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Abstract
The identification of fecal contamination in coastal marine ecosystems is one of the main requirements for evaluation of potential
risks to human health. The objective of this study was to investigate the occurrence and distribution of fecal indicators and
pathogenic bacteria in seawaters and mussels collected monthly during a period of 1 year from four different sites in Northeastern
Algeria (sites S1 to S4), through biochemical and molecular analyses. Our research is the first to use molecular analysis to
unambiguously identify the potentially pathogenic bacteria present in Algerian Perna perna mussels. The obtained results
revealed that the levels of fecal indicator bacteria (FIB) from both P. perna and seawater samples largely exceeded the permis-
sible limits at S2 and S3. This is mainly related to their location close to industrial and coastal activity zones, which contain a
mixture of urban, agricultural, and industrial pollutants. Besides, P. perna collected from all sites were severalfold more
contaminated by FIB than seawater samples, primarily during the warm season of the study period. Biochemical and molecular
analyses showed that isolated bacteria from both seawater and mussels were mainly potentially pathogenic species such as
E. coli, Salmonella spp., Staphylococcus spp., Klebsiella spp., Pseudomonas spp., and Proteus spp.
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Introduction

For many decades, the coastal marine ecosystems have been
continuously threatened by several anthropogenic activities
such as improper sewage disposal, urban runoff, and massive
discharges of agricultural and industrial effluents (Ghozzi

et al. 2017; Damak et al. 2020). Coastal waters are often the
receiving environment for all kinds of wastewater discharges
containing many microorganisms that are harmful to human
health, especially in bathing beaches and shellfish production
areas (Perkins et al. 2014). Thus, the impact on health is more
than worrying, placing microbiological pollution as a major
public health problem.

Due to their sessile lifestyle, resistance to environmental
stressors, and efficient water clearance ability, bivalves, especial-
ly mussels, have been widely used as bioindicators of coastal
pollution (Belabed et al. 2013; Jia et al. 2018; Ozkan et al.
2017). These invertebrates have the potential to accumulate large
quantities of microorganisms from their surrounding waters, in-
cluding opportunistic bacteria (Aeromonas spp., Vibrio spp.,
Pseudomonas spp.), protozoan parasites (Cryptosporidium,
Giardia), and viruses (adenoviruses, hepatoviruses), as well as
pathogenic bacteria (E. coli, Salmonella) (Ghozzi et al. 2017).
They may therefore jeopardize human health, especially when
they are consumed as seafood (Stabili et al. 2005; Zannella et al.
2017; Vincy et al. 2017).
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Numerous studies have reported that many serious illnesses
such as acute gastroenteritis and hepatitis E virus infections
are related to the presence of pathogenic microorganisms in
bivalves, especially when they are eaten raw or undercooked
(Le Guyader et al. 2006; O’Hara et al. 2018; Kobayashi et al.
2019; Fouillet et al. 2020). Hence, there is an urgent need for
an overall assessment to predict the presence of these infec-
tious agents related to waterborne outbreaks, and to prevent
the impacts of fecal contamination on human and environ-
mental health.

The brown mussel Perna perna (Linnaeus, 1758) is a bi-
valve mollusc belonging to the Mytilidae family. It is widely
distributed in tropical and subtropical regions of the
Mediterranean Sea, as well as in the Atlantic and Indian
oceans (dos Santos et al. 2018; Neves et al. 2019). Because
of its importance as a valuable source for human nutrition,
P. perna is considered as one of the key aquaculture species
worldwide, and the production in Brazil alone is about 18,000
tons (dos Santos et al. 2018; FAO 2019; Krampah et al. 2020).
This wide geographical distribution also makes P. perna ap-
propriate for determination of pollution levels, especially in
regions that are not economically and technically prepared to
monitor aquatic contamination through more sophisticated
analysis (Sokolowski et al. 2004; Francioni et al. 2004).

In Algeria,P. pernamussels are harvested directly from the
rocky beaches of the coastal regions where no legislation for
consumption exists. This species is widely used as a
bioindicator of coastal pollution to identify and classify the
most suitable sites for mussel aquaculture (Belabed et al.
2013; Boudjema et al. 2014; Kadri et al. 2017; Kerdoussi
et al. 2017; Abderrahmani et al. 2020). Like all North
African countries, mussel aquaculture along the Algerian
coasts faces important constraints such as the underdeveloped
markets, low availability of good sites, lack of qualified per-
sonnel, and financial. However, universities in the Algerian
cities of Oran, Mostaganem, Algiers, and Annaba are making
significant efforts to develop this sector (Kara et al. 2018).

The Gulf of Annaba is one of the most valuable coastal
regions of Northern Algeria, because of its great touristic
and economic importance (Ouali et al. 2018). However, it is
highly vulnerable to several types of pollutants, primarily re-
lated to the intensive agricultural and industrial discharges and
the presence of domestic wastes, especially on the outskirts of
the city where there is a high population (Soltani et al. 2012;
Amri et al. 2017; Ouali et al. 2018). Other natural environ-
mental contaminants such as the leaching of soils, animal
excreta and river discharges, as well as the problems of cli-
mate change and global warming, are also likely responsible
for fecal contamination in the Gulf of Annaba. According to
Barreras Jr et al. 2019, rising sea surface temperatures is a
consequence of the expected climate change, and this will
extend the time period during which fecal bacteria can sur-
vive, which again will lead to increased bacterial load.

During recreational activities, water contaminated with fe-
cal pollutants can pose a significant risk to human health, as
many enteric pathogens are often associated with fecal matter
(Oliveira et al. 2016). In case of direct or indirect contact with
water, users may be exposed to a variety of waterborne dis-
eases of ears, eyes, and skin, as well as gastrointestinal and
upper respiratory illness (Maipa et al. 2001; Chávez-Díaz et al.
2020)

Despite this increasing pollution pressure, few studies have
been carried out on fecal contamination and its impact on
human health in the Gulf of Annaba (Kadri et al. 2015,
2017). Therefore, this study aimed to evaluate the occurrence
and the distribution of fecal indicators and pathogenic bacteria
in seawater and the mussel Perna perna samples by
implementing a spatial–temporal sampling strategy, and to
assess the impact of physicochemical variables on the abun-
dance of fecal indicator bacteria (FIB). It should also be em-
phasized that our research is the first to use molecular analysis
to identify with certainty the pathogenic bacteria present in
Perna perna mussels collected in the Gulf of Annaba.

