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Abstract
Soil pollution due to potentially toxic elements is a worldwide challenge for health and food security. Chelate-assisted
phytoextraction along with the application of plant growth regulators (PGRs) could increase the phytoremediation efficiency
of metal-contaminated soils. The present study was conducted to investigate the effect of different PGRs [Gibberellic acid (GA3)
and indole acetic acid (IAA)] and synthetic chelator (EDTA) on growth parameters and Cd phytoextraction potential of
Dysphania ambrosioides (L.) Mosyakin & Clemants grown under Cd-spiked soil. GA3 (10

−7 M) and IAA (10−5 M) were applied
four times with an interval of 10 days through a foliar spray, while EDTA (40 mg kg−1 soil) was once added to the soil. The
results showed that Cd stress significantly decreased fresh biomass, dry biomass, total water contents, and photosynthetic
pigments as compared to control. Application of PGRs significantly enhanced plant growth and Cd phytoextraction. The
combined application of GA3 and IAA with EDTA significantly increased Cd accumulation (6.72 mg pot−1 dry biomass) and
bioconcentration factor (15.21) as compared to C1 (Cd only). The same treatment significantly increased chlorophyll, proline,
phenolic contents, and antioxidant activities (CAT, SOD, and POD) while MDA contents were reduced. In roots, Cd accumu-
lation showed a statistically significant and positive correlation with proline, phenolics, fresh biomass, and dry biomass.
Similarly, Cd accumulation showed a positive correlation with antioxidant enzyme activities in leaves. D. ambrosioides showed
hyperaccumulation potential for Cd, based on bioconcentration factor (BCF) > 1. In conclusion, exogenous application of GA3

and IAA reduces Cd stress while EDTA application enhances Cd phytoextraction and ultimately the phytoremediation potential
of D. ambrosioides.
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Introduction

Soil contamination with potentially toxic elements such as heavy
metals is a worldwide challenge for health and food security
(Ahmad et al. 2020; Heidari et al. 2020; Rizwan et al. 2021).
These are ubiquitous in the environment with longer persistence
against biodegradation (Naveed et al. 2020; Ullah et al. 2020).
Their entrance into the food chain may lead to serious implica-
tions (gastrointestinal cancer, lung cancer, disturbances of the
nervous system, bone fracture, hypertension, kidney dysfunction,
etc.) for human health (Rai et al. 2019). Among heavy metals,
cadmium (Cd) is a very toxic metal, enters into the soil from
different sources, and bioaccumulates in crop plants (Chen
et al. 2019). Cd pollution has been of serious concern in many
countries especially in China where its concentrations up to
100 mg kg−1 soil were reported in Cd-contaminated soils
(Wang et al. 2019). In Pakistan, there is a large variation of Cd
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contamination in soils and ranges from 0.02 to 184.0 mg kg−1

under normal and contaminated soils, respectively (Muhammad
et al. 2011). The permissible limit of Cd in drinking water is
0.1 mg L−1 (NEQS-Pak 2000). It badly affects plant growth in
different ways, i.e., disturbs photosynthesis and respiration pro-
cesses (Marques et al. 2018; Saleem et al. 2020; Sabir et al.
2020), nutrients uptake (Chibuike and Obiora 2014), and ulti-
mately reduces crop growth and productivity (Mehmood et al.
2018a, 2018b).

Under Cd stress, reactive oxygen species (ROS) are gener-
ated due to ionic imbalance (Ijaz et al. 2020; Jan et al. 2017;
Yan et al. 2013). To scavenge higher ROS levels, plants utilize
an efficient enzymatic (peroxidase, superoxide dismutase, cat-
alase, ascorbate) and nonenzymatic (flavonoids, phenolics,
and tocopherols) antioxidant system (Foyer and Noctor
2011; Irshad et al. 2021; Liu et al. 2020). This system protects
and stabilizes the membranous structures in the cell against
abiotic stress (Imtiaz et al. 2018; Leng et al. 2020; Niamat
et al. 2019; Zhang et al. 2018).

