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Abstract
Industrial restructuring is a significant measure for low-carbon transition. In principle, carbon emissions can be effectively
reduced by limiting the output of high-emission sectors; however, the socio-economic effects of the sectors should also be
considered. Moreover, owing to the limitations of the method or data, the interactions between households and production sectors
have been neglected in the study of industrial restructuring, resulting in an incomplete and potentially biased understanding of the
role of households. To fill this gap, we applied a semi-closed input–output model to identify key sectors by economic and
emission linkages and measure the employment impacts (direct, indirect, and induced) of reduced carbon emissions. The
empirical results for China in 2010–2018 showed that relatively small changes in key emission sectors would significantly affect
the economic growth, and reduced carbon emissions reduction would generally lead to high job losses. Promoting labor-intensive
sectors, particularly the service sector, is conducive to achieving a “multi-win” situation for economic development, carbon
emission reductions, and stable employment. Furthermore, our results highlight the significance of households: expanding
consumption and increasing household income can bring multiple benefits, such as economic growth, job creation, and low
carbon emissions. These findings can provide useful information for identifying the optimized path of restructuring and helping
achieve the sustainable development of the environment, economy, and society.
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Introduction

With the rapid development of the world economy, energy
supply and environmental problems have become increasing-
ly severe (IPCC 2013; Quadrelli and Peterson 2007). The
transition to a low-carbon economy has become a basic strat-
egy for countries worldwide to help address climate change,
maintain energy security, and reduce environmental pollution
(de Miguel et al. 2019). As the world’s largest developing

economy, China has achieved remarkable socio-economic
progress at large resource and environmental costs since the
reform and opening-up about 40 years ago. China has become
the world’s largest emitter of CO2, with CO2 emissions from
fuel combustion increasing to 9570.8 Mt in 2018, accounting
for 28.6% of the world’s total (IEA 2020). Therefore, accel-
erating the transition to a low-carbon economy is not only
imperative for China’s sustainable development but also a
strategic choice to actively engage in the global climate
change campaign. Industrial restructuring and optimization
are important means for achieving economic transition and
reduced carbon emissions (Wen and Wang 2019).

Industrial restructuring is a phenomenon that adjusts the
proportions of various sectors to meet one or more target
(Mi et al. 2015). Without considering other targets, CO2 emis-
sions can be effectively reduced by restricting high-emission
sectors but expanding low-emission sectors. However, in
practice, reducing emissions by output restriction will influ-
ence the economic income of some sectors and may hinder

Responsible Editor: Eyup Dogan

* Yadong Ning
ningyd@dlut.edu.cn

1 Key Laboratory of Ocean Energy Utilization and Energy
Conservation of Ministry of Education, School of Energy and Power
Engineering, Dalian University of Technology, No.2 Linggong
Road, High-Tech Pack, Dalian 116024, Liaoning, China

https://doi.org/10.1007/s11356-021-14040-z

/ Published online: 10 May 2021

Environmental Science and Pollution Research (2021) 28:50767–50789

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-14040-z&domain=pdf
http://orcid.org/0000-0003-0342-7934
mailto:ningyd@dlut.edu.cn


national economic growth to some extent. Consequently, eco-
nomic and emission performance should be evaluated jointly
when discussing the roles of various sectors in a country
(Chang 2015). Further, employment impacts are one of the
most important social impacts associated with industrial
restructuring, as well as one of the most crucial concerns for
formulating policies. The adjustment of industrial structures
will inevitably affect employment (industry is an important
carrier of labor) and China’s large pool of human resources.
Given the increasing employment pressure and permanent
structural contradictions, employment impacts should be con-
sidered during industrial restructuring. Protecting the environ-
ment, promoting the economy, and maintaining social stabil-
ity are three important dimensions for sustainable develop-
ment. Achieving a multi-win situation for the environment,
economy, and society has aroused widespread attention from
all sectors of society and is the mainmotivation for conducting
this study.

In addition to considering multiple targets, industrial
restructuring needs to focus on sectoral linkages. Given that
sectors are closely linked in an economy and there are com-
plex input–output linkages between sectors, measures imple-
mented in a sector could significantly affect other sectors. For
instance, some emission-intensive sectors involve longer in-
dustrial chains and occupy crucial positions in the supply
chain as prominent suppliers of raw materials and intermedi-
ate products to other sectors. Limiting the output of these
sectors will not only constrain the sector itself, but it can also
affect the development of related sectors through complicated
sectoral linkages and even the entire production chain.
Consequently, industrial restructuring should not only focus
on the role of individual sectors but also the intersectoral link-
ages. Linkage analysis is an effective approach that enables us
to look deep into the intersectoral linkages and identify the
direction of industrial restructuring for a low-carbon economy
(Chang 2015). Comparisons of the strength of linkages for the
sectors in an economy provide one mechanism for identifying
key sectors in that economy—those sectors that are most con-
nected and, therefore, in some sense, most “important” (Miller
and Blair 2009).

Industrial restructuring typically concerns the structure of
production sectors; however, households also play an impor-
tant role in promoting economic and social operations, and the
interactions between households and production sectors re-
quire attention. Household labor remuneration has a ripple
effect on the production of various industrial sectors, while
household consumption acts as an important link in the labor
reproduction chain, as well as the fundamental basis and con-
dition of economic activities. Consequently, households affect
the output of production sectors through household consump-
tion and further affect carbon emissions; in turn, production
sectors affect household consumption spending through labor
compensation (Zhang et al. 2017). Furthermore, for the

analysis of social impacts, changes in the income and con-
sumption of the workers employed in a particular set of related
industries will induce considerable employment changes.
Therefore, the induced employment impact resulting from
the changes in household consumption and labor income re-
quires attention (Markaki et al. 2013). Unfortunately, owing to
the uncertainty and limitations of the method or data, the
production–household linkage and induced employment im-
pact have usually been neglected or poorly measured, leading
to an incomplete and potentially biased understanding of the
role of households and their social impacts.

Against this background, this paper aims to provide an
input–output based framework to identify the direction of in-
dustrial restructuring for a low-carbon transition by economic
and emission linkage analysis and to quantify the full scope of
the employment impacts of carbon emissions reduction (di-
rect, indirect, and induced). A semi-closed input–output mod-
el with partially endogenized consumption is used to evaluate
sectoral linkages and quantify employment impacts for the
first time. Unlike the conventional input–output analysis, this
model considers both the production–household linkage and
household consumption structure (endogenous and exoge-
nous). On this basis, this study calculated the economic and
carbon emission diffusion coefficients of 28 sectors in China
and analyzed the economic and emission linkages to identify
key sectors of industrial restructuring. In this study, we con-
ducted a full-scope evaluation of the employment impacts—
particularly the induced effects—and showed reduced devia-
tions in the evaluation results. More comprehensive interac-
tions between production sectors and households can be ob-
served by these means, and our method will help reduce de-
viations when measuring true impacts and provide useful in-
formation for making policies. This study proposes a new
indicator, job losses per unit of carbon emissions reduction,
which makes it possible to intuitively quantify the impacts of
reduced carbon emissions on employment and may further
contribute to reducing the negative impacts of carbon emis-
sion reduction measures on the labor market.

The remainder of this paper is organized as follows. The
“Literature review” section reviews the existing literature on
sectoral linkage analysis and employment impacts, the
“Methodology and data” section describes the model and data
employed in this research, the “Results and discussion” sec-
tion presents the main results and a detailed discussion, and
the “Conclusions and policy implications” section provides
the conclusions and policy implications.

Literature review

Sectoral linkage analysis is one of the commonmethods in the
study of industrial restructuring. One well-known early study
that is often cited in research on linkage analysis is that of
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Chenery and Watanabe (1958), who used linkages to analyze
the structure of production; their report brought an increasing
amount of literature on this topic (Jones 1976; Cella 1984;
Dietzenbacher 1992; Dietzenbacher and Van Der Linden
1997; Luo 2013). Recently, linkage analysis methods have
been applied to address environmental issues, particularly en-
ergy and carbon emissions (Guo et al. 2018; Wen and Wang
2019; Wang et al. 2020). In the literature on linkage analysis,
backward and forward linkages are concepts usually used to
describe the relationships between sectors (Cai and Leung
2004). Generally, backward linkages are the case wherein a
sector’s final demand can pull other sectors’ output (Zhao
et al. 2015). According to the classical input–output theory,
the final demand is the driving force of economic growth, and
backward linkage is important when determining CO2 emis-
sions driven by the final demand for goods and services (e.g.,
household consumption, government consumption, and capi-
tal accumulation) in the supply chain (Peters 2008;Wang et al.
2017; Ma et al. 2019). Meanwhile, forward linkages are the
case wherein additional supply from a sector will push other
sectors to use the additional output and produce more prod-
ucts. The Ghosh model is often used to measure the forward
linkage from the supply perspective (Dietzenbacher 2002).
Owing to the joint stability problem of input–output produc-
tion and allocation coefficients (Chen and Rose 1989;
Dietzenbacher 1989), there are some debates on the simulta-
neous use of the Leontief and Ghosh models (Cella 1984;
Lenzen 2003). For the purposes of our study, it is advisable
to conduct linkage analysis from the demand perspective com-
pared to the supply-driven Gosh model. Therefore, this paper
mainly focuses on backward linkages based on the Leontief
model.

Numerous studies have conducted sectoral linkage analysis
for identifying key sectors. Wen and Wang (2019) found that
construction was China’s crucial sector in the backward direc-
tion. Guo et al. (2018) found that while driving energy con-
sumption and carbon emissions in other sectors, China’s key
sectors consume large amounts of fossil energy and generate
large amounts of emissions owing to the demands of other
sectors. The results reported by Wang et al. (2020) showed
that, among all the backward linkage-related key sectors, the
production and supply of electricity and water have the
greatest pulling effects, followed by metal mining. Although
these impressive works have inspired our study, two points
require further discussion. First, carbon emission reductions
and economic growth should be considered jointly when iden-
tifying key sectors for a developing economy.Most studies on
sectoral linkage analysis focus on only the monetary (Chenery
and Watanabe 1958; Jones 1976; Cella 1984; Dietzenbacher
1992; Dietzenbacher and Van Der Linden 1997; Luo 2013) or
environmental issues (Guo et al. 2018; Zhao et al. 2015). As
mentioned above, adjusting the industrial structure to meet
carbon emission reduction targets will limit the development

of some industries, which may damage the national economy
(Chang 2015; Wen and Wang 2019). Owing to the increasing
pressing environmental issues, it is of practical significance to
consider economic growth in the issue of carbon emissions
reduction to identify key sectors with above-average econom-
ic performance and below-average environmental perfor-
mance (Lenzen 2003; Wang et al. 2013b). Chang (2015)
found that expanding the concept of production linkage into
emission issues resulted in considerably different conse-
quences. Therefore, to balance the targets of economic growth
and carbon emission reductions, the economic and carbon
emissions linkages are analyzed jointly in this study to evalu-
ate the role of various sectors and identify key sectors of in-
dustrial restructuring.

Second, within the input–output framework, previous sec-
toral linkage analysis (Jones 1976; Cella 1984; Dietzenbacher
1992; Dietzenbacher and Van Der Linden 1997; Luo 2013;
Guo et al. 2018; Wang et al. 2020) mainly uses the traditional
open input–output models, which considers the household
consumption an exogenous variable of the model, while pro-
duction sectors are considered endogenous. Zhang et al.
(2017) pointed out that previous studies have neglected the
fact that the traditional input–output model can only capture
the impact of households on production sectors. In practice,
household consumption and production activities interact and
affect each other, resulting in two-way feedback between pro-
duction sectors and households. Production sectors affect
household consumption spending through labor compensa-
tion, and, in turn, household consumption affects carbon emis-
sions and the output of production sectors (Zhang et al. 2017).
To address this gap, the semi-closed input–output model pro-
vides the possibility of considering the production–household
linkage in corresponding situations (Chen et al. 2015).
Because of the model’s advantage in dealing with household
consumption and income, it has attracted considerable atten-
tion from researchers. Miyazawa’s (1976) important study
introduced the distribution of income and expenditure into
the input–output model and led to further studies by Batey
(1985); Cloutier and Thomasin (1994); Sonis and Hewings
(1999); Wakabayashi and Hewings (2007), and Steenge
et al. (2020). These studies have been focused on dividing
the households into different groups by certain characteristics
and made a valuable contribution concerning income distribu-
tion questions and demographic economic analysis. However,
one limitation of the semi-closed input–output model has re-
ceived scant attention. Chen et al. (2016) indicated that this
model does not accurately reflect real household consumption
behavior, because household consumption is fully
endogenized and neglects the household consumption struc-
ture in this model. More specifically, the model assumes that
current consumption depends only on current income
(Dietzenbacher and Günlük-Şenesen 2003). However, house-
hold consumption is also affected by several other factors,
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such as previous spending levels, expected revenue, and con-
sumption habits, according to the relative income hypothesis
and the life cycle-permanent income hypothesis (Friedman
1957; Modigliani 1986). The role of households is exaggerat-
ed in fully endogenized consumption models. To address this
problem, a semi-closed input–output model with partially
endogenized consumption was proposed and applied to exam-
ine the impacts of the Chinese stimulus package on the gross
domestic product (Chen et al. 2016). Following Chen’s frame-
work, linkage indicators based on the semi-closed input–
output model with partially endogenized consumption were
conducted in this study.

