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photocatalyst by ‘photosensitizer’ graphene and the potential
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Abstract
We report the growth of CuS/ZnS (CZS) nanoparticles (NPs) on the graphene sheet by a facile green synthesis process. The CuS/
ZnS-graphene (CZSG) nanocomposites exhibit enhanced visible light photocatalytic activity towards organic dye (methylene
blue) degradation than that of CZS nanoparticles. To find the reason for the enhanced photo-activity, we propose a new
photocatalytic mechanism where graphene in the CZSG nanocomposites acts as a ‘photosensitizer’ for CZS nanoparticles.
This distinctive photocatalytic mechanism is noticeably different from all other previous research works on semiconductor-
graphene hybrid photocatalysts where graphene behaves as an electron reservoir to capture the electrons from photo-excited
semiconductor. This novel idea of the photocatalytic mechanism in semiconductor-graphene photocatalysts could draw a new
track in thinking for designing of graphene-based photocatalysts for solving environmental pollution problems and they also
show remarkable antimicrobial activities.
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Introduction

Graphene-based semiconductor nanocomposites have been
considered as one of the ultimate solutions for energy and
environmental issues after the discovery of photocatalytic hy-
drogen production by Fujishima and Honda in 1972
(Fujishima and Honda 1972). Among different environmental
issues, water pollution is one of the major problems through-
out the whole world (Yek et al. 2020; Nasrollahzadeh et al.
2020). During several years, significant progresses have been
built to solve the water pollution problems and numerous
nanomaterials have been constructed to be effective for waste-
water management by photocatalytic dye degradation (Akbari

et al. 2020; Das et al. 2018; Liang et al. 2017). In contrast,
explorations on using graphene-based ternary semiconductor
nanocomposites for the photocatalytic reaction are very few.
Recently, our group has reported (Tantubay et al. 2020) re-
duced graphene oxide-CuO/ZnO nanocomposite as an effi-
cient catalyst highlighting an intimate contact that is necessary
for the reduction of 4-nitroaniline to p-phenylenediamine.

Notably, several literature surveys show the tremendous
photocatalytic applications in the case of ternary nanocompos-
ites or graphene-based hybrid (e.g., CuO/ZnO, CuS/ZnS,
CdS/ZnO, CdS/ZnS, ZnO/ZnS) (Prabhu et al. 2019; Feng
et al. 2016; Ma et al. 2017; Tang et al. 2015; Lonkar et al.
2018) nanostructures. But there seems to be concurrence that
enhancement of photocatalytic activity has been increased af-
ter combining the semiconductors with graphene which acts
as an electron reservoir to accept the photo-generated elec-
trons from the semiconductor resulting prolonged separation
and lifetime between electron-hole pairs and this phenomenon
is responsible for photo-activity enhancement. From the past
decades, several metal sulfide semiconductor photocatalysts
have been proven for wastewater treatment in the presence of
different organic dyes or reagents (Wang et al. 2020; Mosleh
et al. 2019) due to their visible light response. Among those
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photocatalysts, ZnS is a typical IIB–VIA group (Feng et al.
2016) semiconductor photocatalyst which exhibits a 90%
quantum yield at 313 nm and it has a high conduction band
position because it can only absorb ultraviolet light due to its
wide band gap (~ 3.6 eV). However, to grow visible light-
active ZnS-based photocatalysts, doping of different elements
has been carried out and from the results; it is shown that
doping of foreign elements with ZnS successfully enhances
the absorbance of ZnS in the visible light region. Yu and his
co-workers reported that (Zhang et al. 2011) doped ZnS
shows significant enhanced photocatalytic activity under vis-
ible light irradiation after the surface moderation of ZnS
nanomaterials by CuS.