To control soil contamination with Cd, various physico-
chemical and biological methods have been applied.
Conventional physicochemical methods require huge techno-
logical resources with indirect environmental contamination
(Amin et al. 2018; Mehmood et al. 2019). In biological
methods, phytoextraction has been an auspicious technique
among various phytoremediation techniques to clean metal-
contaminated soils due to its cost-effectiveness and in-situ
advantages (Ahmad et al. 2016). This technique utilizes cer-
tain plants that accumulate higher concentrations of metals
from soil in different harvestable parts, thereby reducingmetal
concentration in the soil (Mahmood 2010). For example, Salix
viminalis removed 47 g Cd ha−1 in a field experiment after 2
years from an acidic soil (Hammer et al. 2003). Recently, the
application of citric acid significantly decreased the Cd con-
centration in Cd-contaminated soil (3.68 mg kg−1) by 16.9%
via three harvestings of Celosia argentea L. in an 18-month
field experiment. Overall, annual Cd extraction and biomass
production in Celosia argentea L. was 273 g ha−1 and 8.79 t
ha−1, respectively (Yu et al. 2020). From the above discussion,
the effectiveness of phytoextraction under field conditions is
wholly dependent on the biomass production and bioaccumu-
lation potential of the plant species being used, soil properties,
the time required for maximum biomass production, and sub-
sequent removal of metals. Moreover, phytoextraction effi-
ciency increases with the application of certain amendments
that enhance the phytoavailability of metals as in the case of
Yu et al. (2020).

Under heavy metal stress, plant growth and biomass are
severely reduced, posing a new challenge for successful bio-
remediation. In this regard, researchers have adopted several
strategies to increase plant growth and biomass e.g., use of
different plant growth regulators (PGRs). In plants, various
PGRs are biosynthesized, which enhance tolerance against

heavy metal stress (Chen et al. 2020; Mousavi et al. 2020;
Santos Neri Soares et al. 2020; Zhang et al. 2020). Among
various PGRs, gibberellic acid (GA3) stimulates cell elonga-
tion, thereby increasing the dry biomass of the crop plants
(Hadi et al. 2010). Similarly, the growth and development of
crop plants are enhanced with indole acetic acid (IAA) under
abiotic stress (Korver et al. 2018; Zhou et al. 2020).

Wild plants, being an important component of the ecosys-
tem, play an important role in keeping the environment clean
from heavy metal contamination. Among wild plants, weeds
such as species of the genus Dysphania are commonly found
at farmers’ fields and are widely distributed around the world
(James et al. 2005). It belongs to the Amaranthaceae family
and perennial herb. D. ambrosioides is a herb and its oil ex-
tracted from its leaves is very useful from a medicinal point of
view. During phytoextraction, most of the accumulation oc-
curs in the root and shoot portion especially in stem and seeds,
and a minute concentration in leaves (Qin et al. 2020).
Moreover, due to its rapid growth, stress tolerance, and unpal-
atable nature, D. ambrosioides was selected as a test plant for
the present research study. Therefore, it would be safe to use
D. ambrosioides as a herb, as well as a phytoextractant.

There are many reports about the exogenous application of
PGRs to enhance abiotic stress tolerance via regulating various
physiological and biochemical processes in plants (Ali and Hadi
2015; Bashri and Prasad 2016; Cabello-Conejo et al. 2014; Chen
et al. 2020; Hadi et al. 2010; Korver et al. 2018; Mousavi et al.
2020). Certain agents such as ethylene diamine tetraacetic acid
(EDTA),Di-iso-propanol-amine (DIPA), bacteria, andmycorrhi-
za have been used to enhance metal bioavailability (Arshad et al.
2020; Konkolewska et al. 2020; Saffari and Saffari 2020).
However, EDTA is a synthetic chelator and has great potential
to enhance metal bioavailability and ultimately increased the
phytoextraction of the metal (Anning and Akoto 2018; Li et al.
2020; Saffari and Saffari 2020). In this regard, the use of EDTA
and PGRs to enhance metal bioavailability and growth under
metal stress can be a good strategy for phytoremediation of Cd
usingD. ambrosioides. Up to our knowledge, no study has been
conducted on the phytoextraction potential of D. ambrosioides
under Cd stress. Therefore, the present study was designed to
explore the impact of exogenously applied PGRs (GA3 and IAA)
and a chelating agent (EDTA) in improving the phytoextraction
potential of D. ambrosioides under Cd-contaminated soil.