As one of the most significant social impacts associated
with industrial restructuring, employment impacts have re-
ceived increasing attention (Mu et al. 2018). Recently, there
has been an increasing amount of literature on employment
impacts. Generally, employment impacts tend to be summa-
rized into three categories, namely, direct, indirect, and in-
duced, based on the relevancy of economic impacts
(Lambert and Silva 2012). As an illustration of the three dif-
ferent effects, consider a sector j: if there is a unit increase in
final demand for a product of sector j, it can be assumed that
there will be an equivalent increase in the output of that sector
as producers react to meet the increased demand. Employment
will be generated in that sector as a result of the new output,
which is the direct effect. As the output of sector j increases,
there will also be an increase in the demand on its domestic
suppliers and so on in the supply chain, and employment will
also increase in these sectors, which is the indirect effect.
Owing to these direct and indirect increases in employment,
the household income level will grow across the domestic
economy. A proportion of this increased income will be re-
spent on domestically produced products, generating employ-
ment in each sector based on their newly increased outputs,
which is the induced effect (Miller and Blair 2009).

In recent years, two primary approaches have been
attempted to investigate employment impacts, analytical and
input–output methods, both of which have their advantages
and drawbacks. Analytical methods are commonly utilized to
evaluating the employment impact at a regional or local level,
which generally relies on extensive surveys. For instance,
Moreno and López (2008) conducted an analytical study of
forecasting employment generated by renewable energy, Wei
et al. (2010) presented an analytical model used for estimating
net employment effects based on different policies and
scenarios, and Yi (2013) estimated the number of green jobs
for climate and clean energy policies. The analytical method
tends to be more transparent, easily understood, and able to
have its sensitivity evaluated; however, it often provides direct
effects and may not be able to capture the indirect and induced
effects (Blanco and Rodrigues 2009; Lambert and Silva 2012).
Meanwhile, input–output methods are the most well-known
tools for analyzing the impacts of a sector on all the other

sectors in an economy and are typically used for determining
the economic impacts of a particular investment or activity. In
recent years, input–output methods have been increasingly ap-
plied to study the countrywide employment impacts arising
from changes in a particular sector. Such studies involve the
employment impacts of the power (Stoddard et al. 2006;
Tourkolias and Mirasgedis 2011), wind energy (Ulrich et al.
2012; Simas and Pacca 2014), biofuel (Malik et al. 2014), and
renewable energy sectors (Garrett-Peltier 2017; O’Sullivan and
Edler 2020). When evaluating employment impacts, the input–
output method often adopts one of the following models: the
input–output model, social accounting matrices, computable
general equilibrium models, and other extensions of input–
output models (Alarcon et al. 2011; Lambert and Silva 2012;
Markaki et al. 2013; Zhou 2017). Compared to the analytical
methods, input–output methods can determine direct and indi-
rect effects and enable the calculation of induced effects caused
by changes in labor income and consumption in certain models
(Bohlmann et al. 2019).

Over the past decade, researchers have shown an increased
interest in evaluating the employment impacts in China. A
case study of China’s power generation sector by Cai et al.
(2011) found that, when evaluating the employment impacts,
it is necessary to consider not only the intuitive direct impacts
but also the indirect impacts, which may have a greater effect
on final results. Wang et al. (2013a) evaluated the employ-
ment impacts of renewable energy policies in China and
calculated both the direct and indirect employment impacts
of the clean development mechanism projects on the power
sector. Their results showed that employment impacts are
mainly manifested in the employment opportunities created
by other sectors. Mu et al. (2018) found that induced employ-
ment impacts have usually been neglected, resulting in an
incomplete result. To date, far too little attention has been paid
to the induced effects for the limitations of the method or data,
which may lead to downward deviation of quantification of
employment impacts. However, all effects should be consid-
ered to obtain a comprehensive and accurate evaluation of the
employment impacts. Previous studies have failed to fully
consider the induced effects. Although these effects can be
evaluated using the traditional semi-closed input–output mod-
el, the linkage between the household and production sectors
will most likely be overestimated. Consequently, results re-
garding the employment impacts obtained from this model
will most probably be biased in an upward sense (Chen
et al. 2016). This happens because, as mentioned previously,
the traditional semi-closed input–output model is a fully
endogenized consumption model, the household consumption
structure (endogenous and exogenous) has been neglected.
Therefore, a semi-closed input–output model with partially
endogenized consumption was adopted by this study to re-
evaluate the employment impacts. It is conducive to more
accurately measure the impact of household consumption
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and income on employment. Based on conventional employ-
ment multipliers, this study established a new indicator (job
losses per unit of carbon emissions reduction) to intuitively
quantify the employment impacts of carbon emissions reduc-
tion, which may contribute to reducing the shock to labor
employment caused by carbon emissions reduction policies.
Thus, it is of great practical significance for both the low-
carbon transition and maintenance of employment levels in
China.

Methodology and data

As a well-structured model, the input–output model can eval-
uate the economy-wide and sectoral impacts of the changes in
the final demand for outputs of a particular sector or group of
sectors on key socio-economic variables, such as output, value
added, and employment. The input–output model can be cat-
egorized into three types, namely, open, closed, and semi-
closed, based on its method of processing the final demand.
Given that households play an active part in driving produc-
tion and maintaining social operation, the interactions be-
tween households and production sectors cannot be neglected.
This study adopted a semi-closed input–output model to cap-
ture the interactions between households and production sec-
tors. The basic assumption of the input–output model is valid
in this study.

Semi-closed input–output model with partially
endogenized consumption

In the conventional semi-closed input–output model, house-
holds are fully endogenized. The row vector (labor input row)
is the labor remuneration paid by each sector and the income
distributed to households through other means, whereas the
column vector is the consumption of various sectors’ products
and services by households. In the semi-closed input–output
model with partially endogenized consumption, a consump-
tion decomposition formula is used to divide household con-
sumption into endogenous and exogenous consumption,
which are determined by the current household income and
other factors, respectively. Accordingly, household income is
also divided into exogenous and endogenous income, which
are defined as income from labor compensation related to
production and income not related to production in the ac-
counting period (e.g., income from wealth and transfers), re-
spectively (Chen et al. 2016). Only endogenous parts are
closed into the intermediate flow matrix in this model, this
further improves the semi-closed model in terms of its consid-
eration of household consumption structure and can even
more accurately reflect the interactions between households
and production sectors. Thus, it is a good tool for impact
analyses, especially at the sector level.

In the semi-closed input–output model with partially
endogenized consumption, the construction process of
the household column vector (endogenous consumption)
mainly includes the following steps: estimating the endog-
enous consumption coefficient of eight categories of con-
sumption commodities, using the estimated bridge matrix
to convert the endogenous consumption coefficient of
eight categories of consumption commodities to those of
input–output sectors, and calculating endogenous and ex-
ogenous consumption using the endogenous consumption
coefficient and consumption decomposition formula. The
estimation of the endogenous consumption coefficient
adopts the time-varying parameter model, maximum like-
lihood estimation, and Kalman filtering algorithm
(Hamilton 1994; Havey 1987). The construction of the
household row vector (endogenous income) mainly uses
statistical data to estimate the endogenous income coeffi-
cient and then calculates the exogenous and endogenous
income. A more detailed modeling process is presented in
Appendix A. The framework of the semi-closed input–
output model with partially endogenized consumption is
shown in Table 1. Accordingly, the following balance
equation can be obtained:

∑
n

j¼1
Zd
ij þ Cd;en

i þ Cd;ex
i þ Cd;g

i þ Fd
i þ Ed

i ¼ X i; ð1Þ

∑
n

j¼1
H j þ hex ¼ xnþ1: ð2Þ

Here Zd
ij denotes the intermediate input from sector i that

flows to sector j; Cd;en
i and Cd;ex

i , the endogenous and exoge-
nous consumption of goods and services delivered by domes-

tic sector i to households, respectively; Cd;g
i , the value of gov-

ernment purchases of goods and services from sector i; Fd
i , the

value of gross capital formation of sector i; Ed
i , the export of

goods and services from sector i; Xi, the gross output of sector
i; xn + 1, the total household income (composed of two parts:
endogenous income Hj and exogenous income hex); and Xj,
sector j’s gross input, is equal to the gross output of that sector.

The expanded direct input coefficient matrix of the domes-

tic product of this model is denoted by A*d ¼ Ad Cd

W0 0

� �
,

where Ad denotes the basic direct input coefficient matrix of
the domestic product, which is calculated using the open
input–output model. Its elements are denoted by

adij ¼ Zd
ij=X j. The column vector Cd consists of the endoge-

nous consumption coefficient of the domestic product

αd
i ¼ Cd;en

i =xnþ1. W′ denotes a row vector consisting of the
endogenous income coefficient wj =Hj/Xj. The interaction
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between the household row and household column (the shad-
ed area of Table 1) is set to zero in our framework.1 The total
final demand column vector of domestic product is recorded

as Yd, whose elements are denoted by Yd
i ¼ Cd;ex

i þ Cd;g
i þ

Fd
i þ Ed

i .
Equations (1) and (2) can be expressed in matrix form as:

Ad Cd

W0 0

� �
X

xnþ1

� �
þ Yd

hex

� �
¼ X

xnþ1

� �
; ð3Þ

and Eq. (3) can be further written in the form of

I−A*d
� �−1

Y* ¼ X*; ð4Þ

where Y* ¼ Yd

hex

� �
and X* ¼ X

xnþ1

� �
. B

* ¼ I−A*d
� �−1

is

known as the Leontief inverse or the total requirements
matrix.

Measurement of sectoral linkages

Linkage analysis is a well-known approach to describe
intersectoral relationships and identify key sectors.
Rasmussen (1956) proposed using the column sums of the
Leontief inverse to measure intersectional backward linkages.
The diffusion coefficient is an important parameter to let nor-
malized backward linkages be the measures and is defined as
the ratio of a sector’s backward linkage and sector-wide

average level (Liu 2002). This study adopted an improved
weighted average economic diffusion coefficient to assess
the economic linkage and compare different industrial sectors’
pulling impact on the economy. The formula can be expressed
as follows:

β j ¼
∑
n

i¼1
b
*

ij

∑
n

j¼1
∑
n

i¼1
λ jb

*

ij

; ð5Þ

where b
*
ij is the element of the total requirements matrix B

*
.

The denominator is the weighted average of the molecular
value of various sectors, representing the sector-wide average,
and the weight λj is the ratio of sector j’s final demand to the
total final demand of all sectors. Further, βj > 1 indicates that a
unitary increase in final demand for sector j’s output will gen-
erate an above-average increase in economic activity, and the
opposite is indicated when βj < 1.

To analyze carbon emission linkages, first, CO2 emissions
accounting is necessary. Fossil fuel combustion and industrial
production processes are the primary sources of carbon emis-
sions in China. Further, CO2 emissions from municipal waste
incineration are considered in this study. Based on the ac-
counting method of the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories (IPCC 2006), the accounting
equation of CO2 emission from fossil fuel combustion is
expressed as follows:

C f ¼ ∑
k
Ejk � f k ; ð6Þ

where Cf is the CO2 emissions of industrial sectors from fossil
fuel combustion, Ejk is the energy k consumptions of industrial
sector j, and fk refers to the carbon emission coefficient of

Table 1 Framework of the semi-closed input–output model with partially endogenized consumption

1 In some analytical frameworks (Cloutier and Thomasin 1994; Miller and
Blair 2009), the interactions between the household row and household col-
umn are positive values. In these frameworks, this value denoted households’
purchases of labor services. This value is considered zero in this study because
there is a specific sector called household service and other social services in
the input–output tables of China, and households’ purchases of labor services
are captured by labor compensation in this sector.
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energy k.
The CO2 emission from the production processes of ce-

ment, glass, lime, iron and steel, and calcium carbide are esti-
mated using the production-based approach recommended by
the IPCC. The carbon balance-based approach is used to esti-
mate CO2 emissions from the iron and steel production pro-
cess. The CO2 emissions resulting from the oxidation of car-
bon in fossil waste during incineration are also estimated
using the method of IPCC (2006).

Define D =CX∗ − 1 as the diagonal matrix of carbon inten-
sity coefficients, whose diagonal elements d are the volume of
CO2 emission per unit output of sectors. Moreover, C denotes
CO2 emissions from the above three sources. This can also be
expressed by the following equation based on the input–
output model:

C ¼ DX* ¼ DB
*
Y*: ð7Þ

Define Q* ¼ DB
*
as the total carbon intensity matrix.

Then, the formula for calculating the diffusion coefficient of
carbon emission can be obtained:

γ j ¼
∑
n

i¼1
q*ij

∑
n

j¼1
∑
n

i¼1
λ jq*ij

; ð8Þ

where q*ij are elements of the total carbon intensity matrix. A

similar interpretation can be used for carbon emission link-
ages: γj > 1 indicates that a unitary increase in the final de-
mand for sector j’s output will draw an above-average in-
crease in carbon emissions and the opposite is indicated when
γj < 1.

