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Abstract
Atmospheric settled dust study was conducted with the purpose of to determine the source of heavy metal elements (As, Co, Cr,
Cu, Ni, Pb, and Zn) in airborne dust from Ulaanbaatar using the multivariate analysis and spatial distribution mapping by
geographic information system (GIS) with the systematic grid. A total of 57 dust samples were collected from the impervious
surfaces at 2–4 m above the ground in January of 2020. The mean concentrations of heavy metals were increasing order of Co—
10.4 ± 1.3 mg/kg > As—16.5 ± 5.9 mg/kg > Ni—21.3 ± 3.3 mg/kg > Pb—51.7 ± 26.4 mg/kg > Cu—65.5 ± 23.6 mg/kg > Cr—
70.2 ± 18.7 mg/kg > Zn—571.3 ± 422.8 mg/kg. In terms of multivariate analysis, we used Pearson’s correlation, principal
component analysis (PCA), and hierarchical cluster analysis (CA). Three principal components, which are eigenvalues higher
than 1, were determined accounting for 70.5% of the total variance by PCA. As a result, PC1 38.5% (As, Cr, Cu, and Ni), PC2
17.3% (Pb and Zn), and PC3 14.7% (Co and Pb) are attributable to coal combustion, vehicle exhaust emission, and resuspension
of soil particles, respectively. The results of correlation analysis and CA were fairly in agreement with PCA. The spatial
distribution maps of heavy metals were revealed in the downtown in which 40 covered sampling sites with about 700m intervals.
In the spatial distribution mappings, generally, the southern part of the mapping area was higher concentrations of heavy metals.
An increment of heavy metals concentration was presented for As, Cr, Co, and Ni with their similar trend in the southwestern part
of the mapping. Besides, another trend for the distribution of the high concentrations of Cu and Zn was observed in the south and
southeast parts. In terms of Pb, it had no noticeable pattern of distribution; however, a high spot was presented in the southwest
part of the map.
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Introduction

While the atmospheric pollution resulting from industrial ac-
tivities is at persistent levels all over the year, pollutant emis-
sions from household heating and vehicles increase during the
winter, especially in developing countries. Because those
countries are likely to burn more fossil fuels and other

combustibles for the energy supply (Fullerton et al. 2008;
Tchounwou et al. 2012; Kicińska and Bożęcki 2018). Many
pollutants spread over a wide area due to the combustion.
Atmospheric dust is one of the main sinks of pollutants, and
trace elements adhered to airborne particles are still under
crucial attention in the urban environment. Many sources in-
cluding traffic, heating systems, building deterioration, con-
struction, renovation, and corrosion of galvanized metal struc-
tures, can release a significant amount of particles with envi-
ronmentally hazardous pollutants into the atmosphere (Al-
Momani 2007; Acosta et al. 2014; Wan et al. 2016a; Liu
et al. 2018).

Studies on airborne particles of the urban environment are
still being performed over the years in the world. One way of
those studies is the atmospheric settled dust (or deposited dust)
study using a casual sampling methodology in which allows
to interpret the chemical and physical properties of airborne
dust with the advantage of covering a wide area in a short
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duration. Settled dust can be defined as the particles deposited
from the atmosphere via their own gravity on the impervious
surfaces at a certain height from the ground level, which is an
acceptable approach to survey the airborne particle pollutants.
Settled dust does not remain deposited on the surface for a
long time because of resuspension or washout by human in-
terventions and natural phenomena (e.g., precipitation, wind
gust). A significant portion of heavy metals is attached to dust
particles from anthropogenic emission sources and threaten
human health and natural bodies (Ferreira-Baptista and De
Miguel 2005; Wan et al. 2016b; Xu et al. 2019; Cai et al.
2019). The details of the effect of heavy metals on human
health and the environment had been well introduced by
(Srivastava et al. 2018; Briffa et al. 2020).

