suitable commercial formulations of the methane-utilizing plant growth– promoting bacteria have to be prepared so that their optimum populations can be maintained during the rice growth period, thus enabling its use by the farmers of the region.

Acknowledgments We thank the Director, Dean, and PG School of Indian Agricultural Research Institute, New Delhi for providing all facilities required in this study. We are also thankful to Head, Dr. G. Abraham and Dr. Sunil Pabbi, Division of Microbiology, IARI, for providing Azolla and BGA for experimentation. Financial support to S.K.M. during Ph.D. as UGC-JRF/SRF provided by University Grant Commission (UGC) is gratefully acknowledged. This study has been supported by the grant of National Innovations in Climate Resilient Agriculture (NICRA, IARI/112-15) project.

Author contribution S.K.M.: investigation, writing—original draft. A.B.: conceptualization, supervision, writing—review and editing. R.T.: sample analysis. R.C.H.: field management. A.B.: statistical analysis. N.J.: writing—initial draft. R.K.: conceptualization, supervision.

Data availability All relevant data are within the manuscript and available from the corresponding author on request.

Declarations

Ethical approval Not applicable.

Consent for participate The authors have agreed with the content and all have given consent to publish.

Competing interests The authors declare no competing interests.

References

Adhya TK, Bharati K, Mohanty SR, Ramakrishnan B, Rao VR, Sethunthan N, Wassmann R (2000) Methane emission from rice fields at Cuttack, India. Nutr.Cycl.Agroecosys. 58:95–105