In the recent work, CuS/ZnS-graphene (CZSG) nanocom-
posites have been synthesized by a simple green approach
until now which is not reported as shown in Table 1. Green
nanotechnology (Iravani and Varma 2020; Kanwar et al.
2019) is a term that creates outcomes by following an envi-
ronmentally friendly path. Several processes have been devel-
oped to construct CuS/ZnS-graphene heterojunction such as
solvothermal method, sulfuration process, and hydrothermal
method (Wang et al. 2016; Shao et al. 2016; Harish et al.
2017) but all of them are chemical ways which have always
some drawbacks. So, the green approach (Naghdi et al. 2018;
Fahiminia et al. 2019; Nasrollahzadeh and Sajadi 2015, 2016;
Nasrollahzadeh et al. 2014, 2015a, b) is the safest path to grow
different shaped and dimensioned nanomaterials. It is noticed
that the role of graphene in the nanocomposites is to perform
as an organic dye-like photosensitizer (Zhang et al. 2012), and
upon visible light irradiation, the photo-generated electrons

canmove from graphene to the conduction band of ZnSwhere
ZnS is a wide band gap material. In this phenomenon, semi-
conductors do not participate in the photocatalytic process
under visible light irradiation and this type of photocatalytic
mechanism is almost distinct from the usual graphene-based
semiconductor photocatalysts to date where graphene acts as
an electron reservoir to arrest photo-generated electrons from
the conduction band of the semiconductor (Ghosh and Sen
2017). Therefore, our research of such a unique photocatalytic
reaction mechanism where graphene acts as a photosensitizer
(Singh and Khare 2015) as well as with the increase of
graphene content shows enhanced photocatalytic response
and a decrease of the particle size of the CuS/ZnS NPs grown
on the graphene surface.

Materials and methods

Materials

The materials consisted of ultrafine graphite powder
(Aldrich), potassium permanganate (Merck), hydrogen perox-
ide (Merck, 30%), conc. sulfuric acid (Merck, 98% pure),
hydrochloric acid (Merck, 30%), zinc sulfate (ZnSO4,
7H2O) (Merck), copper sulfate (CuSO4, 5H2O) (Merck),
green tea leaves, thiourea (SC(NH2)2) (Merck), liquor ammo-
nia (NH3), methylene blue (MB), doubled distilled water, eth-
anol (Merck), Mueller-Hinton agar (HiMedia), bacterial
strains, culture conditions, supplements, and Gram-negative

Table 1 Summary of photocatalytic performance of rGO/graphene-metal sulfide nanocomposites reported in recent papers till date

Sample name Synthesis route Amount of
catalyst

Concentration of dye Degradation route Time
(min)

Degradation (%) Reference
(year)

CuS-rGO Hydrothermal 30 mg 20 mg L−1 , 50 mL Visible light 60 99 (H2O2 used) Saranya et al.
(2015)

CuS/ZnS-rGO Hydrothermal via
sonochemical

0.1 g 30 mg L−1, 100 mL 300W Xe Lamp 50 99 (H2O2 used) Guan et al.
(2015)

ZnS-Graphene Solid-state method 50 mg 10 mg L−1, 100 mL 300 W Hg Lamp 80 93 (H2O2 not used) Chen et al.
(2015)

ZnS-rGO Microwave 50 g 1 × 10−4 M 250 W Xe Lamp 180 55 (H2O2 not used) Thangavel
et al.
(2016)

CuS/ZnS-rGO Solvothermal with
cation exchange resin

0.01 g 50 mg L−1 300W Xe Lamp 70 99 (H2O2 used) Yang et al.
(2017)

CuS-graphene Microwave 30 mg 5 mg L−1, 100 ml 500W Xe Lamp 50 90 (H2O2 used) Zeng et al.
(2018)

Cu7S4/ZnS-rGO Hydrothermal 25 mg 7 mg L−1, 100 mL 300 W Xe Lamp 60 99 (H2O2 not used) Li et al.
(2019)

CuS-ZnS/rGO Green Method 10 mg 10 mg L−1 500 W Xe Lamp 120 91 (H2O2 not used Present Work
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bacteria (Escherichia coli BL21 DE3 (E. coli), Aeromonas
sp.) and Gram-positive bacteria (Bacillus subtilis
(B. subtil is) , S taphylococcus aureus (S. aureus) ,
Cellulosimicrobium sp.).

