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Abstract
Accuracy in the prediction of the particulate matter (PM2.5 and PM10) concentration in the atmosphere is essential for both its
monitoring and control. In this study, a novel neuro fuzzy ensemble (NF-E) model was proposed for prediction of hourly PM2.5

and PM10 concentration. The NF-E involves careful selection of relevant input parameters for base modelling and using an adaptive
neuro fuzzy inference system (ANFIS) model as a nonlinear kernel for obtaining ensemble output. The four base models used include
ANFIS, artificial neural network (ANN), support vector regression (SVR) and multilinear regression (MLR). The dominant input
parameters for developing the base models were selected using two nonlinear approaches (mutual information and single-input single-
output ANN-based sensitivity analysis) and a conventional Pearson correlation coefficient. The NF-Emodel was found to predict both
PM2.5 and PM10 with higher generalization ability and least error. The NF-E model outperformed all the single base models and other
linear ensemble techniques with a Nash-Sutcliffe efficiency (NSE) of 0.9594 and 0.9865, mean absolute error (MAE) of 1.63 μg/m3

and 1.66 μg/m3 and BIAS of 0.0760 and 0.0340 in the testing stage for PM2.5 and PM10, respectively. The NF-E could improve the
efficiency of other models by 4–22% for PM2.5 and 3–20% for PM10 depending on the model.
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Introduction

Air pollution is one of the major environmental challenges
affecting the health condition of many people living in the

urban areas due to increased industrial activities and urbani-
zation. About 91% of the world population are believed to be
exposed to polluted air causing premature death of almost 4.2
million people annually (WHO (World Health Organization)
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2018). Particulate matters (PM2.5 and PM10), ozone (O3), ni-
trogen dioxide (NO2), carbon monoxide (CO) and sulphur
dioxide (SO2) were identified as the most hazardous ambient
air pollutants (Uzoigwe et al. 2013). PM2.5 acts as the major
indicator for the air quality monitor system (Van Donkelaar
et al. 2006). These toxic substances can be breathed into the
lungs and distribute throughout the body as blood circulates
due to their extremely small volume. Additionally, the in-
crease of PM2.5 and PM10 concentration can lead to declining
visibility, contributing to adverse impacts on the transporta-
tion industry (Sun and Li 2020). These problems can effec-
tively be reduced by careful application of a good urban air
quality management (UAQM). The fundamental elements of
the UAQM involve clear description of objectives and stan-
dards, well-designed monitoring system, reliable air quality
modelling, emission inventory, source apportionment, health
exposure assessment, control strategies and public participa-
tion (Gulia et al. 2020). A reliable air quality model can pro-
vide required information for analysis and management of the
air quality parameters which will helps stakeholders in deci-
sion making regarding issues related to UAQM budget and
selection of potential mitigation measures required to reduce
the pollution crisis and public health (Suleiman et al. 2019).
The factors influencing the concentrations of the air pollutants
can be classified into traffic-related factors, background con-
centration, meteorological and geographical factors (Cai et al.
2009).

Various mathematical models for advection and reactions
of the air pollutants were proposed for forecasting the time-
varying concentration of air pollutants in urban areas, e.g.,
steady-state Gaussian plume models. However, the diversity
and complexity of the processes (physical and chemical) in-
volved in both formation and transportation of the air pollut-
ants in the urban areas make the application of these models
very challenging or impossible in some situation. This is be-
cause large database and good understanding of the formation
processes are required for application of the empirical
methods, and in some cases the data is not available or insuf-
ficient (Arhami et al. 2013).

Motivated with the efficiency of artificial intelligence (AI)-
based models in the prediction of complex processes in the
fields of engineering, several AI-based models were devel-
oped for the prediction of air quality parameters. For instance,
Arhami et al. (2013) developed an ANN model for the pre-
diction of hourly criteria pollutants (NOx, NO2, NO, O3 and
PM10) in an urban environment using wind direction, wind
speed, relative humidity and air temperature as input
variables. Suleiman et al. (2016) applied both ANN and
boosted regression trees (BRT) to predict the concentration
of PM2.5, PM10 and particle number count (PNC) at
Marylebone road in London. The BRT model demonstrated
higher efficiency over the ANN model. Azeez et al. (2019)
integrated GIS into a hybrid model combining ANN and the