Materials and methods

The Gulf of Annaba is located in the northeast of Algeria. It
stretches over 40 km from Cap de Garde (36°96′N, 7°79′E) in
the west to Cap Rosa (36°68′N, 8°25′E) in the east. It is a
heavily polluted ecosystem, due to a variety of agricultural,
industrial, and urban discharges, in addition to massive do-
mestic wastes from a large part of the city of Annaba
(Abdennour et al. 2000). Four sampling sites were strategical-
ly selected for the present study, based on different potential
pollution sources in these areas: S1 ‘Cap de Garde’; S2
‘Rezgui Rachid’; S3 ‘Sidi Salem’; and S4 ‘Lahnaya’ (Fig.
1). The characteristics of the selected sites are shown in
Table 1.

Sampling protocol

Samples of seawater and Perna perna mussels were monthly
and simultaneously collected at low tide at each site, in the
period from January to December 2018. Low tides are gener-
ally associated with higher concentrations of fecal indicator
bacteria in coastal areas. This increase of FIB levels is the
result of the mobilization of sediment-associated indicator
bacteria as tidal waters recede (USEPA 2010).

Water samples were obtained at a depth of 30-50 cm below
the surface of the water to avoid sunlight exposure using 250-
ml sterile glass bottles. P. perna mussels (43–110mm in
length, 20–35mm in width, and 10–30mm in height) were
harvested by hand near the water collecting points at a rate
of 10–20 individuals (depending on size). All samples were
immediately placed in a clean cooler containing ice cubes
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(4°C) and transported to the laboratory within the following
2–4h. At each site and each month, seawater environmental
variables including temperature (T), pH, salinity (Sal), and
dissolved oxygen (DO) were measured in situ using a multi-
parameter probe (Multi 340i/SET-82362,WTW®, Germany).
The determination of seawater suspended solids (SS) was per-
formed as described by Aminot and Chaussepied (1983).

Bacteriological analysis

For seawater samples, a volume of 100 ml was directly ana-
lyzed without any prior treatment (Rodier et al. 2009).

Immediately upon return to the laboratory, the mussels were
cleaned and cleared of encrusting organisms, after which they
were openedwith a sterile scalpel. The tissue and intravalvular
liquid (25 g) were mixed and homogenized with 225-ml ster-
ile physiological water in a sterile laboratory blender (standard
NF EN ISO 6887). The levels of FIB such as total coliforms
(TC) and Escherichia coli (EC), as well as fecal streptococci
(FS), were estimated by three-tube decimal dilution using the
most probable number (MPN) method (standard NF V 08-021
(1993)/ISO 7402 and NF V 08-020 (1994)/ISO 7251). All
results were statistically expressed as MPN per 100 ml of
the sample according to Mac Grady’s tables (Rodier et al.

Table 1 Characteristics of the four sampling sites

Site
number

Name and coordinates of
sampling site

Location in the Gulf of
Annaba

Associated pollution sources Hydrodynamic
flux

Reference

S1 Cap de Garde (36°96′N, 7°79′E) Located 7.7 km to the west of
Annaba city

-Presence of bathers and fishermen in summer High Kadri et al. (2017)

S2 Rezgui Rachid (36°91′N, 7°76′E) Located in a peri-urban area, on the

west coast of Annaba city

-Receives urban waste from nearby houses

-Receives a lot of bathing visitors

during summer

Low Belabed et al. (2013)

S3 Sidi Salem (36°86′N, 7°76′E) Located 1 km to the east of Annaba

city, close to Wadi Seybouse

and Bedjima

-Receives a mixture of urban agricultural and

industrial wastes

-Important presence of a large colony of

seabird and livestock

Low Telailia (2014), Kadri

et al. (2017)

S4 Lahnaya (36°93′N, 8°20′E) Located in rural area, 45 km from

the city of Annaba, in the
National Park of EL-Kala

-Strong presence of bathers and fishermen in

summer
-Presence of livestock

High Kadri et al. (2017)

S2

S3

S4

MEDITERRANEAN SEA

Annaba City

El Tarf

S1 40 km

0 8 16 km

Gulf of Annaba

Wadi Seybouse

Wadi Bedjima

Algeria

Annaba

37°3’0”N

36°52’30”N

8°0’0”E

Fig. 1 Map showing the location of the Gulf of Annaba and sampling
sites. The small map shows the overall location of Annaba with respect to
Algeria and the Mediterranean Sea. The large map shows the exact

locations of the four sampling sites (S1 to S4), which are indicated with
black circles. S1, Cap de Garde; S2, Rezgui Rachid; S3, Sidi Salem; S4:
Lahnaya
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2009). For the isolation of potentially pathogenic bacteria,
standard microbial methods were carried out (Rodier et al.
2009). Bacterial isolates were biochemically identified at the
species level through Analytical Profile Index (API 20E,
API20NE, API Staph) and further confirmed by 16S rRNA
gene sequencing, multilocus sequence typing (MLST), and
phylogenetic analysis.

DNA extraction and 16S rRNA gene amplification

Twenty-five bacterial isolated were selected, based on their
potential to be human pathogens. Bacterial colonies were
picked from overnight LB (Lysogeny Broth) agar plates and
transferred into 1.5-ml Eppendorf tubes containing 50 μl of
1xTE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA) supple-
mentedwith approximately 100mg of 0.1 mmZirconia beads.
The tubes were incubated at 37°C for 15min and then strongly
vortexed for 3 min to disrupt the cells. The resulting bacterial
lysate served as a template for the 16S rRNA gene amplifica-
tion. The 25 μl PCR mixture contained 0.5 μl DNA template,
2.5 μl Dream Taq buffer (10x), 1.5 μl dNTPs (2.5 mM each),
0.5μl Dream Taq DNA polymerase (Thermo ScientificTM)
and 1.5 μl 10 μM of each universal primers 27F and 1492R
(Table 2). PCR cycling was carried out as described by da
Silva et al. (2013). Amplification products were visualized
by electrophoresis on 1% agarose gel in 1x TBE buffer after
staining with SYBR Safe (Invitrogen) and subsequently puri-
fied with Gene Jet Gel Extraction Kit (Thermo Scientific TM).