Materials and methods

Soil analysis

The soil was collected from the University Research farm area
at depth of 0–15 cm, air-dried, and ground to final particle size
(2 mm). After sieving, about 01 kg of soil was put in plastic
pots (18 × 15 cm). The soil was analyzed regarding various
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physicochemical characteristics following standard methods
(Estefan et al. 2013). The soil had a water-holding capacity
of 21.8% (v/w). From 1:2 (w/v) ratio of soil to water suspen-
sion, pH 6.8 and EC 1.5 dS m−1 were measured through a pH
meter (InoLab-WTB GmbH; Weilheim, Germany) and an
electrical conductivity meter (WTW–330i). The soil was
loamy sand in texture with silt (44%), sand (54%), and clay
(16%), lime (2.5%), and organic matter (1.6%).

Pot experiment

For Cd contamination, the soil was spiked with cadmium ac-
etate dihydrate (Cd(CH3COO)2∙2H2O, 98.0%; Sigma-
Aldrich, St. Louis, MO) at a rate of 100 mg Cd kg−1 and kept
for 10 days. Treatments used during current study were C =
without Cd; C1 = Cd only; T1 = Cd + EDTA; T2 = Cd + GA3;
T3 = Cd + GA3 + EDTA; T4 = Cd + IAA; T5 = Cd + IAA +
EDTA and T6 = Cd + GA3 + IAA + EDTA. In the present
study, the Cd treatment (100 mg Cd kg−1 soil) used was se-
lected based on the capability of hyperaccumulators to
bioaccumulate Cd in biomass, i.e., 100 mg Cd kg−1 DW
(Baker and Brooks 1989; Baker et al. 2000). Before seedling
transplantation, the pots were well irrigated. After 24h, two
uniform seedlings were transferred into each pot. The pots
were arranged following a completely randomized design
(CRD) in the glasshouse, having five replicates. Tap water
was used to irrigate pots twice a week. Recommended agro-
nomic practices such as weeding and hoeing were practiced
during the whole study period. The growth conditions in the
glasshouse were as follows: temperature = 30±1 °C, relative
humidity = 70–80%, and duration of light/dark 14 h/10 h,
respectively. After 15 days of seedling transplantation, GA3

(0.1 μM) and IAA (10 μM) were exogenously applied as a
foliar spray in four doses at an interval of 10 days. Similarly,
aqueous solutions of EDTA (40 mg EDTA kg−1 soil) was
added to the pots in a single dose after 15 days of seedling
transplantation.

Plant growth and biomass

After 40 days, the plants were harvested from each pot sepa-
rately. After harvesting, the solution containing EDTA (5
mM) and Tris HCl (5 mM, pH 6.0) was used to wash each
plant root to remove surface-bound metal ions (Genrich et al.
2000). Root and shoot length was measured using a common
steel scale. For fresh biomass, leaf, stem, and root portions of
each plant were separated and fresh biomass of each part was
measured using a digital balance. For dry biomass, each part
was kept separately in an oven and dried at 70 °C for 2 days
until a constant weight was achieved, using a digital balance.
For further analysis, the plant samples were crushed into a fine
powder using a mortar and pestle.