Measurement of employment impacts

The notion of input–output multipliers is based on the differ-
ence between the initial effect of an exogenous change (final
demand) and the total effect of a change (Miller and Blair
2009). Therefore, employment multipliers can be used to es-
timate the total impact on employment throughout the econo-
my arising from a change in the final demand for per unit
output of the industrial sector. Found from different input–
output models, the total effects can be defined either as the
direct and indirect effects (open model) or as the direct, indi-
rect, and induced effects (semi-closed model with
endogenized consumption). The multipliers containing direct
and indirect effects are called simple multipliers. When direct,
indirect, and induced effects are included, the multipliers are
referred to as total multipliers.

In general, the direct effect of sector j can be calculated by
the labor input coefficient:

kdej ¼ Lj=X j; ð9Þ

where kdej denotes the labor input coefficient, the subscript

denotes the sector, and Lj denotes the employment of sector j.
The indirect and induced effects can be calculated by em-

ployment multipliers. The simple employment multiplier re-
fers to the sum of direct and indirect employment changes
generated by the direct output changes due to a unit increase
in final demand. The simple employment multiplier for sector
j can be calculated as follows:

mj ¼ ∑
n

i¼1
kdej bij; ð10Þ

where bij is the total requirements coefficient calculated by the
open input–output model.

The indirect effects of sector j can be calculated as follows:

kiej ¼ mj−kdej ; ð11Þ

When the employment multiplier is calculated by the semi-
closed input–output model with partially endogenized con-
sumption, the additional induced effects are captured. In this
case, the employment multiplier is called the total employ-
ment multiplier and can be calculated as follows:

mj ¼ ∑
n

i¼1
kdei b

*

ij: ð12Þ

Therefore, the induced effects of sector j can be expressed
by the difference between the total employment multiplier and
the simple employment multiplier:

kuej ¼ mj−mj: ð13Þ

To intuitively measure the employment impacts of carbon
emission reductions, the employment multiplier was then
multiplied by the output per unit of carbon emission, namely,
the reciprocal value of carbon intensity coefficients. The job
losses per unit of carbon emissions reduction for sector j can
be calculated as follows:

nj ¼ mjd j
−1; ð14Þ

where dj is the carbon intensity coefficients of sector j. Using
the direct, indirect, and induced effects as a substitute variable
for total employment multipliermj in Eq. (14), it is possible to
analyze the path of carbon emission reduction affecting em-
ployment and the size of the impact produced on each path.

Data

The data used in this study were mainly collected from various
statistical yearbooks in China. Taking the 2017 data as an
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example, the sectoral input and output data are from the input–
output tables of China (NBSC 2018a). The non-competitive
import table was selected in this study based on the assump-
tion that domestic products and imports are incomplete sub-
stitutes for each other. Because the production process of
imported products occurs abroad, the non-competitive import
table deducts imported goods from intermediate and final use.
This distinction between flows of domestically produced and
imported products is necessary to avoid exaggerating the im-
pact of the final demand, particularly the production sector,
with its relatively high proportion of imports. The input–
output model with non-competitive imports can more objec-
tively evaluate the actual impact of a country’s economic ac-
tivities on its domestic economy and environment, which is
especially true for China with its high proportion of process-
ing trade. To construct a non-competitive input–output table,
this study drew on the method outlined in Zhang (2009) for
deducting imported goods from intermediate and final use.
The import and export classification data of goods trade are
from the United Nations Comtrade Database (SAFE 2019),
and the import and export data of services trade are obtained
from the balance table of “Payments of China,” published by
the State Administration of Foreign Exchange (UNSD 2015).
To eliminate the impact of price fluctuations across different
years, the price index provided by the China Statistical
Yearbook was used to deflate the input–output tables to the
2010 constant price (NBSC 2018a). Given that the number of
sectors in the input–output tables of China varies over time, to
maintain consistency between different years and maintain
consistency among the sectors of energy consumption, this
study accordingly merged the input–output table into 28 har-
monized subsectors, as presented in Table 2.

Carbon emissions from sectoral energy consumption used
in this study were calculated based on the energy balance table
of China and the final energy consumption by sectors, both
published in the China Energy Statistical Yearbook (NBSC
2018b). The final consumption for industrial raw materials
and materials used for non-energy purposes is not included.
There are 14 types of energy related to carbon emission cal-
culations in this study. Relative carbon emission coefficients
were obtained from the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories (IPCC 2006). To calculate car-
bon emissions from industrial production processes and mu-
nicipal waste incineration, the industrial production volumes
were mainly obtained from the China Industry Statistical
Yearbook and the corresponding industrial product statistical
data (NBSC 2018c), and the municipal waste incineration data
were collected from the China Statistical Yearbook (NBSC
2018a).

The preliminary estimated employment in each subsector
was calculated by dividing its total labor compensation (from
China’s input–output table) by its average wage, which comes
from the China Labor Statistics Yearbook (NBSC 2018d).

The number of people employed in each of three industries
was obtained from the China Labor Statistics Yearbook, and
the final employment figure was obtained by allocating these
three industries into sectors based on each sector’s ratio in the
preliminary estimation. The household income and consump-
tion were obtained from the China Statistical Yearbook
(NBSC 2018a). The statistical yearbook provided the per
capita income data from urban and rural households, which
consist of four parts: income from wages and salaries, net
business income, net income from property, and net income
from transfers. The first two parts are endogenous income,
while the latter two are exogenous. The national income was
calculated by multiplying the per capita income by the popu-
lation. The total income was obtained by adding the endoge-
nous and exogenous incomes. Similarly, the consumption data
of eight categories of consumption commodities was also cal-
culated based on per capita consumption multiplied by the
total urban and rural population. The income and consumption
data above were uniformly transformed into the 2010 constant
price.

Results and discussion

Overviews of economic growth, carbon emissions,
and employment in China

Figure 1 summarizes China’s historical trends in economic
growth, carbon emissions, and employment from 2010 to
2018. China’s GDP and the contribution share of the three
economic sectors to the increase in GDP are shown in
Fig. 1a. As China became the world’s second-largest economy
by 2010, its economic development entered a period of tran-
sition. During the research period, China’s GDP increased
from 41.3 to 73.5 trillion yuan, but its annual growth rate
slowed down. With the rapid economic development, the in-
dustrial structure of the country significantly changed. There
was a clear decrease in the contribution share of the secondary
sector, which declined from 57.4 to 34.4%. The contribution
share of the tertiary sector gradually increased from 39.0 to
61.5%, surpassing that of the secondary sector in 2015. The
contribution share of the primary sector remained relatively
stable. The results indicate that the focus of China’s industrial
structure development is gradually shifting to the tertiary
sector.

The carbon emissions in China and their sectoral distribu-
tion from 2010 to 2018 are shown in Fig. 1b. In total, carbon
emissions in China increased from 9.08 to 11.59 billion tons
from 2010 to 2018, with an annual growth rate of 3.1%. The
secondary sector was the main source of carbon emissions,
and its carbon emissions as a percentage of the gross emis-
sions varied from 71.5 to76.7%. The reason is that energy-
intensive subsectors such as steel, concrete, and nonferrous
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metal account for a larger proportion in the secondary sector
and produce large amounts of carbon emissions while con-
suming energy. The tertiary sector’s carbon emissions
accounted for 12.3–15.5%. The primary sector emitted the
least CO2, accounting for 1.6–1.8% of total carbon emissions.

Figure 1 c provides China’s total employment and its sec-
toral distribution from 2010 to 2018. Overall, the total em-
ployment increased from 761.05 million persons in 2010 to
775.86 million persons in 2018. The primary sector held the
largest volume of employment in 2010, followed sequentially

Table 2 Subsector classification

Code Sector

S01 Agriculture, forestry, animal husbandry, and fishing

S02 Mining and washing of coal

S03 Extraction of petroleum and natural gas

S04 Mining and processing of metal ores

S05 Mining and processing of nonmetal ores and other ores

S06 Manufacture of foods, beverage, and tobacco

S07 Manufacture of textile

S08 Manufacture of textile wearing apparel, footwear, caps, leather, fur, feather (down), and its products

S09 Processing of timber and furniture

S10 Papermaking, printing and manufacture of articles for culture, education, and sports activities

S11 Processing of petroleum, coking and processing of nuclear fuel

S12 Chemical industry

S13 Manufacture of non-metallic mineral products

S14 Smelting and pressing of metals

S15 Manufacture of metal products

S16 Manufacture of general purpose and special purpose machinery

S17 Manufacture of transport equipment

S18 Manufacture of electrical machinery and apparatus

S19 Manufacture of communication, computers, and other electronic equipment

S20 Manufacture of measuring instrument and machinery for cultural activity and office work

S21 Manufacture of artwork, other manufacturing

S22 Production and supply of electric power and heat power

S23 Production and distribution of gas

S24 Production and supply of water

S25 Construction

S26 Traffic, transport and storage, post-service

S27 Wholesale trade and retail trade, hotels and catering services

S28 Other services

Fig. 1 GDP (a), CO2 emission (b), and employment (c) in China by three economic sectors in 2010–2018
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by the secondary and tertiary sectors. The primary sector’s
employment proportion gradually declined, while that of the
secondary and tertiary sectors gradually rose. In 2011, the
tertiary sector’s proportion increased to 35.7%, surpassing that
of the primary sector. In 2014, the secondary sector’s employ-
ment proportion reached 29.9%, also exceeding that of the
primary sector. In 2018, the proportion employed in the pri-
mary sector fell to 26.1%, and with the advance of industrial
restructuring, the proportion will continue to decline. Felipe
et al. (2016) forecasted that the proportion of employment in
the primary sector in China will fall to 18% in 2025 and
further fall to 5% in 2044.

Furthermore, the changes in the proportions of the three
economic sectors, particularly the transition of employment
from the primary sector to the tertiary sector, show that
China is undergoing a major de-industrialization process, sim-
ilar to most developed and developing countries (Gozgor
2018). This phenomenon was also reflected in the secondary
sectors’ continually declining contribution to the GDP. It is
noteworthy that the share of CO2 emissions from the
manufacturing sector slow decline, suggesting that de-
industrialization moderating the CO2 emissions in China.

To analyze the quantitative relation between economic
growth, employment, and CO2 emissions, this study calculat-
ed the carbon productivity and carbon employment rate of
broad sectors. Carbon productivity refers to the ratio of the
GDP to CO2 emissions in a certain period. It represents the
efficiency of CO2 emissions during a period of economic
growth and is an important indicator for measuring the low-
carbon economy (Kaya and Yokobori 1999). By using the
value added as a substitute variable for GDP, Long et al.
(2016) extended this indicator to the industrial level. Based
on the concept of carbon productivity, the ILO and CASS
(2010) provided an additional definition of the carbon em-
ployment rate as the ratio of the employment and CO2 emis-
sions, which describes the jobs created per unit of carbon
emissions or the carbon emissions from increases in employ-
ment. Table 3 reports the results of carbon productivity and
the carbon employment rate of broad sectors in 2010 and
2018.

As shown in Table 3, owing to economic development,
industrial restructuring, and improvements in energy efficien-
cy, China’s carbon productivity increased from 0.45×104

yuan/t in 2010 to 0.76×104 yuan/t in 2018. The same situation
presents at the sector level, where the carbon productivity of
the primary, secondary, and tertiary economic sectors in-
creased by 47%, 54%, and 57%, respectively. Among the
broad sectors, the carbon productivities in mining,
manufacturing, and the production and supply of electricity,
heat, gas, and water increased significantly. One reason for
this is that a series of key energy-saving technologies have
been successfully applied during the 12th Five-Year Plan,
such as the promote of new combustion technology and

recovery of waste energy and heat. These technological
innovations have made a great contribution to promoting the
improvement of energy efficiency in relevant industries; thus,
the output efficiency per unit of carbon emissions has
increased. He et al. (2010) pointed out that the growth rate
of carbon productivity could be used as an indicator to mea-
sure the effort of tackling global climate change within the
framework of the sustainable development of an economy.
The rapid increase in carbon productivity suggests that the
pattern of economic development in China has been
transforming to low-carbon development. However, the car-
bon productivity in China is currently relatively much lower
than those in developed countries. To reach this advanced
level, continuous efforts should be made to improve the car-
bon productivity. On the other hand, this means that there is
huge potential in China in terms of combating global climate
change (Long et al. 2016).

From a point of vertical comparison, evident differences can
be observed at the sectoral level; that is, the carbon productiv-
ities of the primary and the tertiary sector are much higher than
those of the secondary sector. The construction sector has the
highest carbon productivity, whereas the manufacturing sector
has the lowest. This finding is consistent with that of Yang et al.
(2021), who indicated that, as the carbon productivity of most
of manufacturing sectors are relatively low, equipment and
technology in these sectors should be updated. Fan et al.
(2021) also found that the improvement of carbon productivity
in manufacturing sectors can significantly contribute toward
achieving China’s goal of reducing their carbon emission in-
tensity. It can thus be suggested that continuing to improve the
carbon productivity of the secondary sector—particularly the
manufacturing sectors—may be an effective approach to real-
izing the low-carbon transition. Several studies have shown that
improving energy efficiency, technological progress, opening
degree, and industrial scale structure have significantly positive
effects on industrial carbon productivity; among these strate-
gies, enhancing the energy efficiency is most effective (Long
et al. 2016; Lu et al. 2018).