correlation-based feature selection (CFS) algorithm for pre-
diction of vehicular CO emissions. For comparison,
Mehdipour et al. (2018) applied three different AI methods
namely Bayesian network (BN) and decision tress (DT) sup-
port vector machines (SVM) for prediction of PM in Tehran.
The model input parameters were temperature, precipitation,
wind speed, nebulosity, relative humidity, sunshine, O3,
PM10, SO2, NO2 and CO. The SVM has demonstrated higher
prediction capability than both BN and DT. Krishan et al.
(2019) used meteorological data, transport emissions, traffic
data and air quality parameters to model hourly concentration
of air quality indicators in Delhi, India using the long short-
term memory (LSTM) approach. The AI models have dem-
onstrated a high accuracy in the prediction of the air quality
parameters (Cai et al. 2009). This is because the AI models are
capable of handling multivariate inputs, nonlinearity and un-
certainty of complex processes without requiring prior as-
sumptions between the input parameters.

Although the mentioned AI models (ANN, SVM, ANFIS,
etc.) provide higher prediction capability than both empirical
and conventional multilinear regression (MLR) models, it is
known that different models may lead to different outcomes
for a particular problem depending on the conditions.
Therefore, combining the outputs of the different models
through an ensemble approach will provide outputs with less-
er error variance compared to the single models (Nourani et al.
2019). The ensemble approach combines the unique features
of the constituent models to come out with a better pattern of
the presented database (Sharghi et al. 2018). The objective of
this study is to present and also apply a novel neuro fuzzy
ensemble (NS-E) technique for improved performance in the
prediction of PM2.5 and PM10. The objectives could be
achieved in three steps. First, selection of the dominant input
parameters relevant in the prediction of the PM2.5 and PM10.
Secondly, development of 4-single black box models (ANN,
ANFIS, SVM and MLR). Finally, the NS-E models and two
linear ensemble models were developed by combining the
predicted outputs from the 4 different black box models de-
veloped in stage 2. This study presents the first application of
the novel NS-E technique for the prediction of the PM2.5 and
PM10 to the best of the authors’ knowledge. The selection of
PM2.5 and PM10 for conducting the study was based on the
strong adverse effect they have on human health as reported
by Uzoigwe et al. (2013) and their major role in defining air
quality (Sun and Li 2020).

Materials and methods

Data

For purposes of conducting the study, hourly data from the air
quality monitoring site along the Marylebone road in central

49664 Environ Sci Pollut Res (2021) 28:49663–49677



London was obtained from January 1, 2007 to December 31,
2007. Marylebone was selected for conducting the study due
to its high average daily traffic of about 75,000 veh/day (Jones
and Harrison 2005) since 64% of the PM was reported to
come from the vehicular traffic (European Environment
Agency 2012). The monitoring station was located at approx-
imately 1.5 m from the road (southern side of road).
Simultaneously with air pollutants (O3, NO, NO2, NOx, CO,
SO2, PM10, PM2.5), traffic data (volumes of buses, cars and
taxis, motorcycles, light commercial vehicles, pedal cycles
and heavy goods vehicles) and the speed and the meteorolog-
ical data (wind speed, wind direction and temperature) were
recorded at the monitoring site (Jones and Harrison 2005).
The data was made available for download at the UK air
quality data archive (https://uk-air.defra.gov.uk/data/
maryleboneroad). The traffic data was collected using high
accuracy induction tubes for classification and counting
buried on each lane. Two tapered element oscillating
microbalance (1400AB model) each equipped with a
different sampling head were used for monitoring the
concentration of the PM2.5 and PM10 at the sampling
location (Jones and Harrison 2005). The descriptive statistics
measured data was presented in Table 1.

Data preparation and performance evaluation

To ensure all input variables receive equal attention in black box
models, the data are usually normalized to the same range usually
between zero and unity. The normalization makes the data di-
mensionless during training and prevents overshadowing of the
parameters in the lower numeric range by those in the higher
numeric range. It also helps in reducing the computational diffi-
culties of the model. In this study, the data are normalized be-
tween 0 and 1 using (Nourani et al. 2012):

Pi ¼ P−Pmin

Pmax−Pmin
ð1Þ

where, Pi is the normalized value, P is the measured value, and
Pmax and Pmin are the maximum and minimum measured con-
centrations, respectively.