Proline

Free proline contents in leaf and root samples were estimated
following Bates et al. (1973). Briefly, leaf and root samples
were thoroughly washing with sterile distilled water. About
200 mg of each sample was homogenized in sulfosalicylic
acid (1.5 mL, 3% W/V) and centrifuged at 1300 rpm for 5
min. The supernatant (300μL) was mixed with acid ninhydrin
and glacial acetic acid in a test tube. To stop the reaction, the
mixture was first boiled and then immediately dipped in ice.
After dipping in ice, toluene (1 mL) was added to the reaction
mixture and shaken briskly for 30–40s. The absorbance of the
mixture was measured at 520 nm using a spectrophotometer
(UV-1700 Shimadzu). Pure toluene was run as blank.

Total phenolics

For total phenolics, leaf and root samples from each treatment
were collected and dried in shade at room temperature. Each
sample (200 mg) was ground separately into powdered form,
added to Eppendorf tubes containing methanol, and kept for 4
h. After centrifugation of the mixture at 1300 rpm for 5 min,
the supernatant (0.5 mL) was transferred into fresh Eppendorf
tubes containing the Folin–Ciocalteu reagent (2.5mL, 10%V/
V or W/V), NaHCO3 (2.5 mL, 7.5%), and distilled water (2.5
mL) and kept for 1 h in dark. The absorbance of the reaction
mixture was measured at 650 nm using a spectrophotometer.
The calibration curve was used to calculate the concentration
of total phenolic contents and was expressed as mg gallic acid
equivalent of phenol g−1 sample (Malik and Singh 1980).

Chlorophyll contents

The photosynthetic pigments in different treatments were es-
timated following the methods of Arnon (1949). The leaf
sample (200 mg) was homogenized with acetone (80%) and
ground well. The mixtures were centrifuged, and the superna-
tant was transferred into a test tube, making volume up to 6
mLwith acetone. The absorbance of the mixture was recorded
at 645 nm and 663 nm using a spectrophotometer (UV-1700
Shimadzu). The following formula was used to calculate the
total chlorophyll contents:

Total chlorophyll
μg
mL

� �
¼ 20:2 A645ð Þ þ 8:02 A663ð Þ

Chlorophyll a
μg
mL

� �
¼ 12:7 A663ð Þ−2:69 A645ð Þ

Chlorophyll b
μg
mL

� �
¼ 22:9 A645ð Þ−4:68 A663ð Þ
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Antioxidant compounds

Sodium phosphate buffer (50 mM, pH 7.8) was mixed with
fresh leaves collected separately from each treatment. The
mixture was centrifuged, and the supernatant was used to de-
termine various antioxidant enzyme activities such as catalase
(CAT) using the methods of Aebi (1984) and superoxide dis-
mutase (SOD) following the method of Dhindsa et al. (1982).
For peroxidase (POX) activity, fresh leaves were homoge-
nized in (5mL) 50mM sodium phosphate (pH 5.5) containing
0.2 mM EDTA-Na2. The supernatant was used to measure
POX activity following Nakano and Asada (1981).

Measurement of membrane damage

The MDA (malondialdehyde) contents were estimated fol-
lowing the method of Hodges et al. (1999). The absorbance
of the supernatant was measured by spectrophotometer at 440,
532, and 600 nm.

A ¼ Abs 532þTBAð Þ− Abs 600þTBAð Þ− Abs 532−TBA−Abs 600−TBAð Þ½ �
B ¼ Abs 440þTBA−Abs 600þTBAð Þ � 0:0571½ �

MDA equivalents μmol mL−1
� � ¼ A−B=157000ð Þ � 103

Acid digestion and Cd determination

Before acid digestion, the harvested plant parts were washed
with tap water followed by deionized water, oven-dried, and
ground into a fine powder. About 0.5 g fine powder was taken
and added into 12mL of HNO3/HClO4 mixtures at the ratio of
3:1. The mixture was kept on a hot plate for 2 h at 300 °C until
a clear supernatant was obtained. The clear solution was fil-
tered and finally made volume up to 50 mL using distilled
water. Atomic absorption spectrometer (Perkin-Elmer,
AAnalyst 800) was used to determine the Cd concentration
in different parts of the plant.