16S rRNA sequence analysis

The PCR-amplified regions of the 16S rRNA genes were
Sanger-sequenced using primer 27F (Table 2). The obtained
partial sequences of the 16S rRNA gene were compared with
the GenBank NCBI database through the BLAST software, to
confirm the species of the isolates. After that, a multiple se-
quence alignment was carried out using the Clustal X software
integrated into the MEGA 7 program (Kumar et al. 2016).
Finally, the phylogenetic tree was constructed by the
neighbor-joining method with 1000 bootstrap replications.

Multilocus sequence typing analysis (MLST analysis)

To investigate the source of the detected E. coli strains, DNA
from isolates EM3, EM18, EM97, EM102, and MM6 were
subjected to PCR amplification targeting seven specific genes
(trpA, trpB, dinB, polB, putP, pabB, and icdA) using suitable
primers (Table 2), and following the same procedures used for
16S rRNA genes. The amplification program was carried out
as follows: initial denaturation of 4 min at 94°C, followed by
30 cycles of 30s at 94°C, 30s at 52°C, and 2 min at 72°C, and
a final extension at 72°C for 4 min. The phylogenetic tree is
based on 2758 bp concatenated partial sequences of the seven

genes from EM3, EM18, EM97, EM102, and MM6, as well
as the equivalent loci in closely related strain. The sequences
were aligned with Clustal Omega with default settings on the
EBI server, and the guide-tree was visualized using iTOL
(Letunic and Bork 2019; Madeira et al. 2019).

Statistical analysis

Statistical analysis was carried out with the R software version
3.1.2. Normality distribution and homogeneity of data vari-
ances were first tested by the Shapiro–Wilk test (Shapiro and
Francia 1972). Since data were not normally distributed, we
had to choose nonparametric tests for data analysis. First, the
Spearman correlation coefficient was evaluated to investigate
possible relationships between our data sets. Then, the
Kruskal–Wallis test was applied to assess the intersite and
intermonth comparisons. Comparisons between the groups
with significant differences were identified by the Wilcoxon
tests. In all tests, the significance level was set to p value <
0.05.

Finally, principal component analysis (PCA) was used as a
descriptive method to characterize the four sampling sites in
the study area and to assess the contribution percentage of
measured environmental variables on the abundance of the
fecal indicators employing the FactoMineR package. In
PCA analysis, the square cosine (cos2) indicates the impor-
tance of the contribution of a component to the distance
squared from the initial observation. The components with a
high cos2 value contribute significantly to the total distance,
and these components are therefore the important contributors
(Abdi and Williams 2010).

Results

Physicochemical analysis of sampled water

The monthly variation in seawater environmental variables
obtained throughout the sampling period is presented in Fig.
2. As expected, the annual temperature and salinity cycles
showed similar seasonal fluctuations across the four study
sites. Seawater temperature ranged from 10.3°C at S4 in
February to 28.6°C at S2 in August, while salinity varied from
34.9 g/L at S3 in March to 41.6 g/L at S2 in August. The
variations of these two parameters are primarily influenced
by the climatic conditions of the area. The high values of
temperature and salinity recorded at S2 (temperature: 28.6
°C; salinity: 41.61 g/L), and S3 (temperature: 28°C; salinity:
41.6 g/L) would be due to the fact that these sites are located
well within the Gulf and are protected from currents.
Relatively high evaporation, especially in summer, also con-
tributed to the increase in salinity. The pH remained relatively
constant and alkaline during the sampled months, with a slight
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increase in spring. An inverse relationship between dissolved
oxygen and temperature vs. salinity was observed. The
highest value (12.6 mg/L) of dissolved oxygen was recorded
during winter at S4, while the lowest one (5 mg/L) was de-
tected during summer at S3 and S2. Indeed, the application of
Spearman’s correlation test revealed a strong negative and
significant correlation between dissolved oxygen and the tem-
perature (r = −0.84, p < 0.0001) and between the same vari-
able and the salinity (r = −0.65, p < 0.0001) (Table 3). Levels
of suspended solids were lower at S1 and S4 as compared with
the other two sites. The highest value (0.42mg/L) was record-
ed two times in February at S3 and in December at S2.

Bacteriological analysis of isolated bacteria

As shown in Fig. 3, the results of the bacteriological
analysis revealed that the fecal contamination varied
over time and among the four sampling sites in the
Gulf of Annaba (p < 0.05).

The levels of all FIB (TC, EC, and FS) in seawater samples
were alarmingly high at S2 and S3 (4.6×103 MPN/100 ml),
and largely exceeded the limits defined by the Algerian law as
500 TC/100 ml, 100 EC/100 ml, and 100 FS/100 ml (JORA
1993, 2006). The minimum levels of FIB were recorded at S1
and S4 (0 MPN/100ml) (Fig. 3). The Wilcoxon test was used
to examine potential differences in detected TC, EC, and FS
between the four study sites. The most significant differences
between the four study sites were between S3 and S4
(p=0.0004), and between S2 and S4 (p=0.0011). No statisti-
cally significant differences were found between S2 and S3 (p
> 0.05) (Table S1).

As expected, P. perna mussels from all sites were several-
fold more contaminated by FIB than the seawater samples. TC
concentrations ranged from 9×103 MPN/100g at S4 to 3×105

MPN/100g at S3. For E. coli, 100% of the P. perna samples at
S3 showed loads of more than 4.6×104 MPN/100g. FS was
present throughout the entire study period, and the highest
concentration (2.5×104 MPN/100g) was detected in the mus-
sels of S2 (Fig. 3).