In contrast to the change in carbon productivity, the carbon
employment rates showed a decreasing pattern. The total car-
bon employment rate decreased from 0.08 persons/t in 2010 to
0.07 persons/t in 2018, and the carbon employment rate of
each sector remained relatively stable or decreased slightly.
These decreases could be because the growth rate of carbon
productivity was lower than that of labor productivity. Similar
to the feature of carbon productivity in three economic sectors,
it is apparent from Table 3 that the carbon employment rates
of both the primary and the tertiary sector are much higher
than that of the secondary sector. For example, in 2018, each
ton of CO2 produced created 1.06 jobs in the primary sector
and 0.20 jobs in the tertiary sector but only 0.03 jobs in the
secondary sector. In other words, the environmental costs of
creating the same jobs in the primary and tertiary sectors were
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lower than that in the secondary sector. Furthermore, in the
broad sectors, the carbon employment rate in the construction
sector was higher than those in other sectors, and fewer jobs
per unit of emissions were generated in basic industry sectors,
such as manufacturing, mining, and power generation and
supply. For the tertiary sector, the carbon employment rate
of consumer services is higher than that of production ser-
vices. For example, a one-ton increase in CO2 emissions in
2018 produced only 0.05 jobs in the traffic, transport, storage,
and post sector, whereas it created 0.29 jobs in the wholesale
and retail trades, hotels, and catering sector and 0.37 jobs in
other services.

The carbon productivity and carbon employment rate are
both important indicators to measure the relative relationship
between the negative costs (carbon emissions) and positive
benefits (output or jobs) caused by economic activities. The
higher the benefit per unit cost, the greater the economic op-
eration efficiency, to some extent. From the perspective of the
output benefit per unit of carbon emissions (carbon productiv-
ity), China’s economic efficiency has improved rapidly in
recent years. However, in terms of jobs created per unit of
carbon emissions, the decrease in the carbon employment rate
shows that improved economic efficiency is not as positive as
expected. This decrease also highlights the importance of pay-
ing more attention to employment during the economic tran-
sition. Taking the two indicators together, the primary and
tertiary sectors have potential advantages for achieving low-
carbon development and creating jobs in China. However, as
an important pillar of the economy, the secondary sector—
particularly the energy-intensive sectors—emits high emis-
sions while providing material inputs for all of society (Long
et al. 2016). Therefore, improving carbon productivity and
carbon employment rate in the secondary sector is essential
to promote economic efficiency and accelerate the low-carbon
transition process in China.

Economic and emission linkages analysis

To assess the sectoral economic and carbon emission linkage
and compare different sectors’ impact on the economy and
environment, the economic and carbon emission diffusion co-
efficients of 28 subsectors in China were calculated based on
Eqs. (5)–(8). Table 4 shows the results in 2010–2018. In 2010,
16 subsectors had an economic diffusion coefficient greater
than 1; these were mainly manufacturing, accounting for 67%
of subsectors in the secondary sector. This somewhat demon-
strates that manufacturing tends to be crucial as an engine of
economic growth in China, which is in accordance with the
results of Szirmai (2012). There were 11 subsectors with an
economic diffusion coefficient greater than 1 in 2018. In terms
of rankings, subsectors with the highest economic diffusion
coefficients can be classified into three types. For example,
S07, S08, and S09 are traditional light industries, whose prod-
ucts account for the majority of household consumption; S16,
S17, and S18 are technology-intensive sectors with value-
added products; S12, S13, and S15 are heavy chemical indus-
tries characterized by long industrial chains and close link-
ages. In addition, S25 showed a remarkable rise in the rank-
ings, reaching the top in 2015 and showing its increasingly
prominent economic performance.

In 2010, 13 subsectors—all in the secondary sector—had
carbon emission diffusion coefficients greater than 1; in con-
trast, there were 12 subsectors with carbon emission diffusion
coefficient greater than 1 in 2018. Energy-intensive sectors
with high carbon emissions, such as S13, S14, and S22, had
the majority of top-ranking carbon emission diffusion coeffi-
cients. These sectors are upstream of the entire industrial
chain, supplying energy and raw materials to other sectors.
The carbon emission diffusion coefficients of light industries,
such as S06 and S08, were less than 1 throughout the research
period, indicating that their impacts on overall carbon

Table 3 Carbon productivity and carbon employment rate of broad sectors

Sector Carbon productivity (104 yuan/t) Carbon employment rate (persons/t)

2010 2018 2010 2018

Total 0.45 0.76 0.08 0.07

The primary sector 2.30 3.38 1.67 1.06

The secondary sector 0.28 0.42 0.03 0.03

Mining 0.61 1.20 0.05 0.04

Manufacturing 0.22 0.32 0.02 0.02

Production and supply of electricity, heat, gas, and water 0.37 0.53 0.02 0.02

Construction 3.45 5.18 0.61 0.60

The tertiary sector 1.63 2.55 0.24 0.20

Transport, storage and post 0.51 0.96 0.06 0.05

Wholesale and retail trades, hotels and catering services 1.99 2.87 0.31 0.29

Other Services 2.78 3.68 0.47 0.37

50777Environ Sci Pollut Res (2021) 28:50767–50789



emission are weak. It should be noted that the carbon emission
diffusion coefficient ranking of S25 remained relatively high,
given that the development of this sector significantly affects
other related sectors’ carbon emissions. Therefore, we should
not underestimate the role of the construction sector in reduc-
ing carbon emissions.

It is evident that there is a conflict between economic and
emissions performances in some sectors; reducing carbon
emissions by output restriction will influence the economic
income of some sectors and may hinder national economic
growth to a certain degree. To maximize the prevention of
economic losses due to carbon emissions reduction, it is nec-
essary to conduct a combined analysis of economic and emis-
sion linkages. Thus, clustering analysis was carried out in this
study. The sectors were clustered by the economic diffusion
coefficient (βj) and carbon emission diffusion coefficient (λj)
calculated above. Consider the 2010 and 2018 data as an ex-
ample. Figure 2a presents the clustered results in 2010. The

majority of sectors were distributed in the first and third quad-
rants, containing ten and nine sectors, respectively; in contrast,
there were six sectors in the fourth quadrant and only three
sectors in the second quadrant. Sectors in the first quadrant,
βj > 1, λj > 1, are strong drivers of the national economy and
carbon emissions. This study defines sectors in this quadrant,
which are key sectors at the current, as being in sector group I.
This group is most connected in terms of both economic and
emission linkages; consequently, the total output and carbon
emissions will change significantly if even relatively small
changes are made to the sectors in this group. This type of
sector mainly relates to the mining and processing of nonmetal
ores and other ores, some heavy chemical sectors, the produc-
tion and supply of electric and heat power, and construction.
Sectors in the second quadrant, βj < 1, λj > 1, have non-
significant economic impacts despite significantly affecting
carbon emissions. Sectors in this quadrant are defined as being
in sector group II and should be appropriately restricted in the

Table 4 Economic diffusion coefficient and carbon emission diffusion coefficient of 28 subsectors in China

Sector Economic diffusion coefficient (rankings) Carbon emission diffusion coefficient (rankings)

2010 2012 2015 2018 2010 2012 2015 2018

S01 0.87 (20) 0.92 (18) 0.92 (21) 0.91 (17) 0.55 (26) 0.60 (26) 0.66 (25) 0.65 (23)

S02 0.87 (21) 0.85 (22) 0.79 (25) 0.78 (23) 1.06 (12) 1.13 (9) 0.81 (18) 0.86 (17)

S03 0.74 (28) 0.76 (26) 0.62 (28) 0.61 (28) 0.79 (20) 0.89 (17) 0.75 (22) 0.69 (22)

S04 0.93 (18) 0.87 (21) 0.83 (23) 0.73 (26) 0.99 (14) 0.95 (15) 0.81 (19) 0.86 (16)

S05 0.98 (17) 0.93 (17) 1.03 (14) 0.98 (13) 1.09 (11) 1.13 (10) 1.12 (11) 1.19 (9)

S06 1.05 (13) 1.03 (14) 0.97 (18) 1.01 (11) 0.65 (25) 0.61 (25) 0.60 (26) 0.61 (25)

S07 1.15 (5) 1.18 (2) 1.10 (8) 1.19 (3) 0.98 (15) 1.03 (13) 0.96 (14) 1.20 (8)

S08 1.20 (1) 1.19 (1) 1.10 (7) 1.25 (1) 0.78 (21) 0.80 (22) 0.74 (23) 0.90 (15)

S09 1.16 (2) 1.13 (4) 1.10 (6) 1.09 (4) 0.88 (17) 0.82 (21) 0.81 (20) 0.77 (20)

S10 1.12 (7) 1.09 (9) 1.09 (11) 1.04 (8) 1.09 (9) 1.08 (12) 1.07 (12) 1.02 (12)

S11 0.78 (26) 0.75 (27) 0.73 (27) 0.67 (27) 0.84 (18) 0.85 (19) 0.84 (17) 0.91 (14)

S12 1.08 (11) 1.08 (10) 1.04 (13) 0.98 (12) 1.32 (6) 1.33 (7) 1.27 (7) 1.39 (6)

S13 1.09 (10) 1.05 (12) 1.09 (10) 1.06 (6) 3.08 (1) 3.32 (1) 2.85 (1) 3.11 (2)

S14 1.04 (15) 0.99 (16) 0.97 (19) 0.91 (16) 2.63 (2) 2.56 (2) 2.40 (2) 3.35 (1)

S15 1.14 (6) 1.11 (7) 1.13 (2) 1.07 (5) 1.58 (3) 1.54 (3) 1.54 (3) 1.80 (3)

S16 1.10 (8) 1.11 (8) 1.12 (4) 1.05 (7) 1.23 (7) 1.16 (8) 1.17 (9) 1.18 (10)

S17 1.15 (4) 1.13 (5) 1.10 (9) 1.03 (10) 1.03 (13) 1.03 (14) 0.99 (13) 0.97 (13)

S18 1.15 (3) 1.14 (3) 1.13 (3) 1.04 (9) 1.34 (5) 1.35 (6) 1.36 (6) 1.35 (7)

S19 1.05 (14) 1.07 (11) 1.03 (15) 0.88 (19) 0.74 (23) 0.72 (23) 0.71 (24) 0.60 (26)

S20 1.02 (16) 1.04 (13) 1.02 (16) 0.90 (18) 0.83 (19) 0.88 (18) 0.85 (16) 0.73 (21)

S21 0.86 (22) 0.80 (24) 1.05 (12) 0.77 (24) 0.75 (22) 0.85 (20) 1.14 (10) 0.79 (19)

S22 1.06 (12) 1.01 (15) 1.10 (5) 0.95 (14) 1.09 (10) 1.10 (11) 1.19 (8) 1.10 (11)

S23 0.84 (24) 0.77 (25) 0.95 (20) 0.75 (25) 0.71 (24) 0.64 (24) 0.78 (21) 0.64 (24)

S24 0.92 (19) 0.88 (19) 0.98 (17) 0.93 (15) 1.22 (8) 1.38 (5) 1.45 (5) 1.64 (4)

S25 1.09 (9) 1.12 (6) 1.16 (1) 1.21 (2) 1.44 (4) 1.54 (4) 1.49 (4) 1.60 (5)

S26 0.86 (23) 0.87 (20) 0.85 (22) 0.84 (21) 0.91 (16) 0.92 (16) 0.92 (15) 0.82 (18)

S27 0.75 (27) 0.72 (28) 0.73 (26) 0.81 (22) 0.47 (28) 0.44 (28) 0.47 (28) 0.49 (28)

S28 0.79 (25) 0.80 (23) 0.80 (24) 0.86 (20) 0.51 (27) 0.51 (27) 0.55 (27) 0.54 (27)
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low-carbon transition process. This group contains only three
sectors, S02, S05, and S24. Sectors in the third quadrant, βj <
1, λj < 1, have non-significant impacts on both the economy
and carbon emissions. Sectors in this quadrant are defined as
being in sector group III and are typically either related to the
fossil energy mining and processing sectors or labor-intensive
sectors, such as agriculture and service. Sectors in the fourth
quadrant, βj > 1, λj < 1, are non-significant carbon emission
sectors but have significant effects on economic growth.
This study defines sectors in the fourth quadrant as being in
sector group IV. These are mainly labor and technology-
intensive sectors, which have priority for the low-carbon
transition.