Preparation of plant extract

Fresh leaves of green tea were collected from the local market
of Burdwan town (W.B) and the resulting mixture was boiled
and cooled down at room temperature, followed by severing
into small parts of known weight of these plant leaves in 80
mL distilled water. Then, the obtained transparent filtrate was
used as a reducing agent after passing through a Whatman 41
filter paper to remove the solid materials.

Synthesis of CuS/ZnS-graphene nanocomposite

Here, one of the precursors involved in the reaction is
graphene oxide (GO) which was prepared from graphite pow-
der followed by Hummers method (William et al. 1958). In
order to develop CZSG nanocomposite, a certain amount of
GO was dispersed in 150 mL of water through ultrasonic
treatment for 20 min. Then, an aqueous solution of ZnSO4,
7H2O and CuSO4,5H2O was added at once to the
above mentioned solution under stirring condition as shown
in Scheme 1. The resulting reaction mixture was stirred vig-
orously for a few minutes, followed by adjusting the pH of the
dispersion to 10 by adding liquor ammonia and then thiourea
dropwise. After the addition of green tea extract, the mixture

was agitated by heating at 80 °C for 2 h resulting in deep
brown precipitate and transferred to a round bottom flask to
get refluxed at 110 °C for 8 h. After completion of the reac-
tion, the black product was collected through centrifugation
and was washed using ethanol and doubled distilled water by
several times and then dried under vacuum condition at 70 °C
temperature. The same procedures were followed to prepare
different compositions of the nanocomposites with and with-
out GO and also graphene was prepared using the same pro-
tocol without the addition of metal salts. To synthesize differ-
ent compositions, the weight ratios of the GO, the metal salts,
and the sample names are given in Table 2.

Characterization techniques

Powder X-ray diffraction (XRD) measurement was carried
out using a powdered sample with X-ray powder diffraction
patterns recorded in a Bruker (D8 Advance) diffractometer
with Ni-filtered CuKα radiation (λ= 1.5414Å). For phase
identification, recorded data was compared with standard
JCPDS files (Joint Committee of Powder Diffraction
System). To study the chemical bonding, Fourier transform
infrared (FTIR) study was done by SHIMADZU IR Prestige-
21 and the test specimens were prepared by the KBr disk
method. The microstructure of the as-synthesized samples
was studied by a transmission electron microscope (Model
JEOL-1400) and UV-Vis absorption spectra were used to in-
vestigate the optical properties of the photocatalysts by record-
ing the data on SHIMADZU UV-1800 spectrophotometer.

Scheme 1 Synthesis diagram of CZSG nanocomposites
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Photocatalytic studies

The evaluation of the photocatalytic activity of the as-
prepared CZSG nanocomposites was performed at ambient
temperature by examining the photo-assisted degradation of
MB as the representative dye under visible light illumination.
In each photocatalytic experimental procedure, the
photocatalyst of a known dosage was added to the fixed
amount of dye solution (10 ppm). Then, the mixed dispersion
was magnetically stirred in the dark for 30 min before light
irradiation at room temperature to ensure the adsorption-
desorption equilibrium of MB. Then, visible light source
was irradiated to initiate the photocatalytic reaction. The con-
centration of MB was monitored from time to time using a
UV-visible spectrophotometer. The concentration of MB was
detected from the decrease in intensity of the absorbance band
at around 664 nm by a UV-Vis spectrophotometer. The de-
composition efficiency of MB could be determined by the
equation:

D% ¼ A0−Atð Þ
A0

� 100% ð1Þ

where A0 refers to the absorption of MB after the adsorption
equilibrium is achieved prior to the visible light illumination
and At is the absorption of MB at time interval t under visible
light illumination. Furthermore, photocatalytic kinetics was
usually expressed by the following equation:

ln
A0

At
¼ kt ð2Þ

where k is the apparent pseudo-first-order reaction rate con-
stant and t is the irradiation time.