Table 2 Primers used in this
study Target gene Primer name Sequence (5′–3′) Reference

16S rRNA 27F AGAGTTTGATCCTGGCTCAG Lane (1991)
1492R CGGCTACCTTGTTACGACTT

trpA trpA-F ATGGAACGCTACGAATCTCTGTTTGCCC Escobar-Páramo et al. (2003)
trpA-R TCGCCGCTTTCATCGGTTGTACAAA

trpB trpB-F ACAATGACAAGATTACTTAACCCCT Escobar-Páramo et al. (2003)
trpB-R TTTCCCCCTCGTGCTTTCAAAATATC

polB polB-F TGGAAAAACTCAACGCCTGGT Bjedov et al. (2003)
polB-R TGGTTGGCATCAGAAAACGGC

icdA icdA-F GAAAGTAAAGTAGTTGTTCCGG Escobar-Páramo et al. (2004)
icdA-R GATGATCGCGTCACCAAAYTC

putP putB-F GCGACGATCCTTTACACCTTTATTG Escobar-Páramo et al. (2003)
putB-R CGCATCGGCCTCGGCAAAGCG

dinB dinB-F TTGAGAGGTGAGCAATGCGTA Bjedov et al. (2003)
dinB-R GTATACATCATAATCCCAGCAC

pabB pabB-F TTTTACACTCCGGCTATGCCGATCA Guttman and Dykhuizen (1994)
pabB-R GCTGCGGTTCCAGTTCGTCGATAAT

Table 3 Spearman’s correlation matrix of the seawater quality variables in 2018. DO, dissolved oxygen; Sal, salinity; T, water temperature; SS,
suspended solids; EC, Escherichia coli; TC, total coliforms; and FS, fecal streptococci

T Sal pH DO SS TC EC

Sal 0.824***

pH 0.181 0.185

DO −0.836*** −0.650*** 0.008

SS −0.483*** −0.529*** −0.223 0.183

TC 0.137 −0.021 0.183 −0.371** 0.565***

EC 0.285* 0.140 0.025 −0.459** 0.507*** 0.769***

FS 0.643*** 0.461*** 0.119 −0.721*** −0.025 0.559*** 0.453***

*p≤0.05; **p≤0.01; ***p≤0.001
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Depending on the seasons of sampling (winter =
December, January, and February; spring = March, April,
and May; summer = June, July, and August; autumn =
September, October, and November), the levels of FIB in both
compartments were generally higher during the warmer
months of the year. The maximum levels of TC in seawater
(4.6×104 MPN/100ml) and P. perna mussels (3×105 MPN/g)
were both recorded in summer. The highest concentrations of
E. coli in seawater (1.2 × 104 MPN/100ml) and P. perna
(2.5×104 MPN/100g) were detected in autumn, respectively.
Finally, fecal contamination by FS was most pronounced in
autumn in both compartments: 2.1×104 MPN/100ml in sea-
water, and 2.5×105 MPN/g in P. perna mussels (Fig. 3).

The Wilcoxon test was applied to test the significance of
these differences. For TC, the most significant differences
between the sampling seasons were between the autumn and

winter (p=0.028), and between the autumn and spring
(p=0.041). For E. coli, a significant difference was found be-
tween the autumn and winter (p=0.029). Finally, for FS, the
most significant differences were found between the autumn
and winter (p=0.023), and between the summer and winter
(p=0.028) (Table S2).

Based on Spearman's correlation results, FIB-levels were
highly correlated with each other (p < 0.0001) (Table 3). TC
were found to be positively and significantly correlated with
EC (r= 0.77, p<0.0001) and FS (r=0.56, p<0.0001). In addi-
tion, EC also showed positive and significant correlation with
FS (r=0.45, p=0.0012)

The results of Spearman’s correlation analysis between
FIB and physicochemical variables are given in Table 3.
According to the correlation coefficients, FS appeared to be
the most correlated indicator with all environmental variables

a b

c

e

d

Fig. 2 Results of the physicochemical analysis of seawater samples at the four sampling sites. a Temperature (°C), b salinity (g/L), c dissolved oxygen
(mg/L), d pH, and e suspended solids (mg/L). S1, Cap de Garde; S2, Rezgui Rachid; S3, Sidi Salem; S4, Lahnaya
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except pH and SS: DO (r=−0.72, p<0.0001); temperature
(r=0.64, p<0.0001) and salinity (r=0.46, p<0.01). In contrast,
EC and TC were found to be positively and significantly cor-
related with SS (r=0.51, p<0.001; 0.57, p<0.001; respectively)
and negatively correlated with DO (r=−0.46, p<0.01; r=−0.37,
p<0.01; respectively).

Spatial–temporal abundance of potentially
pathogenic bacteria in the Gulf of Annaba

During the entire study period, a total of 208 bacterial isolates
(142 from mussels and 66 from seawater) belonging to 22
genera and 46 species were identified using biochemical tests.

The most ubiquitous and abundant microorganism among all
the environmental samples was E. coli (41.4%), followed by
Aeromonas hydrophila (5.8%), Klebsiella pneumoniae
(3.9%), Pseudomonas aeruginosa (3.4%), Enterobacter
cloacae (2.9%), Vibrio parahaemolyticus (2.9%),
Burkholderia cepacia (2.4%), Morganella morganii (2.4%),
Micrococcus spp (1.9%) Pseudomonas luteola (1.9%),
Staphylococcus sciuri (1.9%), Staphylococcus xylosus
(1.9%), Providencia rettgeri (1.4%), Salmonella spp (1.4%),
and Yersinia enterolittica (1.4%). Figure 4 shows the abun-
dance of potentially pathogenic bacteria in both compartments
(seawater and Perna perna samples), and in each sampling
site throughout the entire study period. It only indicates
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bacteria found with more than two isolates per sample (see
Table 1). In the seawater samples of S1 and especially of S4,
the number of different potentially pathogenic strains did not
exceed 14 whereas in S2 and S3, their number was 16 and 27,
respectively. In P. perna samples, the number of these infec-
tious agents was 16 in S4, 24 in S1, and 43 and 59 in S2 and
S3, respectively (Table S3). The members of the family
Enterobacteriaceae were dominant and presented the highest
occurrence of all potentially pathogenic microorganisms
(65.4%). This large group of bacteria was extensively found
in all samples of P. perna mussels and its presence was most
pronounced in S2 and S3 (Fig. 4; Table S3).