Phytoremediation efficiency

Bioconcentration and translocation factors were used to deter-
mine Cd accumulation and its translocation into different parts
of D. ambrosioides . These factors determine the
phytoremediation potential of the plant. Both factors were
calculated using the following formula:

Bioconcentration factor BCFð Þ ¼ Cd conc:in plant tissue μg g−1ð Þ
Cd conc:in soil μg g−1ð Þ

Bioaccumulation Coefficient BACð Þ ¼ Conc:of Cd in shoot μg g−1ð Þ
Cd conc:in soil μg g−1ð Þ

Translocation Factor TFð Þ ¼ Conc:of Cd in shoot μg g−1ð Þ
Cd conc:in root μg g−1ð Þ

Phytoextraction efficiency

The amount of heavy metals accumulated in the dry above-
ground biomass of the plants and the plant yields determine
the phytoextraction efficiency of plants. In this regard, reme-
diation factor (RF) represents the percentage of an element
removed by the plant dry aboveground biomass from the total
element content in the soil during one cropping season
(Vysloužilová et al. 2003). The following equation was used
to calculate the RF during the present study.

RF ¼ Cdplant � Bplant

Cdsoil � wsoil
� 100 %ð Þ

where Cdplant is the Cd contents in plant dry aboveground
biomass (mg kg−1); Bplant is the plant dry aboveground bio-
mass (g); Cdsoil is the total Cd contents in soil (mg kg−1) and
wsoil the amount of soil taken in one pot (g).

Statistical analysis

Statistical analysis of collected data and Pearson’s correlation
among different parameters were performed using the
GraphPad Prism package, version 8.0 (GraphPad Software,
San Diego, CA, USA) and Microsoft Office Excel 2013
(Redmond, WA, USA). The treatment means were compared
by Duncan’s multiple range posthoc test (DMRT) at a signif-
icance level of P < 0.05.

Results

Plant growth and yield

The data regarding growth and yield parameters of
D. ambrosioides showed that Cd stress significantly reduced
plant height and fresh and dry biomass (Table 1). However,
this stress was significantly reduced with the application of
different PGRs (GA3 and IAA) and EDTA. On growth and
yield parameters, the impact of GA3 was more pronounced as
compared to IAA while EDTA played an important role in
increasing Cd availability to the crop plants. The maximum
root and shoot length (24.0 and 48.0 cm) were recorded with
the combined application of PGRs (GA3 and IAA) and EDTA
(T6) while that of the minimum (7.0 and 20.0 cm) was ob-
served under cadmium stress with the application of EDTA
under Cd stress (T1). A similar trend was observed in the case
of fresh and dry biomass of different portions of
D. ambrosioides. In the case of fresh and dry biomasses, the
maximum (40.55 and 9.46 g) observed in T6 was 2.14 and
2.95 times more as compared to that of the minimum (18.96
and 3.21 g) observed in T1.
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Physiological parameters

Cd stress significantly reduced physiological (chlorophyll
contents and relative water contents) parameters of
D. ambrosioides (Table 2). In the case of chlorophyll contents,
the enhanced Cd availability due to the application of EDTA
resulted in the minimum chlorophyll contents (3.69 μg g−1) of
D. ambrosioides. Application of different PGRs significantly
reduced Cd stress and their effect was more pronounced when
application combined compared to their sole application.
Combined application of IAA and GA3 significantly en-
hanced chlorophyll contents to maximum, i.e., 13.03 μg g−1

and it was almost 3 times more as compared to that recorded
with the sole application of EDTA. In the case of total water
contents, the maximum (25.2 g) was observed with the com-
bined application of IAA, GA3, and EDTA under Cd stress
(Table 2).