Three statistical performance measures were used for
evaluating the performance and efficiency of the models
developed for predicting the PM2.5 and PM10. The statis-
tical performance measures are Nash-Sutcliffe efficiency
(NSE) which measures the model’s goodness of fit, mean
absolute error (MAE) which evaluates the absolute mean
error of the models and bias (BIAS) which reflects how
much the computed value deviates from the observed val-
ue. Legates and McCabe Jr (1999) suggested that one
absolute error measure and one goodness of fit measures
can sufficiently evaluate the performance of prediction
models. The performance criteria were computed using
Eqs. 2–4, respectively (Nourani and Fard Sayyah 2012).
The model’s accuracy can be interpreted based on the
NSE values as very good (0.75 < NSE ≤ 1), good (0.65
< NSE ≤ 0.75), satisfactory (0.50 ≤ NSE ≤ 0.65) and
unsatisfactory (NSE < 0.50) (Moriasi et al. 2007). The
closer MAE and BIAS values approach 0, the better the
model’s prediction.

NSE ¼ 1−
∑n

i¼1 Pobsi−Pprei

� �2

∑n
i¼1 Pobsi−Pobsi

� �2 −∞ < DC≤1:0 ð2Þ

MAE ¼ ∑n
i¼1│Pobsi−Pprei│

n
ð3Þ

BIAS ¼ ∑n
i¼1 Pobsi−Pprei

� �

∑n
i¼1 Pprei

� � ð4Þ

where n represents the number of observations, Pobs is the
mean value of the observed value, Pobs is the observed value
and Ppre is the predicted value.

Table 1 Descriptive statistics of the data

S CLS1 CLS2 CL3 CLS4 CLS5 CLS6 WD WS T O3 NO NO2 NOx SO2 CO PM10 PM2.5

Mean 42.98 2.57 186.08 4.07 5.02 9.43 24.72 185.92 0.72 12.32 17.11 113.43 100.07 273.21 6.34 0.76 43.69 20.83

Standard
devia-
tion

11.07 4.77 117.95 3.07 5.64 5.63 9.13 100.27 0.60 6.25 18.11 102.82 54.00 207.34 5.55 0.46 22.04 11.43

Minimum 12.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.8 0.00 0.00 0.00 0.00 0.00 0.00 −3.00 0.00

Maximum 78.90 71.00 641.00 25.00 76.00 32.00 60.00 359.70 4.50 29.8 120.0 781.0 329.00 1492.0 67.0 3.00 183.00 118.0

Percent f
missing
data

0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.68 8.68 8.63 1.42 2.00 2.00 2.00 1.32 4.10 2.19 4.34

S average speed, CLS1 volumes of buses, CLS2 volume of cars and taxis, CLS3 volume of motorcycles, CLS4 volume of light commercial vehicles,
CLS5 volume of pedal cycles, CLS6 volume of heavy goods vehicles

49665Environ Sci Pollut Res (2021) 28:49663–49677

https://uk-air.defra.gov.uk/data/maryleboneroad
https://uk-air.defra.gov.uk/data/maryleboneroad


Proposed methodology

The study was conducted in three major steps as shown in Fig. 1.
In the first step, themost relevant input parameters for developing
the base models were selected using a single-input single-output
neural network. In the second step, ANN, ANFIS, SVR and
MLR models were proposed for the estimation of the air quality
parameters (PM2.5, PM10). Finally, the NS-E model and two
linear ensemble models combining the outputs of the proposed
base models (ANN, ANFIS, SVR, andMLR) were proposed for
enhanced performance in the estimation of PM2.5 and PM10.

The notion behind developing ensemble models is for
achieving the following benefits: (i) Sometimes, it is difficult
to select an appropriate model for modelling a particular time
series problem; by the ensemble approach, the difficulty in
model selection has been removed since the nonlinear ensem-
ble models are capable of providing a result that is even better
than that of the best base model (Nourani et al. 2020a). (ii) In
certain real-life processes that possess both linear and nonlin-
ear characteristics, neither linear nor nonlinear models can do
well in the prediction since errors in the linear pattern could be
inherited and magnified by the nonlinear models and vice
versa. By combining the outputs of linear models (MLR)
and the nonlinear models (ANN, SVR, ANFIS), the linear
and the nonlinear patterns in the data could be captured effec-
tively (Nourani et al. 2019). (iii) There is no particular model

to perfectly investigate a certain process as approved by
Sharghi et al. (2018). This is due to the complex nature of
real-world problems whereby a unique model may not be able
to identify a distinct pattern of a particular process.