Ulaanbaatar, the capital city of Mongolia faces with severe
air pollution in the heating season last few decades (Davy et al.
2011; Prikaz et al. 2018;Wang et al. 2017; Ganbat et al. 2020)
and the main driving force for air pollution is cold air temper-
ature. At the same time, a 3.5-fold increase in foetal deaths has
been documented between winter and summer in Mongolia
(National Center for Public Health and UNICEF 2018). The
susceptible group of people, especially children and elders, are
most afflicted by repercussions of air pollution. Children liv-
ing in a highly affected district of Ulaanbaatar were found to
have an up to 40% lower lung volume than children living in
rural Mongolia (UNICEF, 2018 n.d.). Ganbat and Soyol-
Erdene et al. 2020 studied the trend of particulate matter
(PM) pollution in the last 6 years. Even if the pollution level
revealed a notable reduction for the winter of 2019–2020 than
that of previous years, the corresponding mean concentration
is still a high level of 87.6 ± 37.6 μg m−3.

Although there is natural source contribution to the PM
emission, source identification of some heavy metals (e.g.,
As, Pb, Zn, and Cr) in urban dust are more associated with
anthropogenic activities (Bilos et al. 2001), including coal-
burning in households and power plants, motor vehicles, in-
dustrial boilers, and garbage burning. The adverse impact of
PM pollution can be identified as regarding the distribution of
particle size, pollutant concentration, and exposure duration
(Csavina et al. 2012). Among them, pollutant concentration,
particularly heavy metals in atmospheric dust, is still under the
uncertainty, and a few studies have been made on trace ele-
ments in PM2.5 and PM10 on limited scales in Ulaanbaatar
(Davy et al. 2011; Nishikawa et al. 2011; Liu et al. 2018).

In order to determine the possible sources of heavy metals
in airborne particles, this study applied the method of source
apportionment, which helps to know what the sources of pol-
lution are and to what extent those sources contribute to source
apportionment. GIS mapping and multivariate analysis are the
source apportionment methods extensively used in environ-
mental studies.

Pollutant sources can be preliminarily assessed based on
GIS dispersal mapping for heavy metals in urban dust and soil

(Li et al. 2004; Zhang et al. 2008; Xie et al. 2011).
Multivariate statistical analyses provide tools for classifying
inter-relationships of heavy metals in different sampling
points, which facilitates to determine the sources of pollutants
(Charlesworth et al. 2003; Azimi et al. 2005; Peris et al. 2008).
Two different analyses, PCA and CA have been widely used
in the environmental studies (Charlesworth et al. 2003; Azimi
et al. 2005; Tahri et al. 2005; Yongming et al. 2006; Meza-
Figueroa, De la O-Villanueva, and De la Parra 2007). PCA
summarizes data into a smaller number of independent factors
by analysing relationships among observed variables and the
result is interpreted in accordance with the hypothetical source
of heavy metals based on the source profile or available data
(Ahmed and Ishiga 2006; Peris et al. 2008), whereas CA
groups variables into clusters by their similarities. CA is often
coupled with PCA to check results and to group individual
parameters and variables. A dendrogram is the most common-
ly used method for summarizing hierarchical clustering
(Facchinelli, Sacchi, and Mallen 2001).

Materials and method

Study area

Ulaanbaatar is located in a valley within the southwestern area
of Hentii mountainous (47° 55′ 13″ N, 106° 55′ 02″ E), about
1350 m above sea level. A river, called the Tuul, runs through
the city from the east to the west. Similar to the geographical
condition of most parts of Mongolia, this place exists under
the cold and dry climate with long and cold seasons lasting for
7–8 months (mid-September to mid-May) as well as compar-
atively short and wet summer. The annual mean temperature
is typically around −0.4 °C, making it the coldest capital city
in the world. Monthly average temperature is generally −20
°C for winter months such as January and February, and night-
time temperatures can go down as low as −40 °C. Annual
average temperature in Ulaanbaatar is brought down by its
cold winter temperatures. July, the warmest month, has an
average temperature of 15–18 °C. Precipitation is scarce,
about 250 mm annually, falling mostly during the short sum-
mer period; so, winters are extremely dry (Mongolian
Academy of Science 2009; Hasenkopf 2012; NOAA 2015;
WHO 2019). The average wind speed in the winter is 2–3
m/s, and the dominant direction occurs from north-easterly
(Dugerjav et al. 2018).