The results of this study also revealed a seasonal pattern in
the diversity of potentially pathogenic bacteria. For both
P. perna and seawater samples, the diversity increased during
the warm-water months (between June and October), with the
highest diversity of potentially pathogenic bacteria recorded in
summer (June, July, August), closely followed by autumn
(September, October, November) (Fig. 5).

Molecular identification of selected isolates

In addition to biochemical identification, 25 isolates of either
Staphylococci or γ-proteobacteria were chosen for further
identification via their 16S rRNA genes. Universal primers
27F and 1492R were used to PCR-amplify the 16S rRNA
genes, and the products of approximately 1500 bp (Fig. 6)
were Sanger sequenced. The 16S rRNA sequences were com-
pared to the NCBI database, using BLAST. All sequences had
between 97 and 100% identity to known bacterial species,
permitting the identification of the analyzed strains
(Table 4). A phylogenetic tree was generated to visualize the
evolutionary placement of our environmental bacteria with
respect to their closest studied relatives (Fig. 7). A main clade,

with high bootstrap value (100% bootstrap), grouped 17 iso-
lates of seven genera within the family of Enterobacteriaceae,
namely, Escherichia/Shigella spp., Klebsiella spp.,
Enterobacter spp., Citrobacter spp., Proteus spp., and
Morganella spp. The Staphylococci were only represented
by two isolates (BM2 and BS4) which were close to type
strain S. epidermidis ATCC 10145T (100% bootstrap).
Overall, most (18/25) of the 16S rRNA gene sequence iden-
tification results matched with the genus identification using
API tests (Table 4).

Multilocus sequence typing analysis (MLST)

E. coli comprised more than 40% of the isolated strains, and
several individual E. coli isolates came from the very same
environmental context (i.e., same sampling-site, sample-date,
and environmental compartment). We therefore wondered
whether these E. coli isolates were due to multiple separate
contamination events or were caused by a single highly abun-
dant E. coli strain which was able to thrive and outcompete
other bacteria in the given condition. To test whether the five
isolates (EM3, EM18, EM97, EM102, and MM6) obtained
from P. perna mussels at S3 on the same sampling date
(January 15, 2018) belonged to the same strain of E. coli,
we PCR-amplified and Sanger-sequenced sections of seven
conserved genes (trpA, trpB, dinB, polB, putP, pabB and
icdA) (Fig. 8). A tree based on a multiple alignment of the
concatenated sequences from our five strains (and the equiv-
alent gene-sections from other E. coli strains) revealed that our
isolates were not identical, and thus were probably not from a
single contamination event. However, the isolates were close-
ly related to each other, and slightly more distantly to E. coli
strains K12 and SCU-103 (Fig. 9).

P. perna musselsSeawater

S1 S2 S4 S1 S2

Relative 
abundance

S3

Yersinia enterolitica
Vibrio parahaemolyticus

Vibrio alginolyticus
Staphylococcus xylosus

Staphylococcus sciuri
Staphylococcus lentus

Staphylococcus hominis
Staphylococcus haemolyticus

Staphylococcus epidermidis
Staphylococcus aureus

Shigella spp
Serratia odorifera

Serratia liquefaciens
Salmonella spp

Providencia rettgeri
Pseudomonas putida
Pseudomonas luteola

Pseudomonas fluorescens
Pseudomonas aeruginosa

Proteus mirabilis
Ochrobactrum anthropi

Morganella morganii
Micrococcus spp

Klebsiella pneumoniae
Enterobacter sakazakii

Enterobacter cloacae
Escherichia coli

Citrobacter freundii
Burkholderia cepacia

Aeromonas hydrophila
S3 S4

0-5%
5-10%

10-20%

20-30%

30-40%

40-50%

Fig. 4 Relative abundance of
potential pathogenic bacteria in
seawater (blue) and Perna perna
mussels (green). (S1) Cap de
Garde, (S2) Rezgui Rachid, (S3)
Sidi Salem, and (S4) Lahnaya
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Principal component analysis (PCA)

Principal component analysis (PCA) revealed that the three
first main components together explain 92.4% of the total
information (Fig. 10a and b). The first principal component
(PC), which represents 56.3% of the variance, was the most
significant component of the latter. It was mainly loaded by
the Temperature (r = 0.95), Salinity (r = 0.89), Dissolved
Oxygen (r = −0.77), SS (r = −0.66) and FS (r = 0.55). The
second PC, representing 22.4% of the variation, was found to

be positively correlated by pH (r = 0.86). The third PC,
representing 13.7%, was positively correlated with TC and
EC (r = 0.61 and r =0.52, respectively). According to the
PCA plot a clear opposition was observed between the 12
months of sampling and the distribution of the four sites on
the first two axes. S2 and S3 were strongly correlated with
each other and showed maximum variations of fecal contam-
ination during the warm months of the year, whereas S1 and
S4 demonstrated lower fecal contamination variations during
the cold months (Fig. S1).

Discussion

Bacteriological analyses of FIB in the Gulf of Annaba

Although our previous study detected a recent increase in
bacterial contamination of the Gulf of Annaba (Hidouci
et al. 2014; Kadri et al. 2015, 2017), the results of the present
study revealed a highly alarming further increase of fecal con-
tamination in the area, to a level that is higher than other
coastal regions of the Mediterranean Sea (Bouhayene and
Djebar 2014; Boutaib et al. 2015; Dallarés et al. 2018; Rincé
et al. 2018). Much of this difference is probably due to the
continuous pollution pressure in the Gulf, mainly related to
anthropogenic activities, as well as rapid urbanization over the
last few years. According to Inal et al. (2018), more than 40%
of the Algerian population (more 19 million people) is living
along the Gulfs near the largest agglomerations, of which
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Number of different species of potential pathogens

Fig. 5 Seasonal differences in the diversity of potentially pathogenic
bacteria in both P. perna and seawater samples. The vertical axis
represents the number of different potentially pathogenic strains
identified from both P. perna and seawater samples collected from the
four sampling sites combined. Summer: June, July, and August. Autumn:
September, October, and November. Winter: December, January, and
February. Spring: March, April, and May