Selection of relevant input parameters

The performance of all black models depends on the selection
of appropriate input variables. Imposing many input parame-
ters into the model will increase the complexity of the model,
decrease the computational accuracy and increase the time
required to train the model (Ahmed and Pradhan 2019). On
the other hand, an insufficient number of input parameters will
also result in poor performance of the model. Therefore, an
optimum number of input parameters is required in develop-
ing a model with high estimation accuracy. Traditionally, the
Pearson correlation matrix is used for selecting dominant in-
put parameters, but the method had been criticized because
correlations are built on linear relationships and most of real-
life processes are complex and nonlinear in nature (Nourani
et al. 2014). In view of that, single-input single-output nonlin-
ear sensitivity analysis trained with feed forward neural net-
work and a mutual information (MI) measure which computes
the statistical dependency between variables based on entropy
function were used in addition to the Pearson correlation ma-
trix for determining the relevant input parameters. The single-
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Fig. 1 Schematic of the proposed methodology for air quality parameters
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input single-output nonlinear linear sensitivity analysis was
evaluated using the NSE of the ANNmodel in the verification
stage.

Black box models

FFNN

FFNN is among the most commonly used ANN models
employed for capturing the nonlinearity and complex interac-
tion between the predictor and response parameters (Jahani
and Mohammadi 2019). FFNN gets the name from the man-
ner in which information is transmitted, that is information
only flows in the forward direction (Ghaffari et al. 2006).
This type of ANN acquires its acceptance due to its simplicity
in modelling and capturing nonlinear pattern in complex prob-
lems (Rumelhart et al. 1986). The suitability of the model to
learn from experience without the need to necessarily identify
the physical connection between the predictor and explained
variables makes it effective and vital in modelling complex
processes in many engineering fields (Kumar et al. 2014). In
the FFNN, an interactive link between neurons is used to
process the information and establish a relationship rather than
build any complex mathematical model. The most widely
used algorithm for training the FFNN is the backpropagation
algorithms. To train the FFNN model, some attuned weights
are initialized and multiplied by the inputs, the cumulative
results then passed through the transfer function to handle
the nonlinear pattern in the data before giving out the output
values (Ghaffari et al. 2006). The architecture of the FFNN as
shown in Fig. 2 consists of one input layer and one output
layer connected by an intermediary hidden layer(s). All the
nodes in any layer are only connected to the nodes of the
immediately succeeding layer (Kim and Singh 2014). The
general expression for the ANN model is given by

yi ¼ ∑n
i¼1wjix j þ bi0: ð5Þ

SVR

The SVM learning was first proposed by Vapnik (1998) and
was proved capable of providing a reasonable and acceptable
solution to the prediction, classification, pattern recognition
and regression problems. It is one of the data-driven machine
learning approaches. The two useful functions of the SVM
models that differentiate it with other machine learning ap-
proaches like the ANN are minimization of structural risk
and statistical learning theory. The SVR which is one of the
SVM-based models is employed for the nonlinear regression
problems that consider the minimization of operational risk as
its objective function rather than error minimization between

the predicted and measured values that is considered in other
data-driven models like ANNmodels. In SVR, the data is first
mapped into a linear regression which is then passed through a
nonlinear kernel that captures the nonlinearity pattern in the
data. For more details, the readers are referred to Wang et al.
(2015) and Nourani et al. (2020b) about SVR modelling.
Figure 3 gives the general structure of the SVR model. The
SVR equation can be expressed as (Wang et al. 2015):

f x;αi;α
*
i

� � ¼ ∑N
i¼1 αi−α*

i

� �
K x; xið Þ þ b ð6Þ

where x represents the input vector, αi and αi* are the
Lagrange multipliers, k(xi, xj) is the kernel function
performing the nonlinear mapping into feature space and b
is bias term. Gaussian radial basis function (RBF) kernel is
the most commonly used kernel in the SVR and is given as

k x1; x2ð Þ ¼ exp −γ x1−x2k k2
� �

ð7Þ

where, γ is the kernel parameter.