Recyclability study

To evaluate the photostability of the nanocatalyst, five cycles
of dye degradation of MB have been carried out with the most
efficient catalyst (CZSG4). After each cycle of photo-
degradation test, the MB solution containing used
photocatalyst in dispersion state was centrifuged, washed with
water, and dried in vacuum, and thus, the used photocatalyst

was separated from the MB solution to be used for the next
cycle.

Antibacterial activity

The well diffusion method was used to determine the antibac-
terial activity of nanocomposites. The bacterial strains (men-
tioned in theMaterials and methods section) were used for this
study. Mueller-Hinton agar mediumwas made by adding 38 g
ofMueller-Hinton agar in 1.0 L ofMilli-Q water and sterilized
by autoclaving for 20 min. One hundred-microliter log phase
grown cells from each strain, E. coli, B. subtilis, S. aureus,
Aeromonas sp., and Cellulosimicrobium sp., were spread sep-
arately on the solid surface of the plates. The specified volume
of sample solutions was placed in the wells and the plates were
incubated at 37 °C for 24 h in a bacterial incubator after mak-
ing the wells of 3 mm in diameter using a sterile cork borer.
The zone of inhibition surrounding the wells was noticed by
the samples and each zone of inhibition was compared against
standard antibiotics of ampicillin (10 μL) and tetracycline (30
μL).

Results and discussion

XRD analysis was applied to determine the crystalline struc-
tures of as-prepared CZSG composites. The XRD patterns of
well-connected formation of CZSG composites with different
GO concentrations are displayed in Fig. 1a. It is obvious that
the XRD patterns of CZSG curves exhibit several diffraction
peaks at 2θ value at 29.45, 31.79, 32.71, 48.11, 52.51, 58.50,
and 59.16 corresponding to (102), (103), (006), (110), (108),
(203), and (116) planes of the hexagonal phase of CuS
(JCPDS no. 06-0464) (Guan et al. 2015; Shuaia et al. 2018)
respectively. Besides, the diffraction peaks at 2θ at 28.53,
47.65, and 56.8 have corresponded to the (111), (220), and
(311) planes of the cubic phase of ZnS (JCPDS no. 05-0566)
(Abideen and Teng 2018; Huang et al. 2020). There is no peak
of graphene oxide (GO) (001) in the composite samples which
clearly indicates the successful reduction of GO to graphene.

The existence of different oxygen-containing functional
groups on GO and the successful reduction of GO to graphene

Table 2 Weight ratios of ZnSO4,
7H2O, CuSO4, 5H2O, and GO
used for the preparation of CZSG
nanocomposites

Sample Sample
name

Amount of
ZnSO4, 7H2O (g)

Amount of
CuSO4, 5H2O (g)

Amount of
GO (g)

Weight ratio
(metal salt:GO)

CuS/ZnS-graphene1 CZSG1 1.51 0.7559 0.2036 1:0.09

CuS/ZnS-graphene2 CZSG2 1.51 0.7559 0.4072 1:0.18

CuS/ZnS-graphene4 CZSG4 1.51 0.7559 0.8144 1:0.36

CuS/ZnS CZS 1.51 0.7559 - -
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in the CZSG1 nanocomposite was confirmed by FTIR spec-
troscopy. As shown in Fig. 1b, the FTIR spectrum of GO
exhibited several characteristic peaks. The bands at 3450
and 1602 cm−1 have belonged to the stretching and bending
vibrations of the O–H group (Sennour et al. 2017; Khan et al.
2020). The band at 1726 cm−1 is attributed to C=O groups
(Abida et al. 2020) and the stretching vibrations at 1231, 1149,
and 1085 cm−1 are responsible for the C–O bond of epoxy
groups (Guan et al. 2014; Liu et al. 2019). The decrease in
intensity of these peaks and the appearance of a peak at 606
cm−1 (metal-S bond stretching) in the composite material con-
firm the formation of this nanocomposite (Cao et al. 2019;
Dutta et al. 2017).