Antioxidant enzyme activities

The application of PGRs and EDTA under Cd stress had a
significant effect on antioxidant enzyme activities (Fig. 1).
Sole application of EDTA enhanced Cd availability and ulti-
mately resulted in increased Cd stress. Under Cd stress, the
activities of SOD, CAT, and POX were significantly reduced
compared to the control treatment. This stress was relieved
with the sole or combined application of IAA and GA3.
Overall, the combined application of GA3, IAA, and EDTA
caused the maximum increase in the activities of all studied
antioxidant enzyme activities as compared to control.

Stress-related metabolites

The effect of different PGRs (IAA and GA3) and EDTA under
Cd stress on the biosynthesis of proline and phenolics in leaf
and root samples is presented in Fig. 2a, b. Significantly
higher free proline and total phenolic contents were recorded
in root and leaf samples under all treatments as compared to
control. The combined application of GA3 and IAA with
EDTA resulted in the highest free proline biosynthesis in roots
(85.0 μg g−1) and leaves (71.4 μg g−1) under Cd stress. More
proline biosynthesis was observed in roots compared to the
leaves. Similarly, the maximum biosynthesis of total phenolic
contents in roots (95.0 μg g−1) and leaves (157.0 μg g−1) was
observed with the combined application of GA3 and IAAwith
EDTA under Cd stress. More phenolic contents were
biosynthesized in leaves compared to the root samples of
D. ambrosioides under all treatments.

Under abiotic stress, the production of reactive oxygen
species (ROS) results in lipid peroxidation and ultimately
damages cellular membranes. The extent of cellular mem-
brane damage is measured through the estimation of
MDA contents. The production of MDA contents wasTa
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enhanced under Cd stress both under sole application of
Cd and sole application of EDTA (Fig. 2a). In comparison
to the control, exogenous application of GA3 and IAA
significantly reduced lipid peroxidation, i.e., MDA con-
tents. Overall, the combined application of GA3 and IAA
with EDTA significantly reduced MDA contents com-
pared to the control and other treatments.

In the case of total soluble proteins, an opposite trend as
observed in the case of MDA contents was recorded. Here,
minimum total soluble protein production was observed as Cd
stress was increased as observed with the sole application of
EDTA under Cd stress. The maximum total soluble proteins
were produced with the combined application of GA3 and
IAA with EDTA under Cd stress.

Table 2 Effect of different treatments on physiological parameters of Chenopodium ambrosioides

Treatments Chlorophyll contents (μg/g) Total water contents (g)

a b Total Root Shoot Leaves Entire plant

C† 4.34±1.12e* 3.54±0.11d 7.88±0.61d 5.90±0.37bc 9.53±0.94c 7.09±0.46c 22.52±1.39c

C1 2.15±0.99f 1.91±0.13e 4.06±0.44e 2.49±0.17f 5.33±0.95f 6.01±0.57de 13.83±1.69fg

T1 1.98 ±0.45fg 1.71±0.98e 3.69±0.13ef 1.97±0.30g 4.77±0.95h 5.02±0.94ef 11.76±2.19gh

T2 6.91±0.12b 5.12±0.45ab 12.03±0.66ab 6.00±0.23ab 12.11±0.95a 9.08±0.70a 27.19±1.88a

T3 5.56±1.13c 4.51±2.34bc 10.07±0.55c 4.00±0.01d 8.00±0.34d 7.09±0.04c 19.09±2.34d

T4 5.91±0.09c 5.51±0.56a 11.42±0.12b 3.56±0.01d 7.33±0.97d 7.10±0.03c 17.99±0.99e

T5 5.12±0.99cd 4.78±1.12b 9.90±0.12c 3.00±0.01e 5.06±0.07fg 6.11±0.03d 14.17±0.07f

T6 7.12±0.01a 5.96±0.51a 13.03±0.44a 6.73±0.08a 10.94±0.95b 8.21±0.22b 25.21±1.25b