ANFIS

ANFIS is a hybrid model fused by Jang in 1993 for overcom-
ing the limitations of both the ANN and the FIS. It combines
both power of the fuzzy logic in dealing with the uncertainties
and learning ability of the ANN. The ANFIS model is built on
a fuzzy logic definition, and the system parameters are opti-
mized automatically by the ANN unlike in the fuzzy system
where the system parameters are manually tuned (Rai et al.
2015). The ANFIS proved to be a good useful tool for approx-
imation problems due to its adaptive capability and flexibility
in dealing with uncertainties and ability in processing huge
noisy data from complex and dynamic systems (Çaydaş
et al. 2009). The architecture of the ANFIS model (Fig. 4)
consists of five layers constructed like a multi-layer feed for-
ward neural network. The layers are named according to their
operative function (Codur et al. 2017). ANFIS uses
backpropagation algorithm for learning the parameters of
membership functions and conventional least-squares estima-
tor for estimating the parameter of the first-order polynomial
of the Takagi-Sugeno fuzzy model. The overall output of the
ANFIS system can be expressed as a linear combination of the
consequent parameters (Çaydaş et al. 2009).

MLR

The most commonly used method for the prediction and anal-
ysis of engineering problems is the MLR. It helps understand
the linear dependency between the predictor and the depen-
dent variables. It explores the interaction between the vari-
ables and describes the relationship between them by keeping
the independent variables fixed and varying one (Doǧan and
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Akgüngör 2013). The dependent variable y and n regressor
variables can be correlated by (Elkiran et al. 2018):

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ…þ bixi þ ξ: ð8Þ

In Eq. 8, xi represents the value of the i
th predictor, bi stands

for the coefficient of the ith predictor, b0 is the constant of
regression and ξ is the error term.

Ensemble approach

Ensemble approach is a machine learning approach used to
merge the process of multiple predictors for an enhanced per-
formance of the prediction process (Sharghi et al. 2018). The
ensemble approach could either be linear or nonlinear (Raj

Kiran and Ravi 2008). In the linear ensemble approach, sim-
ple average (SA), weighted average (WA) orweightedmedian
(WM) are used to ensemble the results obtained by individual
predictor models, while in the nonlinear approach, nonlinear
kernels such as ANFIS, ANN, SVR, etc. are used to obtain the
nonlinear average of the results obtained by the individual
base models. The input layer of the ensemble technique is
fed by the outputs of the considered models, each considered
as one input variable (Nourani et al. 2018). The use of the
ensemble approach for prediction, clustering and classifica-
tion in the several engineering fields proved to provide higher
accuracy than the individual models (Shtein et al. 2019;
Nourani et al. 2020a). For the nonlinear ensemble approach
employed for PM10 and PM2.5 prediction in this study, an
ANFIS model was trained using the gbell function and a

Fig. 2 Structure of the three-layer
FFNN (Wang et al. 2015)

Input vector

Hidden nodes
Kernel functions

Weight
(Lagrange multipliers)

x

K(x, xn) K(x, x3) K(x, x2) K(x, x1)

y= f(x)

∑ Bias, b

Output vector

Fig. 3 Conceptual architecture of
SVM algorithm
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hybrid algorithm for nonlinear averaging of the values predict-
ed using the base models. The predicted PM10 and PM2.5

obtained using the four base models (ANFIS, ANN, SVR,
MLR) were fed into the input layer of the ANFIS model,
and the corresponding PM concentrations were obtained.

For comparing the performance of the nonlinear ensemble
technique, two linear ensembles, SA-ensemble (SA-E) and
WA-ensemble (WA-E), were also developed for the predic-
tion of both PM10 and PM2.5. In the SA-E, the arithmetic
means of the predicted PM10 and PM2.5 concentrations were
computed using Eq. 9. In the WA-E, the predicted PM10 and
PM2.5 concentrations are computed by giving distinct weights
to the outputs of the base models based on their relative im-
portance. The weight is assigned based on the relative signif-
icance (NSE value) of the output. The WA-E is expressed by
Eq. 10:

P ¼ 1

N
∑nm

i¼1Pi ð9Þ

P ¼ ∑nm
i¼1wiPi ð10Þ

in which P shows the outcome of ensemble technique, nm is
the number of models used (nm = 4) and Pi stands for the
outcome of the ith method (i.e. ANN, ANFIS, SVR and
MLR); wi is the applied weight on the output of the ith model
and is determined by

wi ¼ NSEi

∑nm
i NSEi

: ð11Þ

NSEi is the performance efficiency of the ith base model.