In Fig. 2a, GO exhibits an π–π* transition at 230 nm and a
hump for n–π* transition at 305 nm, but after reduction, the
π–π* transition shifts to 270 nm in graphene indicating that
some groups are partially removed from the GO surface and
the conjugation in the structure is restored (Shams et al. 2019).
In CZS sample as shown in Fig. 2b, a hump around 300–380

nm has been found due to CuS/ZnSNPs (Corrado et al. 2010).
In the case of CZSG nanocomposite samples, two peaks at
around 267–271 nm and 368 nm are responsible due to the
π-π* transition in graphene and the formation of CZS NPs on
the graphene surface (Devi et al. 2015; Reddy et al. 2014).

The optical band gap study has been investigated to ensure
the band gap values in the nanocomposites. The band gap
values for the nanocomposites have been explored from the
optical absorption phenomenon which obeys Tauc’s formula
(Zanatta 2019; Morales et al. 2019). The value of the band gap
can be calculated using the fundamental absorption which
corresponds to the electron jump from the valance band to
the conduction band. The absorption coefficient (α) and the
incident photon energy (hϑ) are connected with the Tauc’s
formula given by the equation:

αhϑð Þn ¼ K hϑ−Eg

� � ð3Þ

Fig. 1 a XRD graphs of CZSG1, CZSG2, and CZSG4 (pink color for ZnS planes and black color for CuS planes and b FTIR spectra of graphene and
CZSG1

Fig. 2 UV-Vis spectra of a GO and graphene b CZSG nanocomposites

49129Environ Sci Pollut Res (2021) 28:49125–49138



where hϑ is the photon energy, α is the absorption coefficient,
K is a constant, Eg is the band gap energy, and the value of n is
2 for direct allowed transitions while it is ½ for the indirect
allowed transition. The variation of (αhν)2 vs. hν for the
samples reveals that the exploration of the linear portion to
the hν axis gives the energy gap of the direct band gap (Abdel-
Kader and Mohamed 2020). From Fig. 3, it is shown that the
values of the direct band gap for the CZS, CZSG1, CZSG2,
and CZSG4 are 3.04, 2.93, 2.90, and 2.87 eV, respectively,
which clearly indicate a band gap narrowing of the CZS sam-
ple after the coupling with graphene in CZSG nanocompos-
ites. According to a literature study (Wang et al. 2015a, b;
Lonkar et al. 2018), this result can be ascribed due to the
hybridization of carbonmaterials in which doping of graphene
into the CZS nanoparticles originates mid-gap energy levels
resulting in a decrease in band gap energy.

With the increase of graphene content in the CZSG nano-
composites, the particle size decreases as shown in Fig. 4. The
approximate sizes of the samples CZSG1, CZSG2, and
CZSG4 are 175–215 nm, 125, and 9 nm respectively. With
the increase of the graphene content in the nanocomposite
samples, the NP size grown on the graphene surface follows
the order CZSG1˃ CZSG2˃ CZSG4. This is because of the

fact that there are many negative groups on GO which act as
good nucleation sites for the NP growth (Stanek et al. 2016;
Paranthaman et al. 2019). So, with the increase of the GO
content, nucleation sites increase, and the probability of ag-
glomeration decreases, as a result, the size of the NPs de-
creases (Khan et al. 2015; Estelléa et al. 2018).