By comparing clusters for different periods, the evolution
of sectoral linkages can be studied. Compared to 2010, there
are evident changes in the overall clustering results in 2018
(see Fig. 2b). Among the sectors, S12, S14, and S22 changed
from sector group I to group II, indicating that their ability to

pull the economy decreased, while the impact on carbon emis-
sions did not improve much. As the carbon emission diffusion
coefficient decreased while the economic diffusion coefficient
remained at a stable level, S02 changed from sector group II to
group III, and S17 changed from sector group I to group IV.
The carbon emission diffusion coefficient of S07 increased
slightly, changing it from sector group IV to group I. As the
economic diffusion coefficient decreased while the carbon
emission coefficient remained stable, S19 and S20 changed
from sector group IV to group III. These changes reflect the
transition of industries to a certain extent, and the results
somewhat shed light on the prospective direction of industrial
restructuring. In summary, the secondary sector is key for the
low-carbon transition, particularly the subsectors with long
industrial chains, such as the heavy chemical and construction
sectors. These sectors make outstanding contributions to eco-
nomic development while generating the majority of carbon
emissions within the sector and/or in related sectors. The

Fig. 2 Clustering chart of 28
subsectors using the economic
and carbon emission diffusion
coefficients in 2010 (a) and 2018
(b)
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upgrading of these sectors is essential to achieve the low-
carbon transition in China at present.

This finding has important implications for emerging and
developing economies such as China. Emerging economies
have relatively high growth rates and have become a new
engine driving global economic growth, as well as being the
fastest growing group in terms of energy consumption and
CO2 emissions. Given the current pressing climate change
and global warming problems, both China and other emerging
economies should choose between low carbon emissions and
high economic growth. In general, upgrading the industrial
structure benefits both the economic growth and carbon emis-
sion reductions. A combined analysis on economic and emis-
sion linkages may elucidate a sector’s potential for industrial
structure upgrades. Identifying sectoral groups may help assist
industrial policy, and focusing on key sectors is beneficial to
accelerating the process of industrial restructuring. It may also
provide a reference to help other emerging economies take
action to reduce carbon emissions in a more sustainable way.

Employment impacts analysis

The employment multipliers of various subsectors can be cal-
culated using Eqs. (9)–(13). The employment multipliers (in-
cluding total and subentry effects) and corresponding ratios of
28 subsectors in China are shown in Table 5. In general, for
the majority of sectors, the indirect effects were greater than
the induced and direct effects. The indirect effects were the
main determiners of sectoral employment creation ability and
accounted for about 40–70% of the total effect. Induced ef-
fects accounted for around 20% of the total effect, with the
highest proportion reaching 40.9%. The agriculture and ser-
vice sectors had relatively high direct effects, whereas other
sectors’ direct effects were generally lower. Employment mul-
tipliers were generally lower in 2018 than in 2010. This im-
plies that the impacts on employment arising from a unit of
change in the final demand for a sector’s output generally
suffered a decline. This is mainly caused by the decrease in
the labor required to produce the same products due to ad-
vancements in production technology and increases in labor
productivity. Table 5 shows the expansion of the proportion of
indirect effects, reflecting the strengthened linkages between
sectors that follow the optimization and upgrading of indus-
trial structure. In contrast, there was a decrease in the propor-
tions of direct and induced effects, indicating that the impacts
of direct and induced effects on total employment effects are
weakening.

S01 (agriculture, forestry, animal husbandry, and fishing)
had the largest total effect, and its direct effect accounted for a
large proportion. Its total effect in 2010 is 0.57, which de-
creased to 0.31 in 2018, and the direct effect accounted for
70.7% and 71.9% of the total effects, respectively. Agriculture
has always assumed the function of the employment reservoir

of China because of its strong pull factor on labor employment
by generating direct employment compared to those of other
sectors. However, the pull factor on effective employment of
S01may be overestimated; the proportion of agricultural labor
calculated by official statistical data is higher than that in re-
ality (Cai 2016), and there is a surplus labor problem in rural
areas.

Among the subsectors in the secondary sector, the total
effects of S06–S10 were relatively large and were dominated
by indirect effects. These effects accounted for 63.7%–82.0%
and 65.5%–81.8% of the total effects in 2010 and 2018, re-
spectively. This shows that a unit increase in the final demand
for output of these subsectors had a great impact on employ-
ment levels in their upstream and downstream sectors. These
sectors were labor-intensive from the point of input of produc-
tion factors, which can create a large number of employment
opportunities in related sectors. In addition, the carbon emis-
sions of these subsectors were generally comparatively lower
than those of other subsectors based on the previous analysis.
The result is consistent with the previous findings of Xue
(2011), which revealed that improved energy saving and em-
ployment compatibility, as well as reduced emissions, can be
achieved by the development of labor-intensive sectors.
Among these subsectors, S07, S08, and S09 showed low car-
bon emissions and excellent employment pull factors on top
of good economic performance, indicating that they are con-
ducive to achieving a “multi-win” situation for economic de-
velopment, carbon reduction, and employment level mainte-
nance. As one of the pillar sectors in China, S25’s employ-
ment multiplier was also remarkable: its total effects were 0.15
and 0.10 in 2010 and 2018, respectively. This result is consis-
tent with the “the 13th Five-Year Plan for the Development of
the Construction Industry” (Ministry of Housing and Urban-
Rural Development [MOHURD] 2017), in which the con-
struction sector plays an important role in the absorption of
rural labor transfer and the alleviation of social employment
pressure. As mentioned in the previous section, most of the
key subsectors belong to the secondary sector. Although these
sectors are the main sources of carbon emissions, they also
make outstanding contributions to economic development,
and some of their employment multipliers, especially the in-
direct effects, are also relatively robust. Therefore, the output
of these sectors cannot be blindly restrained for fear of nega-
tive impacts on the national economy and labor market.

The employment multipliers of S26–S28 (the tertiary sector)
were dominated by their direct effects, although their induced
effects were also remarkable. The tertiary sector is likened to a
“sponge” that absorbs labor forces and provides a large number
of jobs. Some service sectors, such as the traffic, transport,
storage, and post and wholesale and retail trades, hotels, and
catering sectors, have low education and professional skill re-
quirements, thus playing a vital role in relieving employment
pressure and accepting the transfer of rural surplus labor.
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Actively developing the service sectors is conducive to realiz-
ing low-carbon development while solving the problem of rural
surplus labor transfer, thus creating a “double dividend” in
terms of environmental protection and employment.

It is noteworthy that induced effects also play an important
role. For the majority of sectors, induced effects accounted for
around 15–30% of the total effects. This proportion was even
more significant in the tertiary sector andwas greater than 30% in
2010. This can be attributed to the fact that the induced effects are
due to the changes in household consumption and income, and
the tertiary sector covers a wide range of subsectors that are
closely related to consumption. With the improvement of resi-
dents’ standard of living and the changes in consumption habits,
residents’ consumption needs have changed from materials to
services, and the proportion of service consumption in household
spending has increased. The current data also highlight the im-
portance of household consumption and income for employ-
ment. On the one hand, when studying employment impacts,

neglecting the impact of household income and consumption
changes on employment leads to the underestimation of the em-
ployment multipliers of various sectors to varying degrees; this
problem becomes more obvious in the case of the service sector.
Thus, it is necessary to pay attention to the induced effects and
accurately measure them. On the other hand, vigorously
expanding household consumption and increasing household in-
come would be effective tools for stabilizing employment.

China’s economic structure has undergone evident chang-
es, and consumption has become the primary driving force for
economic growth. According to the data from the National
Bureau of Statistics, China’s total retail sales of consumer
goods reached 41.2 trillion yuan in 2019, an annual increase
of 8%, and the contribution of consumer spending to GDP
growth reached 57.8%. Meanwhile, household spending
mainly reacts to the service sector. With the continuous im-
provement of people’s standards of living, the proportion of
services such as education, culture, and entertainment in

Table 5 Employment multipliers and corresponding ratios of 28 subsectors in 2010 and 2018

Sector 2010 2018

Direct effects Indirect effects Induced effects Total effects Direct effects Indirect effects Induced effects Total effects

S01 0.403 70.7% 0.113 19.8% 0.054 9.5% 0.570 0.225 71.9% 0.061 19.6% 0.027 8.5% 0.313

S02 0.039 31.9% 0.051 41.9% 0.032 26.2% 0.123 0.026 40.9% 0.028 42.9% 0.010 16.2% 0.064

S03 0.022 28.3% 0.033 43.6% 0.022 28.2% 0.077 0.009 29.1% 0.016 51.8% 0.006 19.2% 0.030

S04 0.032 28.8% 0.052 46.7% 0.027 24.5% 0.110 0.019 39.9% 0.022 44.7% 0.007 15.4% 0.048

S05 0.045 33.3% 0.059 44.1% 0.030 22.6% 0.134 0.031 38.5% 0.035 44.2% 0.014 17.3% 0.080

S06 0.019 5.7% 0.275 82.0% 0.042 12.4% 0.336 0.013 8.1% 0.129 81.8% 0.016 10.1% 0.157

S07 0.040 14.8% 0.192 71.0% 0.038 14.2% 0.270 0.018 12.8% 0.107 76.2% 0.015 10.9% 0.141

S08 0.042 16.9% 0.167 67.1% 0.040 16.1% 0.248 0.024 18.9% 0.087 69.1% 0.015 12.0% 0.126

S09 0.033 14.5% 0.155 69.0% 0.037 16.5% 0.224 0.019 18.0% 0.074 69.8% 0.013 12.2% 0.105

S10 0.030 17.2% 0.111 63.7% 0.033 19.1% 0.174 0.019 21.5% 0.058 65.5% 0.012 13.0% 0.089

S11 0.006 10.1% 0.038 62.2% 0.017 27.8% 0.061 0.003 13.1% 0.017 69.7% 0.004 17.2% 0.025

S12 0.020 14.2% 0.091 64.4% 0.030 21.4% 0.141 0.010 15.4% 0.047 70.6% 0.009 14.0% 0.066

S13 0.028 21.0% 0.074 55.7% 0.031 23.4% 0.133 0.021 27.0% 0.044 58.1% 0.011 14.9% 0.076

S14 0.015 14.8% 0.060 59.7% 0.026 25.5% 0.101 0.009 19.9% 0.030 64.2% 0.007 15.9% 0.047

S15 0.024 19.6% 0.070 56.5% 0.030 23.9% 0.124 0.019 27.5% 0.039 57.3% 0.010 15.2% 0.068

S16 0.023 19.4% 0.067 55.7% 0.030 24.9% 0.120 0.014 22.0% 0.039 62.1% 0.010 15.9% 0.063

S17 0.015 12.8% 0.071 61.3% 0.030 25.9% 0.116 0.007 13.0% 0.038 71.1% 0.009 15.8% 0.054

S18 0.019 15.8% 0.072 59.3% 0.030 24.9% 0.122 0.010 18.2% 0.038 66.4% 0.009 15.4% 0.058

S19 0.020 17.2% 0.065 56.7% 0.030 26.1% 0.115 0.011 22.4% 0.030 61.8% 0.008 15.8% 0.048

S20 0.028 23.1% 0.063 52.4% 0.029 24.5% 0.120 0.012 23.2% 0.032 60.7% 0.008 16.1% 0.052

S21 0.023 15.9% 0.097 67.4% 0.024 16.7% 0.145 0.020 34.3% 0.029 50.2% 0.009 15.5% 0.057

S22 0.013 12.5% 0.061 58.6% 0.030 28.9% 0.105 0.008 16.4% 0.033 66.0% 0.009 17.6% 0.050

S23 0.023 24.7% 0.045 48.2% 0.025 27.1% 0.093 0.012 29.1% 0.021 53.6% 0.007 17.3% 0.040

S24 0.055 38.8% 0.051 35.7% 0.036 25.4% 0.142 0.033 39.9% 0.037 44.3% 0.013 15.8% 0.083

S25 0.047 30.5% 0.072 46.6% 0.035 22.9% 0.155 0.031 30.5% 0.057 55.0% 0.015 14.6% 0.103

S26 0.047 34.8% 0.039 28.6% 0.050 36.6% 0.136 0.026 37.4% 0.031 45.7% 0.012 16.9% 0.069

S27 0.092 45.0% 0.046 22.4% 0.067 32.6% 0.205 0.057 49.3% 0.043 37.7% 0.015 13.1% 0.115

S28 0.098 53.3% 0.012 6.4% 0.074 40.2% 0.184 0.050 48.3% 0.037 36.1% 0.016 15.6% 0.103
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household consumption expenditures has continued to in-
crease. Boosting consumption will undoubtedly promote the
development of the service sector, especially the consumer
service sectors, which are characterized by low emissions. It
is possible, therefore, that actively expanding consumption
and increasing income could be an option to achieve the
multi-win situation of economic growth, job creation, and
carbon emissions reduction.