Results and discussions

Selection of relevant input parameters

Accuracy in selecting relevant input parameters for developing
black boxmodels is crucial since the accuracy and complexity of
the model depend heavily on the models’ structure. In view of
that, two nonlinear measures (single-input single-output

sensitivity analysis evaluated by NSE and MI value between
the parameters) were used for obtaining the dominant input pa-
rameters. PCC values between the potential input parameters and
the responses (PM2.5 and PM10) were also computed for incor-
porating parameters that have a strong linear relationshipwith the
PM into the models. The relevance of the parameter increases as
the performance coefficient value of MI, NSE and PCC ap-
proaches 1. The parameters having an MI value > 0.2 or NSE
value > 0.4 value or PCC values > ±0.5 were considered relevant
and hence included in the models. Based on the set criteria,
PM2.5-1, NOx, NO, NO2, CO, SO2, WS, S, Q, T and CLS2 were
found to be relevant in the prediction of the PM2.5. FromFig. 5, it
is clear that the background level of the PM2.5 (PM2.5-1) has the
highest relevance in the prediction of the PM2.5 with anMI, NSE
and PCC values of 0.51, 0.81 and 0.90, respectively. These
findings were supported by several studies; for example
Suleiman et al. (2016) found background PM2.5 to be the most
relevant factor in predicting the PM2.5 in Marylebone, London
followed by NO. NO2 and NOx were also identified to be the
secondmost important factors in the prediction of the PM2.5 after
vehicle emission (Suleiman et al. 2019). Yazdi et al. (2020)
found average city wide PM2.5 and the average wind speed to
be the most relevant parameters in the prediction of PM2.5 with
66.75% and 6.36% contributions, respectively.

Figure 6 showed that, PM10-1, NOx, NO, NO2, CO, SO2,
WS, S, Q, T and CLS2 were also found to be the most impor-
tant factors in the prediction of PM10 in the study area with
PM10-1 being the most significant followed by NOx, NO and
NO2 concentrations. Background concentration was identified
to be the most relevant factor due to positive autocorrelation
existing in the PM10 time series (Paschalidou et al. 2011).
Other air pollutants, such as NO, NO2, CO and SO2, were
also reported by Whalley and Zandi (2016) to provide a good
prediction of PM10 when combined with metrological param-
eters like T and WS.

Base (single) models

In the second phase of the study, the dominant input parame-
ters for the prediction of PM2.5 and PM10 obtained in stage 1

w2

D2

D1

X       y

w1

2

N

N

1 1f1

Output f(y)

2f2

∑

A1x

A2

y
B1

B2

Π

Π

Fig. 4 First-order type Sugeno
FIS and ANFIS model structure
(Jang 1993)
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were used for the development of three AI-based models
(ANN, ANFIS and SVR). The model’s efficiencies were eval-
uated using NSE, MAE and BIAS. The best model is consid-
ered as the model with the highest NSE value, least MAE
value and BIAS closer to 0. Matlab 2019a was employed for
development of all the models. The validation of the models
was done using a 10-fold cross validation technique.
According to Nourani et al. (2020b), obtaining an optimal
structure is essential for any ANN-based models, as such sev-
eral ANN models trained with Levenberg Marquardt algo-
rithm and sigmoid transfer function to predict PM2.5 and
PM10 were developed by changing the number of hidden neu-
rons (8–23) using the 11 dominant input parameters. The
range for the number of hidden neurons in the ANN was

selected based on the range 2n
1=2 þ m

� �
to (2n + 1) given

by Fletcher and Goss (1993) where n is the number of input
neurons and m is the number of neurons in the output layer.
The optimum ANN model was obtained with 12 and 14 hid-
den neurons for PM2.5 and PM10, respectively. For the ANFIS
model, a matlab code was developed, and several models
using the hybrid optimization algorithm were trained with
different membership functions where the best model was

obtained using the “gbell” membership function. The SVR
on the other hand was trained with a radial basis function
(RBF). The RBF kernel was selected for the SVR model due
to a fewer number of parameters to be calibrated than the
polynomial and the sigmoid kernel functions. Sharghi et al.
(2018) also hinted that the RBF kernel mostly provides better
performance than the polynomial and the sigmoid kernels. For
comparison, a linear model (MLR) was also used for the PM
prediction. The result of the best models was given in Table 2.