This city is the main industrial centre of Mongolia.
Industrial sectors produce a variety of consumer goods includ-
ing cement, iron, and brick works and garment factories,
vehicle-repair works, food-processing plants, and so on.
Over the last 30 years, the urban population has tripled due
to the continuous migration from the countryside to the capi-
tal. As of 2019, 47% ofMongolian population (~ 1.54million)
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live in this city (NSOMC 2020 n.d.). Uncontrollable migra-
tion and unarranged urban expansion have led to 60% of the
city’s population living in ger areas. Ger areas can be referred
to as a part of the city where households live in either the
traditional yurt or detached houses of insufficient infrastruc-
ture. A small portion of household in ger areas is connected to
the central water supply and heating system while others heat
their home using coal during the cold period, especially in the
winter when air temperature regularly drops up to −30 degrees
at night. Consequently, 600,000 t of coal burnt annually in ger
areas is attributable more than 80% of the city’s air pollution
(Fuhrmann 2019).

Dust sampling and analysis

A total of 57 atmospheric dust samples were taken in January
of 2020 representing the highest air pollution period (Fig. 1).
Because of the importance of planning an appropriate sam-
pling design to draw inferences from a limited number of

samples, 40 out of 57 dust samples were taken from the down-
town by systematic sampling grids. This is applicable in the
case of settled dust due to its high spatial variability (Leharne,
Charlesworth, and Chowdhry 1992). Whereas, other dust
sampling sites were chosen randomly in the parts of the city.
Dust particles had deposited onto any surfaces under stable
weather conditions in the cold and dry periods. Evenly accu-
mulated fine grain dust on the impervious surfaces such as
windowsills, house roofs, glass surfaces were collected by
sweeping up with brushes into self-sealing polythene bags.
Each selection of sampling sites representingmajor residential
areas of the urban areas was based on the absence of direct
effect from pollution sources and human input. In preparation
for chemical analysis, samples were dried in the oven for 2
days and then removed bulk debris.

For determining the elements in settled dust, ICP-OES was
used in the chemical process, and initially, the samples were
dissolved and turned into a solution using chemical acid
(HNO3 + 3 HCl). Afterward, the concentration of the element

Fig. 1 The contour map of Ulaanbaatar, with settled dust sampling sites (shown by red rhombus) and the area of distribution mapping (delineated by a
red rectangle and to see in Fig. 5)
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was determined by iCAP-7400, recording the intensity of
atomic light induced by the high-temperature plasma.

Settled dust samples (as shown in Fig. 2a) taken from the
impervious surfaces were tenacious adhering particles that
resist the typical weather phenomena in the winter including
moderate wind, snow, etc. Their odours were like charcoal
smoke but had a pale brown colour. The grain size distribution
of settled dust is shown in Fig. 2b. Generally, it consisted of
particles size of lower than 250 μm. Especially, the particles
of 50–10 μm were dominant in accounting for about half of
the total mass in the sample. Less than the particles of 10 μm
or group of 10–5 μm, 5–1 μm, and <1 μm constituted the
sample mass by 8.9%, 11.21%, and 8.05%, respectively.