Table 4 Biochemical and
molecular identification of 25
isolates isolated from P. perna
mussels. na, not analyzed

Isolate code Api identification Best hit to 16S rRNA sequence MLST identification

EM3 Escherichia coli Escherichia coli Escherichia coli
MM6 Escherichia coli Escherichia coli Escherichia coli
EM97 Escherichia coli Escherichia coli Escherichia coli
EM102 Escherichia coli Escherichia coli Escherichia coli
EM18 Escherichia coli Escherichia coli Escherichia coli
EM10 Escherichia coli Escherichia coli na
MM58 Escherichia coli Escherichia coli na
TCM7 Aeromonas hydrophila Proteus mirabilis na
MM59 Chromobacterium violaceum Pseudomonas aeruginosa na
SM25 Citrobacter koseri Enterobacter asburiae na
SM28 Enterobacter cloacea Enterobacter cloacea na
MM62 Klebsiella pneumoniae Klebsiella pneumoniae na
SM3 Morganella morganii Morganella morganii na
TCM19 Ochromobacter anthropi Morganella morganii na
IM14 Pseudomonas aeruginosa Pseudomonas aeruginosa na
MM56 Pseudomonas fluorescens Pseudomonas parafulva na
IM27 Pseudomonas luteola Pseudomonas aeruginosa na
MM2 Pseudomonas putida Pseudomonas aeruginosa na
SM13 Proteus mirabilis Proteus mirabilis na
MM39 Salmonella choleraesuis Citrobacter freundii na
MM23 Salmonella spp Shewanella algae na
SM17 Serratia odorifera Enterobacter asburiae na
MM27 Shigella spp Shigella dysenteriae na
BM2 Staphylococcus lentus Staphylocuccus epidermidis na
BM4 Staphylocuccus epidermidis Staphylocuccus epidermidis na
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Annaba is the third most populated, with almost 400 thousand
inhabitants within the city itself (https://en.populationdata.net/
countries/algeria/).

In the current study, these impacts were differently mani-
fested depending on the local sources of pollution at each site.

The strong presence of FIB at S3 could be explained by
significant urban, industrial and agricultural discharges that
Wadi Seybouse (Fig. 1) drains from its catchment basin of
about 6470 km2 (ABH-CSM 1999-2000; Mebarki 2000).
Further contribution to bacterial contamination at S3 presum-
ably comes from untreated wastewater effluents from a large
part of Annaba city and its outskirts, including a nearby
slaughterhouse, which are discharged directly into the sea

via Wadi Bedjima (Fig. 1). These contamination sources
should be added to the natural contamination stemming from
a large colony of seabirds and animals (Telailia 2014).

Our present results further demonstrated that the overall
contamination was exceptionally high at S2, revealing that
the waters of this site should be considered as unsafe for bath-
ing in accordance with the Algerian Bathing Water executive
decrees (JORA 1993, 2006). Similar to S3, these high levels
of FIB were primarily due to the domestic wastewaters from
nearby homes, which are discharged directly into the sea with-
out prior treatment (Kadri et al. 2017).

The lower concentrations observed in S1 and especially S4
are presumably due to their remoteness from the city area and

Fig. 6 PCR amplification of the
16S rRNA gene. M, DNA ladder;
lanes (EM18–MM6) represent
amplified product (approx.
1500bp) of E. coli isolates
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their strong water flux, which may contribute to the dispersion
of fecal pollutants in the water column (Kadri et al. 2015). The
coastal current of the Gulf of Annaba is associated with im-
portant North African upwelling processes (Arnone et al.
1990). This current permanently enters the Gulf of Annaba
near Cap de Garde and flows to the east in the direction of
the northeast part of the bay (Ouali et al. 2018). Thus, S1 and
S4 are under the influence of dominant north-westerly winds
that induce strong hydrodynamics and promote mixing of the
coastal waters of the Gulf with less contaminated seawater. In
contrast, S2 and S3 are characterized by relatively low hydro-
dynamic conditions and slow vortices (Hafsaoui et al. 2016;
Ouali et al. 2018).

It is important to note that S1 and S4 are often visited by
bathers in summer (just like S2), which is a possible explana-
tion for the increasing levels of FIB during this period of the
year (Kadri et al. 2017). This is due to the direct or indirect
discharge of waste from toilets and tourist resorts located
along the coast, the absence of water treatment plant, as well
the lack of awareness among tourists regarding solid waste
and wastewater collection and disposal (Torres-Bejarano
et al. 2018).

According to several studies, fecal contamination at bath-
ing beaches can be hazardous to humans because many path-
ogenic bacteria could be ingested during recreational water
activities leading to various waterborne diseases (Marion
et al. 2010; Santhiya et al. 2011; Arnold et al. 2016). The
governments should therefore develop solutions to minimize
the risks associated with the use of contaminated recreational
water such as, the installation of wastewater treatment plants,
prohibiting direct industrial and agricultural discharges, im-
proving public awareness, and developing control measures
by means of quality criteria (Kacar and Omuzbuken 2017).

Fecal contamination in Perna perna mussels

Data obtained showed that the levels of FIB were even higher
in P. perna than in the surrounding seawaters during the entire
study period. This is consistent with reports from other coastal
regions worldwide, suggesting that this strong accumulation
capacity is mainly related to the filter-feeding behavior of
these sentinel organisms, which make them one of the best
bioindicators of fecal pollution in coastal waters, even when
pollutants are at low concentrations (Stabili et al. 2005;

Fig. 8 PCR amplification of
seven genes of E. coli EM97.
Lanes trpA to putB represent PCR
products amplified from the
EM97 isolate (E. coli). M, DNA
ladder

E. coli O127-H6 (LT903847.1)
E. coli O157-H7 (CP038428.1)
E. coli SCU-103 (CP054457.1)
E. coli K12 (CP047127.1)
EM18
EM3
EM102
MM6
EM97

Tree scale 0.01

Fig. 9 The E. coli strains isolated
from S3 are similar but not
identical. Phylogenetic tree
showing the distances between
the five analyzed E. coli strains
from S3, compared to E. coli
strains from the NCBI database
(accession numbers in
parentheses). The tree was rooted
using Salmonella enterica
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Martinez and Oliveira 2010; Jayme et al. 2016; Bozcal and
Dagdeviren 2020). It has furthermore been demonstrated that
the mussels were contaminated with E. coli for a long period
of time after a brief exposure to fecally contaminated water
(Ho et al. 2000).