From Table 2, it can be seen that all the AI-based
models give a very good performance in the PM2.5 predic-
tion based on the NSE values (>0.75) in both training and
testing stages. The result also demonstrated the higher pre-
diction capability of the ANFIS model with NSE, MAE
and a BIAS value of 91.03%, 2.26 μg/m3 and 0.09, respec-
tively in the testing stage. The ANN model ranked second
in terms of prediction efficiency and lastly SVR with an
NSE and MAE values of 85.86%, 80.41% and 3.02 μg/m3,
3.79 μg/m3, respectively. Scatter plots between observed,
and the computed values in training (Fig. 7) and testing
stages (Fig. 8) show that the data was more compacted
along the bisector line of the ANFIS plot indicating higher
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goodness of fit by the ANFIS model. The higher perfor-
mance of the ANFIS model compared to other models is
due to the combined power of the ANN model and the
fuzzy logic in prediction. The stability of the models

assessed by comparing the NSE values of the models in
the training and testing stages found the SVR model to be
more stable with 1.1% decrease in the NSE values follow-
ed by ANFIS (2.5%). The high stability of the SVR model

Table 2 Results of the base
models for the PM2.5 and PM10

Training Testing

Parameter Models NSE MAE (μg/m3) BIAS NSE MAE (μg/m3) BIAS

ANN 0.8894 2.6047 0.1331 0.8586 3.0230 0.1217

PM2.5 SVR 0.8152 3.1118 0.1590 0.8041 3.7994 0.1530

ANFIS 0.9353 2.1361 0.1091 0.9103 2.4659 0.0993

MLR 0.7808 3.8158 0.1950 0.7380 4.2261 0.1701

ANN 0.8445 6.1388 0.1460 0.7986 6.6695 0.1362

PM10 SVR 0.8619 5.6156 0.1336 0.8144 6.0285 0.1231

ANFIS 0.9701 2.9837 0.0710 0.9540 3.0343 0.0620

MLR 0.8168 6.4011 0.1523 0.7832 6.9738 0.1424
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Fig. 7 Scatter plots between observed and computed PM2.5 in the training phase for a ANN, b SVR, c MLR and d ANFIS
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in prediction has been reported by Fan et al. (2018).
Compared to MLR, all the AI-based models have shown
higher performance than the MLR with an improved per-
formance of 17%, 12% and 6.6% for ANFIS, ANN and
SVR, respectively. The superiority of the ANFIS model
over ANN and SVR in PM2.5 prediction was also reported
by Yeganeh et al. (2017).

All the models including theMLR have shown a very good
accuracy in PM10 prediction with an NSE value >0.75 in the
testing stage. The results indicated higher performance of the
ANFISmodel (NSE = 95.40% andMAE = 3.03) in the testing
stage followed by the SVR model (NSE = 81.44% and MAE
= 6.03) and finally ANN. Figures 9 and 10 have also indicated
better goodness of fit of the ANFIS model. The ANFIS model
was found to be more stable with a NSE decrease of 1.6%
between the training and testing stages. The high accuracy of
the ANFIS model in predicting PM10 in this study was sup-
ported by the study conducted by Prasad et al. (2016).

Comparing the performance of ANFIS, ANN and SVR
models with MLR has shown an improved performance of
17%, 3.1% and 1.5%, respectively.

The results obtained show that both PM10 and PM2.5 could
be modelled with minimum error using the ANFIS model.
Higher MAE values in PM10 models compared to PM2.5 are
due to the higher data range and standard deviation of the
PM10 data compared to the PM2.5 data. Except for the ANN
model, the PM10 models have higher NSE and lower BIAS
than the PM2.5 models indicating higher accuracy of PM10

models. Although ANFIS showed higher prediction accuracy
in terms of NSE, the MAE is high and needs to be minimized.

Ensemble techniques

The ensemble modelling technique was employed to combine
the advantages of the individual models for improved accura-
cy in prediction. The ANFISmodel being the most robust base
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Fig. 8 Scatter plots between observed and computed PM2.5 in the testing phase for a ANN, b SVR, c MLR and d ANFIS
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model in this study was used for nonlinear averaging of the
predicted PM2.5 and PM10 for enhanced prediction. The NF-E
model for both PM2.5 and PM10 was trained using the “gbell”
function and a hybrid training algorithm. WA-E and SA-E
were also developed for comparing the performance of the
NF-E. Only results of the best models reported using the sin-
gle models were used in the ensemble approach. The ensem-
ble result was given in Table 3. It can be seen that NF-E
performed better than all the ensemble models given NSE
values of 0.9594 and 0.9865 in the testing stage for the
PM2.5 and PM10, respectively. The WA-E and SA-E gave
NSE values lower than the best single model (ANFIS); this
is because in any linear averaging, the resulting value is al-
ways lower than the highest number (Nourani et al. 2020a).
The accuracy of the ensemble models was compared by a
radar plot (Figs. 11 and 12), and the result demonstrated a
higher accuracy of the NF-E with the smallest NSE change
between the training and testing stages. The modelling results