The measurement of job losses provides an intuitive way to
assess the employment impacts of carbon emissions reduc-
tion. According to Eq. (14), by multiplying the employment
multipliers of the above sectors by the corresponding output
per unit of CO2 emissions, the job losses per unit of carbon
emissions reduction is obtained. The results from 2010 and
2018 are shown in Fig. 3. It is notable that the job losses per
unit of carbon emissions reduction in the primary sector (S01)
decreased from 2.37 to 1.48 between 2010 and 2018, a de-
crease of more than 37%. Among the subsectors in the sec-
ondary sector (S02–S25), S09 and S10 increased, while other
sectors decreased in terms of the job losses per unit of carbon
emissions reduction. The job losses per unit of carbon emis-
sions reduction in the tertiary sector (S26–S28) decreased
slightly between 2010 and 2018. In 2010, S01 would cause
the largest job losses if carbon emissions were reduced one
unit; this was surpassed by that of S25 in 2018. The job losses
per unit of carbon emissions reduction in some sectors (S06,
S08, S09, S18, S19, S20, S27, and S28) were also consider-
able. The proportions of direct job losses in S01 and S26–S28,
as shown in Fig. 3, were relatively high, highlighting that
carbon emissions reductions in these sectors significantly af-
fect intra-sector employment. By contrast, equivalent carbon
emissions reduction in the secondary sector indirectly causes
more job losses in other sectors than in itself. This effect is
particularly prominent in labor-intensive subsectors S06–S10,
indicating that these subsectors have important implications

for employment in their upstream and downstream sectors. By
comparing 2018 from 2010, it can be observed that the tertiary
sector’s direct and induced job losses were reduced, while the
indirect job losses rose, suggesting that carbon emissions re-
duction by limiting the development of the service sector
would noticeably result in noticeable unemployment in other
sectors.

In summary, one of the most significant findings is that
indirect job losses account for a large proportion of the total
job losses for most sectors’ carbon emissions reduction, and
the induced job losses also cannot be neglected along with the
direct job losses. In other words, policy designed to reduce
carbon emissions should consider the employment impacts
not only on the sector itself but also on the entire industry
chain. If the employment impacts cannot be comprehensively
evaluated during the industrial restructuring and low-carbon
transition processes, unreasonable policy measures may be
adopted to guide industrial restructuring and reduce carbon
emissions. These policies could easily lead to the shedding
of jobs by various sectors, which will eventually bring about
high levels of unemployment and could even threaten social
stability.

The present results are significant in at least two major
respects. On the one hand, similar to the relationship between
low carbon emissions and high economic growth, it can be
inferred that China also needs to balance the relationship be-
tween low carbon emissions and job creation. The job losses
per unit of carbon emissions reduction is a useful indicator to
quantify the employment impacts of carbon emissions reduc-
tion, which may contribute to reducing the shocks to labor
employment caused by carbon emissions reduction policies.
On the other hand, this study raises the possibility that tackling
unemployment problems by promoting indirect and induced
employment may be more effective than directly increasing
jobs. Strengthening sectoral linkages will help promote

Fig. 3 Job losses per unit of
carbon emissions reduction in
each subsector in 2010 and 2018
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indirect employment, and expanding household consumption
and increasing household income will contribute in promoting
induced employment.

Prior studies have noted the importance of the house-
hold in driving economic growth and shaping energy use
and environmental emissions in China. This study found
that the household plays an indispensable role in stabiliz-
ing employment. After China entered a new normal in
terms of economic development, the effect of domestic
consumption (especially household consumption) on driv-
ing growth is more significant. Household consumption is
expected to become a stronger driver of China’s economic
growth in the foreseeable future. However, as consistent
incomes and urbanization increase, the energy demands
and carbon emissions of households will probably increase
as well. Changing consumer behavior can often be
regarded as an effective measure for reducing household-
related energy use and emissions. Dai et al. (2012) found
that demand-side initiatives, aiming to change household
behavior toward more sustainable and low-carbon con-
sumption, will increase the proportion of service and de-
crease that of industry. Therefore, a large amount of energy
and carbon emissions could be saved and reduced, respec-
tively. In summary, these findings suggest that expanding
consumption (especially low carbon consumption) while
increasing household income may help achieve sustainable
environmental, economic, and social development.

Conclusions and policy implications

Based on the semi-closed input–output model with partially
endogenized consumption, this study first identified key sec-
tors in terms of the economic and carbon emissions linkages;
then quantified the direct, indirect, and induced employment
multipliers and further measured the job losses per carbon
emissions reduction; and, finally, industrial policy implica-
tions were presented based on the comprehensive assessments
of the carbon emissions reductions, economic growth, and
employment impacts.

In principle, holding everything else constant, carbon emis-
sions can be reduced by policies that limit the output of high-
emission sectors while expanding the output of low-emission
sectors. However, in practice, carbon emission is not the only
policy concern. An intelligently designed industrial policy
could therefore influence a country’s development, so that it
generates more and better domestic employment, emit less
CO2 and other greenhouse gasses, and increases the overall
productivity and competitiveness of its national economy.
Such a policy would have to focus more on linkage and im-
pact analysis.

The linkage analysis conducted in this study may pro-
vide useful information for identifying the direction of

industrial restructuring for a low-carbon transition. By an-
alyzing the intersectoral economic and emission linkages,
this study found that, in China, the secondary sector is key
for the low-carbon transition; particularly of note are most
heavy chemical and construction sectors, which have a
notable impact on the emissions of upstream and down-
stream sectors (owing to their long industrial chains) and
make outstanding contributions to economic development.
Pushing for progress in energy conservation and emissions
reductions in these sectors is the key to realizing the low-
carbon transition and sustainable development of China. In
addition, some labor-intensive and technology-intensive
sectors, which contribute to economic growth as well as
low carbon emissions, are significant.

As one of the most important social impacts, employment
impacts deserve more attention, and a full analysis of these
impacts may contribute to reducing the uncertainties of the
true effects of the low-carbon transition. Whether in terms of
employment multipliers or job losses per carbon emissions
reduction, the results show that the indirect effects play a
major role in employment impacts. With the improvement
of the industrial system and the extension of the industrial
chain, the indirect employment brought about by the sectoral
linkage will increase significantly. Induced effects are also
important in employment impacts analysis, accounting for
around 20% of the total effects. As the average income in-
creases and consumption levels continue to rise, and the ca-
pacity for job creation in the service sector continues to im-
prove, the positive impacts of household consumption and
income on employment may become more prominent. The
results suggest that when designing policies to reduce carbon
emissions, more attention should be paid to the indirect em-
ployment impacts related to the entire industry chain, the in-
duced impacts resulting from changes in household consump-
tion and income, and the direct employment impacts on the
industry itself.

In conclusion, in terms of production sectors, for sectors
with non-significant economic impact but significantly im-
pacts on carbon emissions, and whose per unit of carbon
emissions reduction would also generally lead to few job
losses, properly limiting their output may cause less negative
effects. However, for key sectors with strong pull factors on
the economy and high job losses per unit of carbon emissions
reduction, such as the mining and processing of nonmetal ores
and other ores, heavy chemical, production and supply of
electric and heat power, and construction sectors, policies
would have to focus more on industrial upgrading than on
output restriction. Furthermore, some labor-intensive sectors,
particularly the service sector, are conducive to achieving a
“multi-win” situation in terms of economic development, car-
bon emissions reductions, and employment stability; thus,
production in these sectors should be encouraged. In terms
of households, the evidence from this study suggests that
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expanding consumption (especially low carbon consumption)
and increasing household income are beneficial to achieving
the sustainable development of economic, environmental, and
social systems.

Based on the above analysis, the following policy recom-
mendations are proposed.

First, policy-making should avoid one-size-fits-all tactics;
identifying sectoral groups is very useful for assisting indus-
trial policy, and focusing on key sectors is beneficial acceler-
ating the process of low-carbon development. Industrial
restructuring urges a reasonable distinguishing of sectoral
groups; formulating different industrial policies according to
differences in the sectoral groups while seeking a balanced
point of cooperation can help achieve a multi-win situation
for the environmental, economic, and social systems. For
China’s key sectors, as defined by economic and carbon link-
age characteristics, it is suggested to phase out backward pro-
duction capacity, upgrade industry through reasonable plan-
ning, increase management efficiency in enterprises, and pro-
mote reductions in energy intensity and increases in carbon
productivity by enhancing energy efficiency and technologi-
cal innovation.

Second, employment policies should be compatible with
industrial policies and avoid possible shock to the labor mar-
ket resulting from the industrial restructuring. An accurate
quantification of employment impacts can provide useful in-
formation for the government to formulate scientific policies.
According to the results of this study, strengthening industrial
chain cooperation and realizing industrial inter-connected de-
velopment will be an effective measure to promote employ-
ment. As household consumption and income have evident
impacts on employment, vigorously expanding consumer
spending and increasing household income will serve as an
employment stabilizer. Further, the service sector plays an
important role in generating jobs. Actively developing the
service sector is conducive to realizing industrial low-carbon
development while solving the problem of rural surplus labor
transfer in China.

Although this study is from the perspective of industrial
restructuring, there is no doubt that the development and
utilization of renewable energy also play an active role in
diminishing energy dependence and reducing carbon emis-
sions. Simultaneously, most studies have a positive attitude
with regard to the renewable energy sector providing op-
portunities to create new jobs. Therefore, great efforts
should be made to promote the development of new strate-
gic low-carbon sectors, such as new energy and renewable
energy, and to adjust and improve the energy mix while
accelerating the restructuring and upgrading of traditional
industries.

This study has some limitations. First, the scope of this
study is limited to evaluate the actual impact of China’s
economic ac t iv i t i e s on i t s domes t i c economy,

environment, and employment; the input–output frame-
work of this study does not cover the international input
use. Trade is very important for China and caused the
transfer of both emissions and labor. Consequently, the
net impact after considering the import goods factor is still
uncertain. The role of trade in shaping resource use and
environmental emissions in China and the “trade in em-
ployment” based on the cross-border migration of new
job opportunities is worth further analysis. Thus, we plan
a further study on trade embodied carbon emissions and
embodied labor. Second, although the diffusion coefficient
is an important parameter to let normalized backward link-
ages be the measures, higher diffusion coefficients do not
show how a sector has linked the separate sectors.
Therefore, deepen sectoral linkages analysis combined
with evaluation of the structure of supply chains and in-
dustrial chains is meaningful and a promising area for fu-
ture research.

Appendix A

The appendix presents the modeling process of the semi-
closed input–output model with partially endogenized
consumption.

The most important step in modeling is to divide the house-
hold consumption into endogenous and exogenous consump-
tion by using the decomposition formulas. According to the
relevant consumption theory (Friedman 1957; Modigliani
1986), in addition to the current income, factors affecting
household consumption may include wealth, future income,
consumption habits, interest rates, consumer preferences,
product prices, demographic structure, and social factors.
Considering the above factors, the consumption decomposi-
tion formula is expressed as follows:

cit ¼ cenit þ cexit
cenit ¼ αit ee; r; d; p;λ…� �

x nþ1ð Þt
cexit ¼ βici t−1ð Þ þ εit

8><
>: : ð15Þ

The explanations of each symbol in the decomposition for-
mula are shown in Table 6. The estimation of the endogenous
consumption coefficient αit in Eq. (15) is key to decomposing
consumption. The rational expectation theory assumes that the
endogenous consumption coefficient follows the random
walk process (Mankiw 2010):

αit ¼ αi t−1ð Þ þ μit;μit∼NIID 0;σ2
μit

� �
: ð16Þ

The estimation process of endogenous consumption coef-
ficient adopts the time-varying parameter model, maximum
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likelihood estimation, and Kalman filtering algorithm
(Hamilton 1994; Havey 1987). The forms of the measurement
equation and transition equation are expressed as follows:

cit ¼ αitx nþ1ð Þt þ βici t−1ð Þ þ εit
αit ¼ αit−1 þ μit

�
: ð17Þ

where εit and μit are independent disturbance vectors.
Given that consumption preferences are aimed at the types

of consumption activities (such as food, clothing, and hous-
ing) rather than the types of products, the endogenous con-
sumption coefficient of the input–output sectors cannot be
directly estimated; thus, the endogenous consumption coeffi-
cient of consumption activities is first estimated. According to
Eq. (17), the endogenous consumption coefficient vector of
consumption activities c* can be estimated. Table 7 presents
the estimation results of the eight consumption categories in
China. To obtain the endogenous consumption coefficient of
input–output sectors, a bridge matrix is needed here to link the
consumption activities to input–output sectors:

c ¼ Bc*: ð18Þ
where c refers to the endogenous consumption coefficients
vector of input–output sectors and c∗ refers to the endogenous
consumption coefficients vector of consumption activities. B
is a bridge matrix and its form is expressed in Eq. (19):

B ¼
b11 b12 ⋯ b1m
b21 b22 ⋯ b2m
⋮ ⋮ ⋮ ⋮
bn1 bn2 ⋯ bnm

2
664

3
775; ð19Þ

The element bij is the value of the product i required for the
consumption activity j per unit quantity. The estimating

process of the bridge matrix B mainly includes the following:
(1) adjusting the column of household consumption in the
input–output table to make aggregated household consump-
tion of n sectors consistent with the sum of m consumption
activities, (2) constructing a consumption flow matrix R and
assigning initial values by dividing m consumption activities
into n input–output sectors, (3) using the RAS method to
balance the matrix R, and (4) dividing each element of the
balanced matrix R by the sum of its corresponding column
to obtain the bridge matrix B. On this basis, the endogenous
consumption coefficient of input–output sectors can be ob-
tained using Eq. (18). Table 8 presents the estimation results
of the 28 subsectors in China.