Photocatalytic study

It was believed that the photocatalytic activity of a
photocatalyst is enhanced depending on the (i) separation ef-
ficiency of the photo-excited electron-hole pairs and the (ii)
amount of the reactive oxygen species (ROS) (Riente and
Noël 2019). Under visible light irradiation, ZnS cannot re-
spond due to a large band gap value (Wang et al. 2015a, b)
but CuS is active in this condition (Adhikari et al. 2017).
Therefore, a heterojunction is formed between ZnS and CuS
to transfer the photo-generated electrons from CB of CuS to
CB of ZnS leaving the holes in the VB of CuS (Shao et al.
2016) and the resulting suppression of recombination of
electron-hole pairs occurs and thus the photocatalytic activity
is increased (path (I)) as shown in Scheme 2. In Fig. 5a, the
bare CZS sample shows the photocatalytic activity 63.66%

Fig. 3 UV-Vis absorption data fitted by Tauc’s formula for direct band gap of a CZS, b CZSG1, c CZSG2, and d CZSG4 nanocomposites
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Fig. 4 TEM images of a CZSG1, c CZSG2, and e CZSG4 nanocomposites and b, d, and f are size distribution graphs of CZSG1, CZSG2, and CZSG4
nanocomposites
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within 100 min, but after the incorporation of graphene with
the binary CZS nanocomposite, the enhanced photocatalytic
activities become 79.71%, 87.48%, and 90.21% in the case of
nanocomposite samples CZSG1, CZSG2, and CZSG4 respec-
tively (Fig. 5b–d). The bare CZS exhibited less photocatalytic
activity than the CZSG nanocomposites due to the aggrega-
tion of CZS NPs which results in larger sized NPs. Actually,
graphene acts as an organic dye-like macromolecular ‘photo-
sensitizer’ (Feng et al. 2014; Gálveza et al. 2019), where under
visible light irradiation, the electrons on the highest occupied
molecular orbital (HOMO) of graphene were at first excited to
the lowest unoccupied molecular orbital (LUMO) of graphene
and then the photo-excited electrons in graphene move to the
CB of ZnS, resulting in the separation of electron-hole pairs.
Thus, in CB of ZnS, the number of photo-excited electrons
has been increased after the addition of graphene in CZSG
nanocomposite (path (II)). For this reason, with the increase
of graphene content, the photocatalytic activity gradually in-
creases in the graphene-based nanocomposite samples than
that of bare CZS nanocatalyst. The rate constants of the MB
degradation for the samples are given in Table 3.

Recyclability tests

Since CZSG4 nanocomposite shows excellent photo-
degradation efficiency, the photocatalytic stability was inves-
tigated using this composite by recycling tests (Rajendran
et al. 2016). The results of the recyclability test are shown in
Fig. 6a, which shows a slight decrease in its catalytic perfor-
mance after each cycle. This photocatalyst exhibits excellent

photostability even after five cycles which further confirms
the excellent stability of the nanocomposite under visible light
irradiation.

Antibacterial activity

In the present study, the antibacterial activity of the synthe-
sized samples was tested by a well diffusion method using
bacterial strain E. coli BL21 DE3 Gram-negative, S. aureus
Gram-positive and B. subtilis Gram-positive, Aeromonas sp.
Gram-negative, and Cellulosimicrobium sp. Gram-positive.
The CZS (P), CZSG1 (Q), CZSG2 (R), and CZSG 4 (S) were
promising in exhibiting their ability to destroy B. subtilis, a
Gram-positive bacterium. The zone of inhibition was mea-
sured for P, Q, R, and S at 50 mg mL−1 concentration, shown
in Table 5. The antimicrobial activities of P, Q, R, and S were
compared against two standard antibiotics (Fig. 7 and Table 4)

Table 3 Comparison of the degradation efficiency, the rate constant,
and relative correlation coefficient of different as-prepared nanocompos-
ite samples

Sample % of Degradation Rate constant (min−1) R2 value

CZS 63.66% 0.010122 0.7932

CZSG1 79.71% 0.01595 0.9800

CZSG2 87.48% 0.02078 0.9624

CZSG4 90.21% 0.02323 0.9827

Scheme 2 a, b Pictorial and schematic representation of photocatalytic mechanism respectively
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Fig. 5 Absorption spectra of MB solution in the presence of a CZS, b CZSG1, c CZSG2 and d CZSG4 respectively under visible light irradiation. e, f
Photocatalytic degradation of MB and rate kinetics in the presence of different CZSG photocatalysts under visible light irradiation
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ampicillin and tetracycline. As shown in Fig. 6b, it was clear
from the study that P, Q, R, and S nanoparticles have good
antimicrobial activities on bacterial strains (Table 5).