Similar to the study conducted by Stabili et al. (2005) and
Cavallo et al. (2008) in the Northern Ionian Sea of Italy, the
bacterial community of P. perna mussels from all sites in our
study was very similar to that of surrounding waters but with
higher abundance (Fig. 4). The levels of intestinal indicators
in all sampling sites were well above the permissible limits
recommended according to Regulation (854/2004/EC) of 29
April 2014 for human consumption, which recommends less

than 230 E. coli/100g. Thus, the mussels inhabiting the Gulf
of Annaba would be unfit for direct consumption.

FS were present in mussel and seawater samples through-
out the entire sampling period with concentrations higher than
E. coli in almost all samples, and this is also in agreement with
previous reports (Tiefenthaler et al. 2009; Zegmout et al.
2011; Kadri et al. 2017; Islam et al. 2017). These FIB are
known to have a better survival period than thermotolerant
coliforms in surface waters, as well as in the digestive tract
of bivalves (Geldreich and Litsky 1976, Noble et al. 2004).

Influence of environmental variables on fecal
indicators in the Gulf of Annaba

In addition to anthropogenic activities, the survival was also
influenced by a multitude of natural variables, among them;
the seasonal variations of temperature were very likely re-
sponsible for the observed differences in bacterial concentra-
tions in our samples. Indeed, our results demonstrated that
elevated bacterial loads during the warmer months of the year
(between June and October) were associated with maximum
FIB rates in both compartments. Another probable reason for
the high levels of FIB in P. perna in this period is probably the
physiology of this sentinel species. Burge et al. (2016) have
indicated that elevated temperatures promote an increase in
the filtration rates in mussels and, therefore, they can retain
more microorganisms from the surrounding waters.
According to the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (2013), Algeria will
experience an increase in temperatures between 1°C and
3.7°C over the next few years. Consequently, this may extend
the time period during which FIB can persist in the water
(Barreras Jr et al. 2019). This hypothesis was supported by
the significant and positive correlations between E. coli and
FS, and the temperature revealed by Spearman’s correlation
test (p < 0.05) and PCA analysis in the current study, all of
which is consistent with other studies (Koirala et al. 2008;
Gutiérrez-Cacciabue et al. 2014; Abia et al. 2015; Islam
et al. 2017).

In addition to elevated temperatures, summer also brings a
large number of bathers to the beaches, which increase the
influx of bacterial contaminants. On top of that, the presence
of FIBs is affected by the local hydrodynamic patterns, which
are calmer during summer, thus reducing the dispersion of
fecal bacteria in the water column (Lacaze 1996).

In our study, only FS showed a significant positive corre-
lation (p < 0.001) with salinity (Table 3). These FIB are
known for their high resistance to harsh environmental
stressors and tolerance to high concentrations to salt, making
them powerful indicators of fecal contamination in seawater
(Byappanahalli et al. 2012). Conversely, DO show the stron-
gest correlations with all groups of FIB, mainly due to the
bacterial degradation of detritus which consumes a lot of
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oxygen. This biodegradation was more important with the
increase in temperature in summer (5 mg/L) (Fig. 2), especial-
ly in highly contaminated sites, which receive massive quan-
tities of domestic discharges and industrial effluents. These
findings are in agreement with those of a recent study by
Chávez-Díaz et al. (2020), which found negative correlations
between DO and FIB. The latter were found to be positively
correlated with SS, which, according to the literature, play a
protective role for intestinal bacteria against solar radiation
and predators (Walters et al. 2014; Kadri et al. 2017). This
appears to be the case for the SS-rich waters of S2 and S3.

Numerous studies have indicated that FIB can be used as
surrogates to estimate the possible presence of pathogenic
microorganisms, especially when they are found at high levels
(Wilkes et al. 2011; Shoults and Ashbolt 2018).

Abundance of potentially pathogenic bacteria in the
Gulf of Annaba

For all samples in the study, it was consistently Proteobacteria
which was the most dominant phylum (88/208, 46%). Within
this phylum the most frequently isolated family was
Enterobacteriaceae, which indicated that domestic wastes,
especially from the most polluted sites are most likely the
primary source of pollution in the Gulf of Annaba since en-
teric bacteria are mainly derived from the excrement of warm-
blooded animals, including humans (Poharkar et al. 2017).
The enteric bacteria, Salmonella spp., Shigella spp. and,
E. coli are major causes of human gastrointestinal tract infec-
tions, with 1.7 billion cases of human diarrhea recorded each
year, primarily caused by pathogenic strains of E. coli (Yang
et al. 2017), and 450 per 100,000 children in India and
Pakistan contracting enteric fever caused by Salmonella typhi
(Sánchez-Vargas et al. 2011; Neogi et al. 2014).

Environmental bacteria such as Pseudomonas spp.,
Aeromonas spp., and Shewanella spp. were also identified in
both environmental compartments. Species of the genus
Aeromonas are widely isolated from aquatic environments
and frequently reported to cause waterborne and seafood in-
fections (gastroenteritis and septicemia) (Chopra and Houston
1999; Joseph et al. 2013; Hamid et al. 2016). Pseudomonas
spp. are ubiquitous microorganisms found in marine shellfish
and recreational waters (Maravić et al. 2018; Goh et al. 2019).
These opportunistic pathogens are frequently multidrug-
resistant and associated with diarrhea, intraabdominal and
nosocomial infections, particularly in immune-compromised
patients (Morrissey et al. 2013; Streeter and Katouli 2016).
The results of biochemical identification also revealed the
detection of different species of the genus Vibrio in the four
sampling sites, of which V. paraheamolyticus was the most
isolated microorganism. Vibrio. spp are waterborne bacteria
naturally found in estuarine and coastal environments. Yet,
certain species can be pathogenic to humans and marine

organisms such as bivalves (Eggermont et al. 2017; Rincé
et al. 2018; Bozcal and Dagdeviren 2020). In August 2018,
the Algerian Ministry of Health reported a cholera outbreak in
Blida and five other regions (Algiers, Tipaza, Bouira, Médéa,
and Ain Defla) in the north of the country. This devastating
and strictly human epidemic causedmainly by V. choleraeO1
or O139 can cause severe dehydrating diarrhea and even death
(Feldhusen 2000). In the Gulf of Annaba, V. cholerae was
found in S3 mussels in the same period as the outbreak, clas-
sifying this site as the area of highest risk.