Outlier detection

Outliers are the observations that appear to deviate markedly
from other observations in the sample. Outliers may be due to
random sampling issues (sampling site selection or loading in
certain element’s debris etc.) or may indicate something sci-
entifically interesting. In a common sense using statistical
tests, when 30% of your data is outliers, then it actually means
that there is something interesting going on with the data, and
need to look further into it. The 10.3% of a data set was
determined as the outlier in this study. Most parametric statis-
tics like means, standard deviations, and correlations, and ev-
ery statistic based on these, are highly sensitive to outliers.
Investigating the nature of the outlier is important before de-
ciding. If it can be determined that an outlying point is in fact
erroneous, then the outlying value should be deleted from the
analysis or corrected if possible. Taking account of the above
ideas, the data set was modified in this study. Once outliers
have been removed from sample data, it is essential to trim
data or fill the gaps. As for this, outliers were statistically
determined by the out of boundary for data between the 5th
and 95th percentiles. After trimming the data set, outliers were
replaced with 5th and 95th percentiles nearest “good” data
(this is called winsorization). For example, data points above
the 95th percentile, they could set by the 95th percentile value
(Hoo et al. 2002; Rousseeuw and Hubert 2011; Aguinis,
Gottfredson, and Joo 2013).

Multivariate analysis

Multivariate statistical methods such as correlation analysis,
PCA, and CA were used to classify the inter-elemental rela-
tionships in the dust samples. The sampling adequacy for
factor analysis was measured by the Kaiser-Meyer-Olkin
(KMO) test. These statistical analyses were performed using
Origin 2019b, and v.23.0 of the SPSS software.

Spatial analysis

The spatial distribution maps of heavy metals in this study
were performed using kriging interpolation with ArcGIS
10.4.1 Kriging was used as a spatial interpolation technique
to produce distribution maps because it is considered an opti-
mal method of spatial prediction that provides a superior linear
unbiased estimator for quantities that vary in space (Goovaerts
1997). The grid cells, drawn for spatial mapping with a spatial
interval of about 700m, are included in 40 sampling sites in an
approximately 17 km2 area of the downtown. The features of
that area can help to interpret the results from the spatial dis-
tribution analysis.

Result

Heavy metal concentration in settled dust

The total concentration of heavy metals in settled dust is pre-
sented in Table 1 with the background values, world crust
average, and other studies’ results to allow comparison. The
mean mg kg−1 concentration of heavy metals in settled dust
samples are increasing order of Co–10.4 < As–16.5 < Ni–21.2
< Pb–51.7 < Cu–65.6 < Cr–70.2 < Zn–571.3. Among them,
the mean concentration of Zn, Cr, and Cu is significantly
excessive, 5.4, and 2.6, 4.0 times higher than their back-
grounds, respectively. Even if the outliers of each element
were determined and afterward filled the gaps, the maximum
value for Zn (1366.3 mg kg−1) was considerably high. The
skewness coefficients of all examined metals were positive,
except for Co. Pb and Zn showed skewness coefficients of >1

Fig. 2 a Representative
photograph of settled dust sample
of Ulaanbaatar. b Grain size
distribution of atmospheric settled
dust of Ulaanbaatar
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indicating that the numbers of the high tails were greater than
the numbers of the low tails.

Compared with the background values of Ulaanbaatar’s
soil, the concentrations of each heavy metal were somehow
higher than their corresponding background values (Table 1),
and further, the significantly high concentrations of Cr, Cu,
Pb, and Zn in the dust samples suggest the anthropogenic
sources of these elements. While rest of the heavy metals
(As, Co, and Ni) concentration in dust samples were close to
their corresponding background values. As well, Chonokhuu
et al. 2019 and Battsengel et al. 2020 studied the heavy metal
elements of the soil in Ulaanbaatar. Hence Cr, Cu, Pb, and Zn

concentrations in settled dust were considerably high com-
pared to soil heavy metals viewing at their results (Table 1).