of the models (single and ensemble) were further compared
using a Taylor diagram (Figs. 13 and 14) which is a compre-
hensive tool for comparing models’ performances using three
statistical measures (RMSE, R and standard deviation). In the
Taylor diagram, the azimuthal position gives the correlation
between the actual and the computed values. The RMSE
values are directly proportional to the distance between the
observed and the predicted fields having the same unit with
the standard deviation. For any increase in correlation, the
value of the RMSE is decreased. The standard deviation of
the pattern increases with increasing radial distance measured
from the origin (Taylor 2001). A model is said to be a perfect
model by a reference point when its correlation coefficient is 1
(Yaseen et al. 2018). If the standard deviation of the computed
values is greater than the standard deviation of the observed
values, then it may lead to overestimation and vice versa;
hence, standard deviation close to that of the actual data is
always preferred. From Figs. 13 and 14, it is clear that NF-E
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Fig. 9 Scatter plots between observed and computed PM10 in the training phase for a ANN, b SVR, c MLR and d ANFIS
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outperformed all in the models in the prediction of PM2.5 and
PM10with highestR values and lowest RMSE value and value
of standard deviation closer to that of the actual data. The
improved performance of prediction models in the
prediction of PM2.5 and PM10 using the ensemble technique
has been proved by several studies including the study by

Shtein et al. (2019) using the generalized additive model en-
semble model. An improved performance in the prediction of
PM2.5 concentration using BP-NN ensemble (Feng et al.
2019) and feature extraction and stacking-driven ensemble
(Sun and Li 2020) supported the findings of this study.
Maciąg et al. (2019) also found the clustering-based ensemble
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Fig. 10 Scatter plots between observed and computed PM10 in the testing phase for a ANN, b SVR, c MLR and d ANFIS

Table 3 Results of the ensemble
modelling Training Testing

Parameter Models NSE MAE (μg/m3) BIAS NSE MAE(μg/m3) BIAS

NF-E 0.9762 1.4875 0.0658 0.9594 1.6342 0.0760

PM2.5 WA-E 0.8859 2.6991 0.1379 0.8581 3.1142 0.1254

SA-E 0.8817 2.7423 0.1401 0.8539 3.1639 0.1274

NF-E 0.9923 1.7348 0.04127 0.9865 1.6624 0.0340

PM10 WA-E 0.8946 5.0610 0.1204 0.8605 5.4304 0.1109

SA-E 0.8902 5.1514 0.1226 0.8554 5.5338 0.1130
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to improve the prediction accuracy of PM10 concentration in
London. The higher performance of the ensemble approach is
due to its ability to combine the unique advantage of each of
the base models.

Conclusion

The study proposed a novel nonlinear ensemble approach for
the prediction of PM2.5 and PM10 concentration in
Marylebone, London. The NF-E involves three main stages,
that is relevant input selection via MI, PCC and sensitivity
analysis, single modeling and lastly ensemble modeling.
Findings from the sensitivity analysis revealed NOx, NO,
NO2, CO and SO2 to be the most relevant air pollutants in
the prediction of PM2.5 and PM10 concentration after the back-
ground concentration, while the most relevant metrological
parameters were found to be WS and T. Q and CLS2 traffic
were found to be the most important traffic-related parame-
ters. The result of the ensemble models revealed higher pre-
diction accuracy of the NF-E than all the models (linear en-
semble and single models) which depending on the model
could enhance the performance of the base models by 4–
22% and 3–20% for PM2.5 and PM10, respectively at the test-
ing stage. Higher prediction accuracy demonstrated by the

proposed methodology was due to the careful selection of
the relevant input parameters in the single modelling stage
and combining the unique features of the four base models
in the ensemble stage. Although the NF-E estimated both the
PM2.5 and PM10 concentration with high accuracy, careful
selection of the base models to be used for the ensemble could
be a major limitation of the methodology, since the efficiency
of the ensemble models depends heavily on the results obtain-
ed using the base models. In other words, including the result
of a model with a low performance could result to a lower
prediction accuracy of the ensemble model. The efficiency of
the proposed methodology could be compared with other ad-
vanced models such as the emotional neural network and
linear-nonlinear hybrid models in future studies.
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