± Standard deviation

Conclusions

In summary, CuS/ZnS-graphene nanocomposites with dif-
ferent graphene content have been fabricated via a simple
greener approach and different characterization techniques

Fig. 6 a Recyclability tests of CZSG4 nanocatalyst for degradation of MB dye. b Bar diagram showing zone of inhibition (in mm) introduced by CZS
(P), CZSG1 (Q), CZSG2 (R), and CZSG4 (S) against various microorganisms

Table 5 Antibacterial activities of
P, Q, R, and S NPs Serial

no.
Bacterial strain Concentration (mg

mL−1)
Volume
(μL)

Zone of inhibition (mm in
diameter)

1(P) E. coli 50 30 4.17 ± 0.29

B. subtilis 50 30 11.67 ± 0.58

S. aureus 50 30 10.34 ± 0.58

Aeromonas sp. 50 30 7.67 ± 0.58

Cellulosimicrobium
sp.

50 30 7.67 ± 0.58

2(Q) E. coli 50 30 4.67 ± 0.58

B. subtilis 50 30 13.84 ± 0.29

S. aureus 50 30 10.84 ± 0.29

Aeromonas sp. 50 30 7.34 ± 0.58

Cellulosimicrobium
sp.

50 30 10.84 ± 0.29

3(R) E. coli 50 30 4 ± 0

B. subtilis 50 30 10.84 ± 0.29

S. aureus 50 30 10 ± 0

Aeromonas sp. 50 30 10 ± 0

Cellulosimicrobium
sp.

50 30 4.34 ± 0.58

4(S) E. coli 50 30 4 ± 0

B. subtilis 50 30 10.16 ± 0.29

S. aureus 50 30 9.67 ± 0.58

Aeromonas sp. 50 30 10.67 ± 0.58

Cellulosimicrobium
sp.

50 30 -

49134 Environ Sci Pollut Res (2021) 28:49125–49138



confirm the synthesis of these nanocomposites.
Microscopic study reveals that with the increase of the
amount of graphene in the nanocomposites, the particle
size of the CZS nanoparticles decreases due to a decrease
in aggregation in high surface area graphene sheet and
band gap energy also diminishes. The CZSG nanocom-
posites can act as visible light photocatalysts towards or-
ganic dye degradation. It has been exemplified that the

visible light–driven nanocomposites/photocatalysts show
remarkably efficient dye degradation capability due to
the role of graphene as a photosensitizer. Due to having
promising effects in various strains of microorganisms,
the nanocomposites can act as potential antibacterial
agents. These findings could assist to fabricate new
graphene-based photocatalysts with better photocatalytic
performance and stability in visible light irradiation.

Table 4 Antibacterial activity of
standard antibiotics against
bacterial strains

Bacterial strain Concentration of antibiotics (mg mL−1) Zone of inhibition for antibiotics (mm in
diameter)

Ampicillin Tetracycline

E. coli 10 23.67 ± 0.58 25.84 ± 0.29

B. subtilis 10 23.34 ± 0.58 24.84 ± 0.29

S. aureus 10 29.67 ± 0.58 24.67 ± 0.58

Aeromonas sp. 10 - 28 ± 0

Cellulosimicrobium sp. 10 26.34 ± 0.58 28.34 ± 0.58

Fig. 7 Antibacterial activity of CZS, CZSG1, CZSG2, and CZSG4 (P, Q, R, and S in the picture respectively) nanocomposites against a E.coli, b
B. subtilis, c S. aureus, d Aeromonas sp., and e Cellulosimicrobium sp. respectively
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