The availability of the comparison of the result of
Ulaanbaatar to other studies is provided in Table 1. The con-
centrations of Cr, Cu, Ni, Pb, and Zn are all available in rep-
resentative cities, while those of As and Co are unavailable in
some studies, especially for As. In most cases, the concentra-
tions of heavy metals in this study are lower than that of
compared studies. The average concentrations of As and Co
in settled dust from Ulaanbaatar are close to the available
results of other cities, but the mean concentration of As is
3.4 times higher than the world crust average (Rudnick and
Gao 2003). The higher mean concentrations of As (Table 1)
for Aviles (17.5) (Ordóñez et al. 2003), Krakow (75.0)
(Kicińska and Bożęcki 2018), and Beijing (23.9) (Wan
et al., 2016a) were discussed suggesting that those elements
were probable owing to anthropogenic sources of metallurgi-
cal industry, emission from old mining area and fly ash from
coal-burning, respectively. For Chinese cities, Nanjing,
Beijing, Shijiazhuang, and Qingdao, the average concentra-
tions of Cr, Cu, Ni, and Pb are higher than that of Ulaanbaatar,
except for only Cr concentration (67.1) for Nanjing (Li et al.
2013; Wan et al., 2016b; Wan et al., 2016a; Xu et al. 2019).
All these element sources were associated with anthropogenic
sources such as coal-burning, vehicle exhaust, and metal

Table 1 Descriptive statistics of heavymetals in settled dust of Ulaanbaatar. In addition, average concentrations of heavy metals in the background soil
of the study area and dust from other cities and crust average are also listed

Location Item As Co Cr Cu Ni Pb Zn Type Reference
mg kg−1

Ulaanbaatar Mean 16.5 10.4 70.2 65.6 21.3 51.7 571.3 Settled dust This study
Max. 33.2 13.0 109.7 113.5 28.7 128.4 1366.3

Min. 7.9 6.4 41.2 29.6 16.3 22.0 207.8

Median 15.4 10.2 70.9 66.1 20.7 47.9 362.0

S.D. 5.9 1.3 18.7 23.6 3.3 26.4 422.8

CV 35.8 12.4 26.6 36.0 15.7 51.0 74.0

Skewness 0.6 -0.2 0.4 0.2 0.6 1.6 1.1

Background soil 14.2 8.4 33.7 23.0 14.7 37.9 114.1 Soil

World Average 4.8 17.3 92.0 28.0 47.0 17.0 67.0 Crust (Rudnick and Gao 2003)

Ulaanbaatar Average 28.4 n/a 16.6 n/a 21.6 43.1 106.1 Soil (Chonokhuu et al. 2019)

Ulaanbaatar Average 22.9 7.6 29.0 28.9 n/a 34.5 135.6 Soil (Battsengel et al. 2020)

Aviles Average 17.5 5.0 41.6 183 27.5 514.0 4892 Street dust (Ordóñez et al. 2003)

Luanda Average 5.0 2.9 26.0 42.0 10.0 351.0 371.0 Street dust (Ferreira-Baptista and De Miguel 2005)

Delhi Average n/a n/a 148.8 191.7 36.4 120.7 284.5 Road dust (Suryawanshi et al. 2016)

Krakow Average 75.0 43 64.0 n/a 61.0 190.0 956.0 Park dust (Kicińska and Bożęcki 2018)
Nanjing Average n/a 10.1 67.1 102.8 46.2 82.7 302.7 Street dust (Li et al. 2013)

Beijing Average 23.9 10.6 86.0 138.4 45.2 167.9 722.7 Settled dust (Wan et al., 2016a)

Shijiazhuang Average n/a 8.1 137.9 99.6 39.2 146.9 466.9 Settled dust (Wan et al., 2016b)

Gyumri Average n/a n/a 68.3 43.7 40.8 77.24 158.3 Settled dust (Sahakyan et al. 2016)

Qingdao Average n/a n/a 153.1 456.7 60.9 176.0 708.3 Settled dust (Xu et al. 2019)

n/a not available

Table 2 Pearson’s correlation coefficient of heavy metals in settled dust
Ulaanbaatar (correlation coefficient >0.4 are shown in bold)