In addition to Proteobacteria, 24 isolates of the genus
Staphyloccocus were also detected during the study period.
These potentially pathogenic bacteria, including S. aureus,
are well-known causative agents of several human diseases,
such as skin rashes, pneumonia, ear and eye infections, endo-
carditis, and meningitis (Schets et al. 2020; Yaghoubzadeh
et al. 2020). According to Pomykała et al. (2012), some
coagulase-positive staphylococci are common seafood patho-
gens and may pose a significant risk to human health through
improper consumption of bivalve mollusks. Furthermore,
methicillin-resistant S. aureus (MRSA), which is one of the
most harmful pathogens to human health, has also been fre-
quently detected on several recreational beaches in the United
States (Abdelzaher et al. 2010; Levin-Edens et al. 2012; Plano
et al. 2013; Thapaliya et al. 2017).

Biochemical and molecular identification of bacteria

Strains of Enterobacteriaceae are known to be difficult to
distinguish by conventional methods (Nhung et al. 2007;
Hamdi et al. 2017). Besides, the use of biochemical identifi-
cation alone can be problematic as some new taxa may not be
included in available databases (Janda and Abbott 2002). For
this reason, additional molecular identification targeting the
16S rRNA gene was performed on 25 strains, including two
Gram-positive bacteria isolated from P. perna mussels of S3.
In general, the biochemical identification at the genus level
was confirmed in 72% of the cases by the 16S rRNA gene
sequencing (Table 4). All strains exhibited more than 97%
sequence similarities with their matching sequences retrieved
from the GenBank database.

The ribosomal 16S rRNA gene has highly conserved re-
gions in all bacterial cells, interspersed with nine hyper-
variable stretches of sequences (named V1–V9), and is a mo-
lecular fingerprint for bacterial identification and taxonomic
classification (Benga et al. 2014; Jo et al. 2016; Monticelli
et al. 2019). Sequencing of the 16S ribosomal RNA (rRNA)
gene to study bacterial taxonomy and phylogeny has been the
most widely used technique for several reasons: the detection
and identification of fastidious, noncultured, and slow-
growing bacterial pathogens, as well as novel isolates, its
presence in all bacteria, and also its large size (approximately
1500 bp) which contains statistically valid and relevant
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sequence information (Patel 2001; Clarridge 2004; Janda and
Abbott 2007). Despite its accuracy, sequence analysis of the
16S rRNA gene has disadvantages when comparing closely
related species, where the16S rRNA genes might not be suf-
ficiently different to distinguish the two species. It is therefore
often desirable to complement the 16S rRNA analysis with
multilocus sequence typing (MLST). This technique exam-
ines multiple protein coding genes, which are more suscepti-
ble to genomic drift than the 16S rRNA gene. For some spe-
cies, there are even standardized MLST approaches, which
can be compared directly to public MLST databases (Sabat
et al. 2013). However, the main disadvantage of this technique
is its relatively high coast, since it requires more PCR and
Sanger DNA sequencing reactions per analyzed strain
(Boers et al. 2012; Sabat et al. 2013).

For the strains (EM3, EM18, EM97, EM102, and MM6)
identified as E. coli using API tests and 16S rRNA gene se-
quencing, MLST was performed to further understand their
phylogenetic relationships. Interestingly, the results indicate
that our isolates were very similar to each other but neverthe-
less distinct, and therefore did not belong to the same strain of
E. coli (Fig. 8). This suggests that they came from a variety of
separate human and animal sources of fecal contamination,
since E. coli is mainly found in the fecal wastes of warm-
blooded mammals (Poharkar et al. 2017). Therefore, the use
of Microbial Source Tracking techniques to identify both hu-
man and animal specific markers in future studies will be an
important tool for understanding the origin of fecal pollution
in the Gulf of Annaba, and for assessing the associated health
risks related to the presence of pathogenic microorganisms.

To summarize, this study indicated that identification sys-
tems based on molecular techniques provide the means for
accurate identification of potentially pathogenic bacteria in
coastal waters, and are rapid when the required tools are avail-
able and the techniques have been established in the analyzing
laboratory. In contrast, biochemical analyses are simpler to
use, have an acceptable level of accuracy, and are less expen-
sive compared with molecular techniques, but these tech-
niques are time consuming, and their results are not always
easy to interpret (Gracias and McKillip 2004; Russell et al.
1997). It is therefore prudent to use molecular identification
when the results from biochemical identification are
ambiguous.

Conclusion

The results obtained in this study allowed assessing the pres-
ence and distribution of fecal indicators and potentially path-
ogenic bacteria in Perna perna and seawater samples from the
Gulf of Annaba. The bacteriological concentrations in
P. perna were significantly higher than in seawater samples,
and were well above the permitted limits for human

consumption and recreational water in Sidi Salem (S3) and
Rezgui Rachid (S2). Discharges from Wadi Seybouse and
Wadi Bedjima, as well as anthropogenic activities, are likely
to be important factors in the fecal contamination in the Gulf
of Annaba. Additionally, the bacteriological quality of the
water was influenced by multiple physico-chemical variables
such as temperature, salinity, and dissolved oxygen, combined
with the local hydrodynamic conditions. The survival and the
presence of infectious agents in P. perna are a matter of great
concern with regard to epidemic diseases that they may occur
when mussels are consumed by humans. Therefore, the im-
plementation of necessary measures should be carried out,
especially in highly polluted sites in order to protect environ-
mental resources and human health.
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