Table 6 Explanations of symbols in decomposition formulas

Symbols Explanations

cit The total household consumption of products i in the period t

cenit The endogenous consumption of products i in the period t

cexit The exogenous consumption of products i in the period t

ci(t−1) The total household consumption of products i in the period t−1
x(n+1)t The total household income in the period t

αit The endogenous consumption coefficient of products iee The expected future incomes

r The interest rate

d The demographic characteristics

p The commodity price index

λ The consumer preference parameter

βi A coefficient determines the effect of the previous consumption peak on the current household consumption.

εit A random error term

Table 7 Endogenous consumption coefficients of the eight
consumption categories in China

Year Endogenous consumption coefficients

M1 M2 M3 M4 M5 M6 M7 M8

2010 0.092 0.058 0.079 0.018 0.053 0.076 0.030 0.018

2011 0.090 0.062 0.074 0.019 0.050 0.079 0.033 0.019

2012 0.088 0.060 0.071 0.017 0.055 0.079 0.032 0.020

2013 0.065 0.053 0.165 0.018 0.051 0.086 0.037 0.014

2014 0.080 0.052 0.159 0.019 0.060 0.087 0.039 0.015

2015 0.078 0.050 0.158 0.018 0.063 0.090 0.039 0.015

2016 0.073 0.048 0.161 0.019 0.068 0.093 0.040 0.015

2017 0.067 0.047 0.164 0.021 0.072 0.096 0.040 0.014

2018 0.062 0.045 0.167 0.022 0.077 0.099 0.041 0.013

M1, food; M2, clothing, residence; M3, household facilities; M4, articles
and services; M5, transport and communication; M6, education, cultural,
and recreation services; M7, health care and medical services; M8, mis-
cellaneous goods and services
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After obtaining the endogenous consumption coefficients
of 28 subsectors corresponding to the input–output tables, it is
easy to decompose the household consumption into two parts
using Eq. (15).
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S19 0.009 0.009 0.009 0.011 0.013 0.014 0.014 0.014 0.019

S20 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.002

S21 0.008 0.004 0.001 0.001 0.001 0.001 0.000 0.001 0.001

S22 0.015 0.014 0.012 0.013 0.013 0.013 0.014 0.013 0.013

S23 0.005 0.005 0.005 0.006 0.007 0.007 0.008 0.008 0.008

S24 0.005 0.004 0.003 0.003 0.003 0.004 0.004 0.004 0.004

S25 0.007 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S26 0.031 0.036 0.040 0.044 0.043 0.041 0.045 0.043 0.048

S27 0.068 0.075 0.079 0.089 0.083 0.078 0.083 0.081 0.082

S28 0.083 0.071 0.063 0.105 0.103 0.097 0.083 0.091 0.090

50786 Environ Sci Pollut Res (2021) 28:50767–50789

http://creativecommons.org/licenses/by/4.0/


References

Alarcon J, Ernst C, Khondker B, Sharma PD (2011) Dynamic social
accounting matrix (DySAM): concept, methodology and simulation
outcomes. The case of Indonesia and Mozambique, employment
working paper no. 88. International Labour Office, Geneva

Batey PWJ (1985) Input-output models for regional demographic eco-
nomic analysis: some structural comparisons. Environ Plan A 17:
73–99. https://doi.org/10.1068/a170073

Blanco MI, Rodrigues G (2009) Direct employment in the wind energy
sector: an EU study. Energy Policy 37:2847–2857. https://doi.org/
10.1016/j.enpol.2009.02.049

Bohlmann HR, Horridge JM, Inglesi-Lotz R, Roos EL, Stander L (2019)
Regional employment and economic growth effects of South
Africa’s transition to low-carbon energy supply mix. Energy
Policy 128:830–837. https://doi.org/10.1016/j.enpol.2019.01.065

Cai F (2016) From quantitative issues to structural ones: an interpretation
of China's labor market. Chin Econ 11:92–111

Cai J, Leung P (2004) Linkage measures: a revisit and a suggested alter-
native. Econ Syst Res 16:63–83. https://doi.org/10.1080/
0953531032000164800

Cai W, Wang C, Chen J, Wang S (2011) Green economy and green jobs:
myth or reality? The case of China’s power generation sector.
Energy 36:5994–6003. https://doi.org/10.1016/j.energy.2011.08.
016

Cella G (1984) The input-output measurement of interindustry linkages*.
Oxf Bull Econ Stat 46:73–84. https://doi.org/10.1111/j.1468-0084.
1984.mp46001005.x

Chang N (2015) Changing industrial structure to reduce carbon dioxide
emissions: a Chinese application. J Clean Prod 103:40–48. https://
doi.org/10.1016/j.jclepro.2014.03.003

Chen J, Rose A (1989) The absolute and relative joint stability of input-
output production and allocation coefficients. In: Peterson W (ed)
Advances in input-output analysis. Oxford University Press, New
York, pp 25–36

Chen Q, Dietzenbacher E, Los B (2015) Structural decomposition anal-
yses: the differences between applying the semi-closed and the open
input–output model. Environ Plan A 47:1713–1735. https://doi.org/
10.1177/0308518X15597101

Chen Q, Dietzenbacher E, Los B, Yang C (2016) Modeling the short-run
effect of fiscal stimuli on GDP: a new semi-closed input-output
model. Econ Model 58:52–63. https://doi.org/10.1016/j.econmod.
2016.05.016

Chenery HB, Watanabe T (1958) International comparisons of the struc-
ture of production. Econometrica 26:487. https://doi.org/10.2307/
1907514

Cloutier M, Thomasin PJ (1994) Closing the Canadian input–output
model: homogenous vs non-homogenous household sector specifi-
cations. Econ Syst Res 6:397–414. https://doi.org/10.1080/
09535319400000032

Dai H, Masui T, Matsuoka Y, Fujimori S (2012) The impacts of China’s
household consumption expenditure patterns on energy demand and
carbon emissions towards 2050. Energy Policy 50:736–750. https://
doi.org/10.1016/j.enpol.2012.08.023

Dietzenbacher E (1989) On the relationship between the supply-driven
and the demand-driven input— output model. Environ Plan A Econ
Sp 21:1533–1539. https://doi.org/10.1068/a211533

Dietzenbacher E (1992) The measurement of interindustry linkages: key
sectors in the Netherlands. Econ Model 9:419–437. https://doi.org/
10.1016/0264-9993(92)90022-T

Dietzenbacher E (2002) Interregional multipliers: looking backward,
looking forward. Reg Stud 36:125–136. https://doi.org/10.1080/
00343400220121918

Dietzenbacher E, Günlük-Şenesen G (2003) Demand-pull and cost-push
effects on labor income in Turkey, 1973–90. Environ Plan A 35:
1785–1807. https://doi.org/10.1068/a35302

Dietzenbacher E, Van Der Linden JA (1997) Sectoral and spatial linkages
in the EC production structure. J Reg Sci 37:235–257. https://doi.
org/10.1111/0022-4146.00053

Fan LW, You J, ZhangW, Zhou P (2021) How does technological prog-
ress promote carbon productivity? Evidence from Chinese
manufacturing industries. J Environ Manag 277:111325. https://
doi.org/10.1016/j.jenvman.2020.111325

Felipe J, Bayudan-Dacuycuy C, Lanzafame M (2016) The declining
share of agricultural employment in China: how fast? Struct
Chang Econ Dyn 37:127–137. https://doi.org/10.1016/j.strueco.
2016.01.002

Friedman M (1957) Theory of the Consumption Function. Princeton
University Press, New Jersey

Garrett-Peltier H (2017) Green versus brown: comparing the employment
impacts of energy efficiency, renewable energy, and fossil fuels
using an input-output model. Econ Model 61:439–447. https://doi.
org/10.1016/j.econmod.2016.11.012

Gozgor G (2018) Does the structure of employment affect the external
imbalances? Theory and evidence. Struct Chang Econ Dyn 45:77–
83. https://doi.org/10.1016/j.strueco.2018.02.004

Guo J, Zhang YJ, Bin ZK (2018) The key sectors for energy conservation
and carbon emissions reduction in China: evidence from the input-
output method. J Clean Prod 179:180–190. https://doi.org/10.1016/
j.jclepro.2018.01.080

Hamilton JD (1994) Time series analysis. Princeton University Press,
New Jersey

Havey AC (1987) Application of the Kalman filter in econometrics. In:
Bewley TF (ed) Advances in econometrics. Cambridge University
Press, Cambridge, pp 285–313

He J, Deng J, SuM (2010) CO2 emission fromChina’s energy sector and
strategy for its control. Energy 35:4494–4498. https://doi.org/10.
1016/j.energy.2009.04.009

IEA [International Energy Agency] (2020) CO2 Emissions from Fuel
Combustion Highlights. https://webstore.iea.org/co2-emissions-
from-fuel-combustion-2020-highlights. Accessed 20 July 2020

ILO, CASS (2010) Study on low carbon development and green employ-
ment in China. https://wwwiloorg/beijing/what-we-do/publications/
WCMS_155390/lang%2D%2Den/indexhtm Accessed 01 April
2010

IPCC (2006) 2006 IPCC guidelines for National Greenhouse gas
Inventories. Institute for Global Environmental Strategies, Hayama

IPCC (2013) Climate change 2013: the physical science basis. In:
Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge
University Press, Cambridge

Jones LP (1976) The measurement of Hirschmanian linkages. Q J Econ
90:323–333. https://doi.org/10.2307/1884635

Kaya Y, Yokobori K (1999) Environment, energy and economy: strate-
gies for sustainability. Bookwell Publications, Delhi

Lambert RJ, Silva PP (2012) The challenges of determining the employ-
ment effects of renewable energy. Renew Sust Energ Rev 16:4667–
4674. https://doi.org/10.1016/j.rser.2012.03.072

Lenzen M (2003) Environmentally important paths, linkages and key
sectors in the Australian economy. Struct Chang Econ Dyn 14:1–
34. https://doi.org/10.1016/S0954-349X(02)00025-5

50787Environ Sci Pollut Res (2021) 28:50767–50789

https://doi.org/10.1068/a170073
https://doi.org/10.1016/j.enpol.2009.02.049
https://doi.org/10.1016/j.enpol.2009.02.049
https://doi.org/10.1016/j.enpol.2019.01.065
https://doi.org/10.1080/0953531032000164800
https://doi.org/10.1080/0953531032000164800
https://doi.org/10.1016/j.energy.2011.08.016
https://doi.org/10.1016/j.energy.2011.08.016
https://doi.org/10.1111/j.1468-0084.1984.mp46001005.x
https://doi.org/10.1111/j.1468-0084.1984.mp46001005.x
https://doi.org/10.1016/j.jclepro.2014.03.003
https://doi.org/10.1016/j.jclepro.2014.03.003
https://doi.org/10.1177/0308518X15597101
https://doi.org/10.1177/0308518X15597101
https://doi.org/10.1016/j.econmod.2016.05.016
https://doi.org/10.1016/j.econmod.2016.05.016
https://doi.org/10.2307/1907514
https://doi.org/10.2307/1907514
https://doi.org/10.1080/09535319400000032
https://doi.org/10.1080/09535319400000032
https://doi.org/10.1016/j.enpol.2012.08.023
https://doi.org/10.1016/j.enpol.2012.08.023
https://doi.org/10.1068/a211533
https://doi.org/10.1016/0264-9993(92)90022-T
https://doi.org/10.1016/0264-9993(92)90022-T
https://doi.org/10.1080/00343400220121918
https://doi.org/10.1080/00343400220121918
https://doi.org/10.1068/a35302
https://doi.org/10.1111/0022-4146.00053
https://doi.org/10.1111/0022-4146.00053
https://doi.org/10.1016/j.jenvman.2020.111325
https://doi.org/10.1016/j.jenvman.2020.111325
https://doi.org/10.1016/j.strueco.2016.01.002
https://doi.org/10.1016/j.strueco.2016.01.002
https://doi.org/10.1016/j.econmod.2016.11.012
https://doi.org/10.1016/j.econmod.2016.11.012
https://doi.org/10.1016/j.strueco.2018.02.004
https://doi.org/10.1016/j.jclepro.2018.01.080
https://doi.org/10.1016/j.jclepro.2018.01.080
https://doi.org/10.1016/j.energy.2009.04.009
https://doi.org/10.1016/j.energy.2009.04.009
https://webstore.iea.org/co2-emissions-from-fuel-combustion-2020-highlights
https://webstore.iea.org/co2-emissions-from-fuel-combustion-2020-highlights
https://www.ilo.org/beijing/what-we-do/publications/WCMS_155390/lang%2D%2Den/index.htm
https://www.ilo.org/beijing/what-we-do/publications/WCMS_155390/lang%2D%2Den/index.htm
https://doi.org/10.2307/1884635
https://doi.org/10.1016/j.rser.2012.03.072
https://doi.org/10.1016/S0954-349X(02)00025-5


Liu Q (2002) The research on the method of structural analyses regarding
the input-output coefficients. Stati Res 2:40–42. https://doi.org/10.
3969/j.issn.1002-4565.2002.02.010 (in Chinese)

Long R, Shao T, Chen H (2016) Spatial econometric analysis of China’s
province-level industrial carbon productivity and its influencing fac-
tors. Appl Energy 166:210–219. https://doi.org/10.1016/j.apenergy.
2015.09.100