Elements As Co Cr Cu Ni Pb Zn

As 1 0.26 0.57 0.40 0.46 0.03 0.16

Co 0.26 1 0.10 0.20 0.53 0.11 0.03

Cr 0.57 0.10 1 0.54 0.51 0.26 0.09

Cu 0.40 0.20 0.54 1 0.48 −0.04 0.13

Ni 0.46 0.53 0.51 0.48 1 0.03 −0.12
Pb 0.03 0.11 0.26 −0.04 0.03 1 0.16

Zn 0.16 0.03 0.09 0.13 −0.12 0.16 1
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corrosion in those areas. Excessive Zn concentrations of some
cities compared to this study were mostly associated with the
deposition from the mining site, metallurgical factory, and
emission from vehicle exhaust and coal combustion
(Ordóñez et al. 2003; Wan et al., 2016b; Kicińska and
Bożęcki 2018; Xu et al. 2019).

Multivariate analysis

To present the relationship between the heavymetals in settled
dust and define their sources, Pearson’s correlation coefficient
analysis, PCA, and CA were used. Pearson’s correlation

coefficients for the analysed heavy metals in this study are
presented in Table 2. It can be seen that Ni had a significant
correlation with As, Co, Cr, and Cu (0.46, 0.53, 0.51, and
0.48, respectively), indicating the similarity. Besides, As was
the positive correlations with all of the other elements.
Namely, Cr (0.57), Cu (0.40), and Ni (0.46) were correlated
particularly to As. A significant correlation (0.54) between Cu
and Cr was also observed. In the contrast, Cu–Pb (−0.04) and
Ni–Zn (−0.12) were negative correlations between them. The
remaining correlations of heavy metals indicated slightly pos-
itive, and but their values are lower than 0.3.

Relationships between heavy metals for the three principal
components of the dust are shown in three-dimensional space
in Fig. 3. The KMO measure of sampling adequacy (0.604)
and Barlett’s test of sphericity (101.66, p is 0.000) showed that
the data set of seven heavy metals was acceptable for the
factor analysis. Three principal components, eigenvalues
higher than 1, accounted for 70.5% of the total variance were
extracted by the performance of PCA.

PC1, which dominated by As, Cr, Cu, and Ni, accounted
for 38.5% of the total variation.With regard to these elements,
Cr and Cu are always derived due to industrial and vehicle
emissions. Cr is extensively used in automobile parts alumin-
ium alloy and titanium alloys (Lu et al. 2010). Cu is a key
component of building materials (Zhang et al. 2004; Buzatu
et al. 2015), and also more than 90% of Cu emission of traffic
was due to brake wear (Johansson, Norman, and Burman
2009). As and Ni as well as other elements in PC1 can emit
from a common source of coal combustion (Kursun Unver

Fig. 3 Three-dimensional plot of
the result of PCA from heavy
metals in settled dust of
Ulaanbaatar

Table 3 Rotated component matrix for heavy metals concentration in
settled dust of Ulaanbaatar (PCA loadings > 0.4 are shown in bold)

Elements PC1 PC2 PC3 Communalities

As 0.46 0.07 −0.20 0.26

Co 0.32 −0.24 0.63 0.56

Cr 0.48 0.20 −0.20 0.31

Cu 0.44 −0.01 −0.35 0.32

Ni 0.49 −0.33 0.18 0.38

Pb 0.11 0.57 0.60 0.69

Zn 0.08 0.68 −0.12 0.49

Eigenvalue 2.73 1.13 1.02

Percentage of variance, % 38.5 17.3 14.7

Cumulative, % 38.5 55.8 70.5
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and Terzi 2018). Therefore, PC1 belongs to fly ash from coal
combustion and vehicle emissions.