- Ali MA, Farouque MG, Haque M, Kabir AU (2012) Influence of soil amendments on mitigating methane emissions and sustaining rice productivity in paddy soil ecosystems of Bangladesh. J Environ Sci Nat Resour 5:179–185
- Ali MA, Kim PJ, Inubushi K (2015) Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: a comparative study between temperate and subtropical rice paddy soils. Sci Total Environ 529:140–148
- Aliyu G, Jiafa LUO, Deyan LIU, Junji YUAN, Zengming CHEN, Tiehu HE, Weixin DING (2021) Yield-scaled nitrous oxide emissions from nitrogen-fertilized croplands in China: a meta-analysis of contrasting mitigation scenarios. Pedosphere 31(2 (2021)):231–242
- Aulakh MS, Bodenbender J, Wassmann R, Rennenberg H (2000) Methane trasport capacity of rice plants. II. In variations among different rice cultivars and relationship with morphological characteristics. Nutr Cycl Agroecosyst 58:367–375
- Bédard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84. [https://doi.org/10.1128/](https://doi.org/10.1128/mmbr.53.1.68-84.1989) [mmbr.53.1.68-84.1989](https://doi.org/10.1128/mmbr.53.1.68-84.1989)
- Bharati K, Mohanty SR, Singh DP, Rao VR, Adhya TK (2000) Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India. Agric Ecosyst Environ 79:73–83
- Bhatia A, Pathak H, Jain N, Singh PK, Singh AK (2005) Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmos Environ 39:6976–6984
- Bhatia A, Ghosh A, Kumar V, Tomer R, Singh SD, Pathak H (2011) Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in north India. Agric Ecosyst Environ 144: 21–28
- Bhatia A, Pathak H, Jain N, Singh PK, Tomer R (2012) Greenhouse gas mitigation in rice–wheat system with leaf color chart-based urea application. Environ Monit Assess 184(5):3095–3107
- Bhatia A, Kumar A, Das TK, Singh J, Jain N, Pathak H (2013) Methane and nitrous oxide emissions from soils under direct seeded rice. Int J Agric Stat Sci 9(2):729–736
- Bhattacharyya P, Dash PK, Swain CK, Padhy SR, Roy KS, Neogi S, Berliner J, Adak T, Pokhare SS, Baig MJ, Mohapatra T (2019) Mechanism of plant mediated methane emission in tropical lowland rice. Sci Total Environ 651:84–92
- Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49(7):16
- Chen GX, Huang GH, Huang B, Yu KW, Wu J, Xu H (1997) Nitrous oxide and methane emissions from soil–plant systems. Nutr Cycl Agroecosyst 49:41–45
- Choudhaury ATMA, Kennedy IR (2005) Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun Soil Sci Plant Anal 36:1625–1639
- Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63
- Das S, Adhya TK (2014) Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma. 213:185–192
- Datta A, Yeluripati JB, Nayak DR, Mahata KR, Santra SC, Adhya TK (2013) Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmos Environ 66:114–122
- Davamani V, Parameswari E, Arulmani S (2020) Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs. Sci Total Environ 726:138570. [https://doi.org/10.](https://doi.org/10.1016/j.scitotenv.2020.138570) [1016/j.scitotenv.2020.138570](https://doi.org/10.1016/j.scitotenv.2020.138570)
- Dedysh SN, Dunfield PF (2011) Facultative and obligate methanotrophs: how to identify and differentiate them. Methods Enzymol 495:31-44
- Dong H, Yao Z, Zheng X, Mei B, Xie B, Wang R, Deng J, Cui F, Zhu J (2011) Effect of ammonium-based, non-sulfate fertilizers on $CH₄$ emissions from a paddy field with a typical Chinese water management regime. Atmos Environ 45:1095–1101
- Dubey SK (2005) Microbial ecology of methane emission in rice agroecosystem: a review. Appl Ecol Environ Res 3:1–27
- Dubey SK, Singh JS (2001) Plant-induced spatial variations in the size of methanotrophic population in dryland and flooded rice agroecosystems. Nutr Cycl Agroecosyst 59:161–167
- Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Tomer R, Malyan SK, Fagodiya RK, Dubey R, Pathak H (2016) Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Ecosyst Environ 230:1–9
- Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471
- Hussain S, Peng S, Fahad S, Khaliq A, Huang J, Cui K, Nie L (2015) Rice management interventions to mitigate greenhouse gas emissions: a review. Environ Sci Pollut Res 22:3342–3360
- Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms. 3:137–151
- Inubushi K, Naganuma H, Kitahara S (1996) Contribution of denitrification and autotrophic and heterotrophic nitrification to nitrous oxide production in andosols. Biol Fertil Soils 23:292–298
- IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability Working Group II Contribution to the Fifth Assessment Report. Cambridge University Press, Cambridge, UK and New York, NY USA
- Jain N, Arora P, Tomer R, Vind S, Bhatia A, Pathak H, Chakraborty D, Kumar V, Dubey DS, Harit RC, Singh JP (2016) Greenhouse gases emission from soils under major crops in Northwest India. Sci Total Environ 542:551–561
- Kantachote D, Nunkaew T, Kantha T, Chaiprapat S (2016) Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Appl Soil Ecol 100:154–161
- Kim Y, Talucder MSA, Kang M, Shim K-M, Kang N, Kim J (2016) Interannual variations in methane emission from an irrigated rice paddy caused by rainfalls during the aeration period. Agric Ecosyst Environ 223:67–75
- Kimani SM, Cheng W, Kanno T, Nguyen-Sy T, Abe R, Oo AZ, Tawaraya K, Sudo S (2018) Azolla cover significantly decreased CH4 but not N2O emissions from flooding rice paddy to atmosphere. J Soil Sci Plant Nutr 64:68–76
- Kollah B, Patra AK, Mohanty SR (2016) Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res 23:4358–4369
- Kumar A, Medhi K, Fagodiya KR, Subrahmanyam G, Mondal R, Raja P, Malyan SK, Gupta DK, Gupta CK, Pathak H (2020) Molecular and ecological perspectives of nitrous oxide producing microbial communities in agro-ecosystems. Rev Environ Sci Biotechnol 19(4): 717–750
- Ladha JK, Pathak H, Krupnik TJ, Six J, Kessel C (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv Agron 87:85–156
- Liessens J, Germonpre R, Kersters I, Beernaert S, Verstraete W (1993) Removing nitrate with a methylotrophic fluidized bed: microbiological water quality. J Am Water Works Assoc 85:155–161
- Liu J, Xu H, Jiang Y, Zhang K, Hu Y, Zeng Z (2017) Methane emissions and microbial communities as influenced by dual cropping of Azolla along with early rice. Sci Rep 7:40635
- Ma YY, Tong G, Wang WQ, Zeng CS (2012) Effect of Azolla on CH4 and N2O emissions in Fuzhou Plain paddy fields.pdf. Chin J Eco-Agric 20:723–727
- Malla G, Bhatia A, Pathak H, Prasad S, Jain N, Singh J, Kumar V (2005) Mitigating nitrous oxide and methane emissions from soil under

rice–wheat system with nitrification inhibitors. Chemosphere 58: 141–147. <https://doi.org/10.1016/j.chemosphere.2004.09.003>

- Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N (2016) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ 572:874–896
- Malyan SK, Bhatia A, Kumar SS, Fagodiya RK, Pugazhendhi A, Duc PA (2019) Mitigation of greenhouse gas intensity by supplementing with Azolla and moderating the dose of nitrogen fertilizer. Biocatal Agric Biotechnol 20:101266
- McDonald IR, Doronina NV, Trotsenko YA, McAnulla C, Murrell JC (2002) Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51(Pt 1):119–122. [https://doi.org/10.1099/00207713-51-](https://doi.org/10.1099/00207713-51-1-119) [1-119](https://doi.org/10.1099/00207713-51-1-119)
- Moldenhauer KEWC, Slaton N (2001) Rice growth and development. Rice production handbook, pp 7–14
- Pathak H, Bhatia A, Prasad S, Kumar S, Jain MC, Kumar U (2002) Emission of nitrous oxide from rice–wheat systems of Indo-Gangetic Plains of India. Environ Monit Assess 77:163–178
- Pathak H, Prasad S, Bhatia A, Singh S, Kumar S, Singh J, Jain MC (2003) Methane emission from rice–wheat cropping system in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide application. Agric Ecosyst Environ 97(1-3):309–316
- Prasanna R, Kumar V, Kumar S, Yadav AK, Tripathi U, Singh AK, Jain MC, Gupta P, Singh PK, Sethunathan N (2002) Methane production in rice soil is inhibited by cyanobacteria. Microbiol Res 157:1–6
- Rani V, Bhatia A, Kaushik R (2021a) Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Sci Total Environ 145826. <https://doi.org/10.1099/00221287-61-2-205>
- Rani V, Bhatia A, Nain L, Tomar GS, Kaushik R (2021b) Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World J Microbiol Biotechnol 37(4):1–22
- Ritchie H, Roser M (2018) $CO₂$ and other greenhouse gas emissions. Published online at [OurWorldInData.org](http://ourworldindata.org). Retrieved from: [https://](https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions) ourworldindata.org/co2-and-other-greenhouse-gas-emissions. Accessed Dec 2019
- Sass RL, Cicerone RJ (2002) Photosynthate allocations in rice plants: food production or atmospheric methane? Proc Natl Acad Sci U S A 99(19):11993–11995
- Schimel J (2000) Rice, microbes and methane. Nature. 403:375–377
- Shin D, Lee S, Kim TH, Lee JH, Park J, Lee J, Nam HG (2020) Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Nat Commun 11(1):1–11
- Singh SK, Bharadwaj V, Thakur TC, Pachauri PC, Singh PP, Mishra AK (2009) Influence of crop establishment methods on methane emission from rice fields. Curr Sci 97:84–89
- Tan W, Yu H, Huang C, Li D, Zhang H, Jia Y, Wang G, Xi B (2018) Discrepant responses of methane emissions to additions with different organic compound classes of rice straw in paddy soil. Sci Total Environ 630:141–145
- Tariq A, Vu QD, Jensen SL, Tourdonnet S, Sander OB, Wassmann R, Mai TV, Neergaard A (2017) Mitigating CH₄ and N_2O emissions from intensive rice production systems in northern Vietnam: efficiency of drainage patterns in combination with rice residue incorporation. Agric Ecosyst Environ 249:101–111
- Theisen AR, Murrell JC (2005) GUEST COMMENTARY Facultative Methanotrophs Revisited. Society 187:4303–4305
- Tyler SC, Bilek RS, Sass RL, Fisher FM (1997) Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, delta-C-13, and delta-D of CH_4 . Glob Biogeochem Cycles 11:323–348
- Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26
- Whittenbury R, Davies SL, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218. <https://doi.org/10.1099/00221287-61-2-205>
- Xie B, Zheng X, Zhou Z, Gu J, Zhu B, Chen X (2010) Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant Soil 326:393–401
- Xu H, Zhu B, Liu J, Li D, Yang Y, Zhang K, Jiang Y, Hu Y, Zeng Z (2017) Azolla planting reduces methane emission and nitrogen fertilizer application in double rice cropping system in southern China. Agron Sustain Dev 37. <https://doi.org/10.1007/s13593-017-0440-z>
- Yao Z, Zheng X, Wang R, Liu C, Lin S, Butterbach-Bahl K (2019) Benefits of integrated nutrient management on N_2O and NO mitigations in water-saving ground cover rice production systems. Sci Total Environ 646:1155–1163
- Ying Z, Boeckx P, Chen GX, Cleemput OV (2000) Influence of Azolla on CH4 emission from rice fields. Nutr.Cycl.Agroecosyst. 58:321– 326
- Yu, K., Wang, Z., Vermoesen, A., Patrick Jr, W. and Van Cleemput, O., 2001. Nitrous oxide and methane emissions from different soil suspensions: effects of soil redox status.
- Zhao X, Pu C, Ma ST, Liu SL, Xue JF, Wang X, Wang YQ, Li SS, Lal R, Chen F, Zhang HL (2019) Management-induced greenhouse gases emission mitigation in global rice production. Sci Total Environ 649:1299–1306

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.