Lu M, Wang X, Cang Y (2018) Carbon productivity: findings from
industry case studies in Beijing. Energies 11:1–19. https://doi.org/
10.3390/en11102796

Luo J (2013) The power-of-pull of economic sectors: a complex network
analysis. Complexity 18:37–47. https://doi.org/10.1002/cplx.21444

MaN, Li H, Tang R, DongD, Shi J,Wang Z (2019) Structural analysis of
indirect carbon emissions embodied in intermediate input between
Chinese sectors: a complex network approach. Environ Sci Pollut
Res 26:17591–17607. https://doi.org/10.1007/s11356-019-05053-
w

Malik A, Lenzen M, Ely RN, Dietzenbacher E (2014) Simulating the
impact of new industries on the economy: the case of biorefining
in Australia. Ecol Econ 107:84–93. https://doi.org/10.1016/J.
ECOLECON.2014.07.022

Mankiw NG (2010) Macroeconomics, seventh edn. Worth Publishers,
New York

Markaki M, Belegri-Roboli A, Michaelides P, Mirasgedis S, Lalas DP
(2013) The impact of clean energy investments on the Greek econ-
omy: an input-output analysis (2010-2020). Energy Policy 57:263–
275. https://doi.org/10.1016/j.enpol.2013.01.047

Mi ZF, Pan SY, Yu H, Wei YM (2015) Potential impacts of industrial
structure on energy consumption and CO2 emission: a case study of
Beijing. J Clean Prod 103:455–462. https://doi.org/10.1016/j.
jclepro.2014.06.011

de Miguel C, Filippini M, Labandeira X, Labeaga JM, Löschel A (2019)
Low-carbon transitions: economics and policy. Energy Econ 84:
104606. https://doi.org/10.1016/j.eneco.2019.104606

Miller RE, Blair PD (2009) Input output analysis: foundations and exten-
sions, Second edn. Cambridge University Press, Cambridge

Miyazawa K (1976) Input-output analysis and the structure of income
distribution, lecture notes in economics and mathematical systems.
Mathematical Economics, Springer, Heidelberg

Modigliani F (1986) Life cycle, individual thrift, and the wealth of na-
tions. Am Econ Rev 76:297–313

MOHURD [Ministry of Housing and Urban-Rural Development of
People’s Republic of China] (2017) The 13th Five-Year Plan for
the development of the construction industry, http:/ /
wwwmohurdgovcn/wjfb/201705/W020170504093504pdf
Accessed 05 May 2017 (in Chinese)

Moreno B, López AJ (2008) The effect of renewable energy on employ-
ment. The case of Asturias (Spain). Renew Sust Energ Rev 12:732–
751. https://doi.org/10.1016/j.rser.2006.10.011

Mu Y, Cai W, Evans S, Wang C, Roland-Holst D (2018) Employment
impacts of renewable energy policies in China: a decomposition
analysis based on a CGE modeling framework. Appl Energy 210:
256–267. https://doi.org/10.1016/j.apenergy.2017.10.086

NBSC [National Bureau of Statistics of China] (2018a) China Statistical
Yearbook. China Statistics Press, Beijing

NBSC [National Bureau of Statistics of China] (2018b) China Energy
Statistical Yearbook. China Statistics Press, Beijing

NBSC [National Bureau of Statistics of China] (2018c) China Industry
Statistical Yearbook. China Statistics Press, Beijing

NBSC [National Bureau of Statistics of China] (2018d) China Labour
Statistical Yearbook. China Statistics Press, Beijing

O’SullivanM, Edler D (2020) Gross employment effects in the renewable
energy industry in Germany-an input-output analysis from 2000 to
2018. Sustainability 12:6163. https://doi.org/10.3390/su12156163

Peters GP (2008) From production-based to consumption-based national
emission inventories. Ecol Econ 65:13–23. https://doi.org/10.1016/
j.ecolecon.2007.10.014

Quadrelli R, Peterson S (2007) The energy-climate challenge: recent
trends in CO2 emissions from fuel combustion. Energy Policy 35:
5938–5952. https://doi.org/10.1016/j.enpol.2007.07.001

Rasmussen PN (1956) Studies in inter-sectoral relations. North-Holland,
Einar Harcks

SAFE [State Administration of Foreign Exchange] (2019) The time-
series data of Balance of Payments of China. http://www.safe.gov.
cn. Accessed 27 June 2019

Simas M, Pacca S (2014) Assessing employment in renewable energy
technologies: a case study for wind power in Brazil. Renew Sust
Energ Rev 31:83–90. https://doi.org/10.1016/j.rser.2013.11.046

Sonis M, Hewings G (1999) Miyazawa’s contribution to understanding
economic structure: interpretation, evaluation and extensions. In:
Hewings G, Sonis M, Madden M, Kimura Y (eds) Understanding
and interpreting economic structure. Springer, Berlin, pp 13–51

Steenge AE, Incera AC, Serrano M (2020) Income distributions in multi-
sector analysis; Miyazawa’s fundamental equation of income for-
mation revisited. Struct Chang Econ Dyn 53:377–387. https://doi.
org/10.1016/j.strueco.2019.04.007

Stoddard L, Abiecunas J, O’Connell R (2006) Economic, Energy, and
Environmental Benefits of Concentrating Solar Power in California,
United States. https://www.osti.gov/servlets/purl/881924

Szirmai A (2012) Industrialisation as an engine of growth in developing
countries, 1950-2005. Struct Chang Econ Dyn 23:406–420. https://
doi.org/10.1016/j.strueco.2011.01.005

Tourkolias C, Mirasgedis S (2011) Quantification and monetization of
employment benefits associated with renewable energy technolo-
gies in Greece. Renew Sust Energ Rev 15:2876–2886. https://doi.
org/10.1016/j.rser.2011.02.027

Ulrich P, DistelkampM, Lehr U (2012) Employment effects of renewable
energy expansion on a regional level-first results of a model-based
approach for Germany. Sustainability 4:227–243. https://doi.org/10.
3390/su4020227

UNSD [United Nations Statistics Division] (2015) UN Comtrade
Database. https://comtrade.un.org/. Accessed 27 June 2019

Wakabayashi M, Hewings G (2007) Life-cycle changes in consumption
behavior: age-specific and regional variations. J Reg Sci 47:315–
337. https://doi.org/10.1111/j.1467-9787.2007.00511.x

Wang C, ZhangW, Cai W, Xie X (2013a) Employment impacts of CDM
projects in China’s power sector. Energy Policy 59:481–491. https://
doi.org/10.1016/j.enpol.2013.04.010

Wang Y, Wang W, Mao G, Cai H, Zuo J, Wang L, Zhao P (2013b)
Industrial CO 2 emissions in China based on the hypothetical ex-
traction method: linkage analysis. Energy Policy 62:1238–1244.
https://doi.org/10.1016/j.enpol.2013.06.045

Wang Z, Wei L, Niu B, Liu Y, Bin G (2017) Controlling embedded
carbon emissions of sectors along the supply chains: a perspective
of the power-of-pull approach. Appl Energy 206:1544–1551.
https://doi.org/10.1016/j.apenergy.2017.09.108

Wang X, Wang Z, Cui C, Wei L (2020) Forward and backward critical
sectors for CO2 emissions in China based on eigenvector ap-
proaches. Environ Sci Pollut Res 27:16110–16120. https://doi.org/
10.1007/s11356-020-08154-z

Wei M, Patadia S, Kammen DM (2010) Putting renewables and energy
efficiency to work: how many jobs can the clean energy industry

50788 Environ Sci Pollut Res (2021) 28:50767–50789

https://doi.org/10.3969/j.issn.1002-4565.2002.02.010
https://doi.org/10.3969/j.issn.1002-4565.2002.02.010
https://doi.org/10.1016/j.apenergy.2015.09.100
https://doi.org/10.1016/j.apenergy.2015.09.100
https://doi.org/10.3390/en11102796
https://doi.org/10.3390/en11102796
https://doi.org/10.1002/cplx.21444
https://doi.org/10.1007/s11356-019-05053-w
https://doi.org/10.1007/s11356-019-05053-w
https://doi.org/10.1016/J.ECOLECON.2014.07.022
https://doi.org/10.1016/J.ECOLECON.2014.07.022
https://doi.org/10.1016/j.enpol.2013.01.047
https://doi.org/10.1016/j.jclepro.2014.06.011
https://doi.org/10.1016/j.jclepro.2014.06.011
https://doi.org/10.1016/j.eneco.2019.104606
http://www.mohurd.gov.cn/wjfb/201705/W020170504093504.pdf
http://www.mohurd.gov.cn/wjfb/201705/W020170504093504.pdf
https://doi.org/10.1016/j.rser.2006.10.011
https://doi.org/10.1016/j.apenergy.2017.10.086
https://doi.org/10.3390/su12156163
https://doi.org/10.1016/j.ecolecon.2007.10.014
https://doi.org/10.1016/j.ecolecon.2007.10.014
https://doi.org/10.1016/j.enpol.2007.07.001
http://www.safe.gov.cn
http://www.safe.gov.cn
https://doi.org/10.1016/j.rser.2013.11.046
https://doi.org/10.1016/j.strueco.2019.04.007
https://doi.org/10.1016/j.strueco.2019.04.007
https://www.osti.gov/servlets/purl/881924
https://doi.org/10.1016/j.strueco.2011.01.005
https://doi.org/10.1016/j.strueco.2011.01.005
https://doi.org/10.1016/j.rser.2011.02.027
https://doi.org/10.1016/j.rser.2011.02.027
https://doi.org/10.3390/su4020227
https://doi.org/10.3390/su4020227
https://comtrade.un.org/
https://doi.org/10.1111/j.1467-9787.2007.00511.x
https://doi.org/10.1016/j.enpol.2013.04.010
https://doi.org/10.1016/j.enpol.2013.04.010
https://doi.org/10.1016/j.enpol.2013.06.045
https://doi.org/10.1016/j.apenergy.2017.09.108
https://doi.org/10.1007/s11356-020-08154-z
https://doi.org/10.1007/s11356-020-08154-z


generate in the US? Energy Policy 38:919–931. https://doi.org/10.
1016/j.enpol.2009.10.044

Wen W, Wang Q (2019) Identification of key sectors and key provinces
at the view of CO2 reduction and economic growth in China: link-
age analyses based on the MRIOmodel. Ecol Indic 96:1–15. https://
doi.org/10.1016/j.ecolind.2018.08.036

Xue J (2011) Annual report on China's low-carbon economic develop-
ment. Social Sciences Academic Press, Beijing (in Chinese)

Yang H, Lu Z, Shi X, Mensah IA, Luo Y, Chen W (2021) Multi-region
and multi-sector comparisons and analysis of industrial carbon pro-
ductivity in China. J Clean Prod 279:123623. https://doi.org/10.
1016/j.jclepro.2020.123623

Yi H (2013) Clean energy policies and green jobs: an evaluation of green
jobs in U.S. metropolitan areas. Energy Policy 56:644–652. https://
doi.org/10.1016/j.enpol.2013.01.034

Zhang Y (2009) Impact of trade on China's energy consumption and SO2

emission:1987~2006. J Quant Tech Econ 26(1):16–30 (in Chinese)

Zhang J, Yu B, Cai J, Wei YM (2017) Impacts of household income
change on CO2 emissions: an empirical analysis of China. J Clean
Prod 157:190–200. https://doi.org/10.1016/j.jclepro.2017.04.126

Zhao Y, Zhang Z, Wang S, Zhang Y, Liu Y (2015) Linkage analysis of
sectoral CO2 emissions based on the hypothetical extraction method
in South Africa. J Clean Prod 103:916–924. https://doi.org/10.1016/
j.jclepro.2014.10.061

Zhou W (2017) Whether low-carbon transition can match with maintain-
ing stable growth and employment promotion: an analysis based on
Hubei province’s social accounting matrix. Ecol Econ 33(1):67–72
(in Chinese)

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

50789Environ Sci Pollut Res (2021) 28:50767–50789

https://doi.org/10.1016/j.enpol.2009.10.044
https://doi.org/10.1016/j.enpol.2009.10.044
https://doi.org/10.1016/j.ecolind.2018.08.036
https://doi.org/10.1016/j.ecolind.2018.08.036
https://doi.org/10.1016/j.jclepro.2020.123623
https://doi.org/10.1016/j.jclepro.2020.123623
https://doi.org/10.1016/j.enpol.2013.01.034
https://doi.org/10.1016/j.enpol.2013.01.034
https://doi.org/10.1016/j.jclepro.2017.04.126
https://doi.org/10.1016/j.jclepro.2014.10.061
https://doi.org/10.1016/j.jclepro.2014.10.061

	Comprehensive...
	Abstract
	Introduction
	Literature review
	Methodology and data
	Semi-closed input–output model with partially endogenized consumption
	Measurement of sectoral linkages
	Measurement of employment impacts
	Data

	Results and discussion
	Overviews of economic growth, carbon emissions, and employment in China
	Economic and emission linkages analysis
	Employment impacts analysis

	Conclusions and policy implications
	Appendix A
	References