For PC2, it revealed the high value of Pb and Zn,
explaining 17.3% of the total variance. The concentration of
Zn in settled dust is the most attention-getting one among all
of the heavy metals analysed in this study. Extremely high Zn
concentrations of some samples are observed that those sam-
ples were mostly taken from the galvanized cast iron sheets
(Suplementary 1). Thus, this result is probably due to the
sampling surfaces affected by the input of Zn. However, the
median concentration of Zn is 362 mg/kg, indicating signifi-
cantly higher than the background value in Table 1. On the
other hand, zinc alloy and galvanized components are widely
used in motor vehicles and as antioxidants and as detergent/
dispersant improvers for lubricating oils (de Miguel et al.,
1997). And also, it is added to tires during the vulcanizing
process, comprises from 0.4 to 4.3% of the resulting tire tread
(Chen, Lu, and Yang 2012). However, unleaded gasoline for
all vehicles was introduced in Mongolia, and there are still
permanent sources of Pb including lead-acid batteries and
the metal product in the vehicles in the urban environment
(Tchounwou et al. 2012; Guttikunda et al. 2013). Therefore,
PC2 belongs to vehicular emissions such as exhaust emis-
sions, tire abrasion, and brake wear.

PC3 was notably dominated by Co and Pb, accounting for
14.7% of the total variance. For Co, its concentration in settled
dust was close to the corresponding background value and
slight variance in total sampling sites, whereas the mean con-
centration of Pb is above a corresponding background value,
but slightly or 1.4 times high (Table 1). Therefore, PC3 might
be more related to the resuspension of soil particles.

Afterward, hierarchical cluster analysis applying Ward’s
method was performed on the data set. The result of CA is
illustrated in a dendrogram (Fig. 4). Figure 4 showed three
clusters: (1) Co–Ni, (2) Cr–Cu–As, and (3) Pb–Zn. The group

of Pb–Zn is the farthest away from other cluster groups and
presented a separate cluster. On the other hand, clusters 1 and
2 including Co, Ni, Cr, Cu, and As were relatively solid. The
clustering results of CA are in fairly agreement with PCA
results (Table 3 and Fig. 3). Three main sources were identi-
fied according to PCA and CA. For example, three main com-
ponents of (1) As–Cr–Cu–Ni, (2) Pb–Zn, and (3) Co–Pb were
determined in PCA (Fig. 3). In terms of CA, the distinct
groups of (1) Cr–Cu–As, (3) Pb–Zn, (2) Co–Ni were present-
ed in Fig. 4.

In general, seven heavy metals analysed in this study are
higher than corresponding background values, and it may im-
ply that there is a common source of pollution. With the ex-
ception of a few fuels, all fuels have a residue that is called
deposition when burned. Coal combustion emits a lot of ash.
A portion of it—fly ash—is released into the air with the
smoke in Ulaanbaatar in winter. Depending on the chemical
characterization of the various kind of coals, fly ash typically
contains heavy metals including arsenic, lead, chromium, cad-
mium, and selenium, as well as aluminium, cobalt, nickel,
vanadium, and zinc (Nalb and Sugden n.d.; Kursun Unver
and Terzi 2018). The analysis of airborne particulate matter
indicated that Zn, Pb, As, and Cuwas considered to be derived
from coal combustion in heating season in Ulaanbaatar
(Nishikawa et al. 2011), and the excessive concentrations of
those elements were also found in the fly ash during coal
combustion in a household (Karthe et al. 2020).

Spatial distribution

The depiction of the area of the spatial distribution map was
presented in Fig. 1, and the spatial distribution result of each
heavy metal is shown in Fig. 5. The mapping area covered a
margin of ger district, considered the main source of PM pol-
lution, and the downtown of the city. Most of the universities,

Fig. 4 Dendrogram extracted
from CA of heavy metals in
settled dust of Ulaanbaatar
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Fig. 5 Spatial distribution of the
concentration of heavy metals in
settled dust from Ulaanbaatar
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administrative organizations, and kindergartens are located in
this area. Along with this situation, it has become a hotspot of
traffic and has a high population density. Darker colours
showed the places where a heavy metal concentration was
high. Overall, the southern part of the distribution map was a
higher concentration of heavy metals. Among all analysed
elements, the spatial distribution of As, Cr, Co, and Ni were
in a similar trend, and their concentration generally increased
at the southwestern side of the mapping (Fig. 5 a, b, c, and e).
Furthermore, another trend of the distribution of Cu and Zn
can be observed, which spreads over the direction of south and
southeast with high concentrations (Fig. 5 d and g). In terms of
Pb, it had no noticeable pattern of distribution; however, a
high spot was presented in the southwest part of the map
(Fig. 5f).

There are no major sources of pollution in the south, but as
shown in Fig. 1, the mapping area is located at the lowest
altitude of the valley of mountains. Therefore, such a geo-
graphical feature and very cold temperatures form the inver-
sion layer, which leads further to restriction of the pollutants
dispersion. By doing so, PM pollution persists for quite a long
time and evenly diffuses from the sources to the downstream.
In addition to this feature, the presence of high traffic density
on the major roads (Fig. 5h) might make that the southern part
of the mapping area wasmore polluted associated with vehicle
emissions according to the discussion in the multivariate anal-
ysis. There are unpaved roads and barren land surfaces in the
ger areas, and thus, vehicle movement generates dust from the
surface of the surrounding apart from the combustion.
Whereas, other areas such as multistory buildings and com-
mercial and business areas are more likely to perceive the
suspended particles emitted from the combustion process of
the household and vehicle emission (Fig. 5h).

In addition to the coal combustion in ger district of
Ulaanbaatar, vehicle emission has drawn attention cause of
the increment in fuel consumption and deterioration of vehi-
cles in wintertime (Li et al. 2007; Carlson et al. 2007; Jehlik,
Rask, and Christenson 2010). Higher fuel consumption means
higher emissions. On the other hand, as of 2019, the average
aging of the vehicle in Ulaanbaatar is considerably high in
which 71.5% of total vehicles were aging upper 10 years.
(Mongolian Statistical Information Service 2020). Therefore,
it is obvious their mechanical depreciation has become a cru-
cial issue.

Conclusions

This study presented the result of heavy metals concentration
of atmospheric settled dust from Ulaanbaatar in winter 2020
representing the extreme pollution period under the main pur-
pose of determining the possible sources of atmospheric dust
and concluded with the following notes.

& The results only belong to particle deposition from the
atmosphere during the heating season.

& In settled dust of Ulaanbaatar, particles consisted of a size
of less than 50 μm accounted for 75.5% of the mass of the
total sample.

& The mean values of each heavy metal are higher than their
corresponding background values, and/or it means settled
dust is originated from anthropogenic sources.

& The result of source apportionment revealed that the main
source of the heavy metals (As, Co, Cr, Cu, Ni, Pb, and
Zn) was attributable to coal combustion, vehicle exhaust
emission, and soil suspension by multivariate analysis.
Airborne PM resulted from coal burning in over 200 thou-
sand households is supposed to be as a common source of
heavy metals in settled dust while the significant high
concentration of elements such as Cr, Cu, and Zn is more
related to vehicle emissions.

& The northern side of the mapping area stretches through
the bound of the ger district referred to as the main source
of PM, but generally, the high pollution of each heavy
metal was observed through the southern part of the area
of the downtown (Fig. 5).

Air pollution is a temporary incident influenced by weather
conditions, which is dependent on seasonality and diurnal
variabilities in the Mongolian settlement areas. It is mostly
associated with the situation that the household burn the co-
pious amount of coal and other organic materials. As a result,
the population in the study area is suffered from high PM
pollution in the winter. Mitigation of the air pollution caused
by combustion is not only the issue of the PM but also toxic
heavy metals attached to small particles. Generally, in the
scope of this study, it can be considered that the population
who live in Ulaanbaatar breathe in the air containing fine
particles with a high concentration of heavy metals in the
heating period.
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