*Mean values ± SD (n = 5) sharing same letter (s) in a column are statistically nonsignificant with each other at P <0.05
†Where C = normal soil; C1 = Cd only; T1 = Cd + EDTA; T2 = Cd + GA3; T3 = Cd + GA3 + EDTA; T4 = Cd + IAA; T5 = Cd + IAA + EDTA; and T6 =
Cd +GA3 + IAA + EDTA. In all Cd treatments, Cdwas applied@ 100mg Cd kg−1 soil. EDTA, GA3, and IAAwere applied@ 40mg EDTA kg−1 soil,
0.1 μM and 10 μM, respectively
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Fig. 1 Effect of different treatments on antioxidant assays of
Chenopodium ambrosioides under Cd-contaminated soil where a catalase
(CAT) activity, b superoxide dismutase (SOD) activity, and c peroxidase
(POX) activity. Where C = normal soil; C1 = Cd only; T1 = Cd + EDTA;

T2 = Cd + GA3; T3 = Cd + GA3 + EDTA; T4 = Cd + IAA; T5 = Cd + IAA
+ EDTA; and T6 = Cd + GA3 + IAA + EDTA. In all Cd treatments, Cd
was applied @ 100 mg Cd kg−1 soil. EDTA, GA3, and IAA were applied
@ 40 mg EDTA kg−1 soil, 0.1 μM and 10 μM, respectively
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Cadmium dynamics in D. ambrosioides

As clear from the data presented in Table 3, all treatments
significantly increased Cd concentration in root, stem, and
samples of D. ambrosioides as compared to the sole applica-
tion of Cd (C1). Roots followed by leaves accumulated the
maximum Cd concentration. Sole application of EDTA under
Cd stress resulted in enhanced Cd concentration in the root
(334.0 mg kg−1), stem (118.0 mg kg−1), and leaf samples
(280.0 mg kg−1). Similarly, foliar application of GA3 and
IAA also significantly increased Cd uptake as compared to
C1. The maximum Cd contents were found in the root
(1521.0 mg kg−1), stem (214.0 mg kg−1), and leaves
(449.0 mg kg−1) with the combined application of GA3,
IAA, and EDTA. Overall, enhanced bioaccumulation of Cd
within plant tissues was recorded under all the treatments. The
combined application of GA3, IAA, and EDTA significantly
increased Cd accumulation in the root (4.50 mg Cd pot−1 dry
biomass), stem (0.64 mg Cd pot−1 dry biomass), leaves
(1.58 mg Cd pot−1 dry biomass), and consequently within
the entire plant (6.72 mg Cd pot−1 dry biomass) as shown in
Table 3. A similar trend was observed in the case of percent
accumulation of Cd in different portions of D. ambrosioides.
Based on the accumulation pattern of Cd, D. ambrosioides

can be regarded as a hyperaccumulator as it accumulated
(2.22/6.50)*1000 = 341.5 mg Cd kg−1 dry biomass of shoot.

All treatments either applied sole or in combination
showed a significant effect on Cd translocation into dif-
ferent parts of the plant (Table 3). The maximum translo-
cation of Cd was observed from stem to leaves. Similarly,
Cd translocation from root to leaves was more as com-
pared to root to stem. Cd translocation from root to stem
was found less than 1 under all treatments which showed
that Cd concentration in roots was higher compared to the
Cd concentration in stem and leaves. The minimum
bioconcentration factor, i.e., 1.81 in D. ambrosioides
was recorded under Cd stress without application of
PGRs or EDTA (C1) as shown in Table 3. All other treat-
ments showed statistically significant and higher Cd
bioconcentration values as compared to C1 (Cd only).
The highest Cd bioconcentration value (15.21) was re-
corded with the combined application of GA3, IAA, and
EDTA under Cd stress (Table 4).

As clear from Table 3, remediation factor (RF) was
calculated to assess the phytoextraction potential of
D. ambrosioides. The results showed that the maximum
RF value (6.72%) was observed under the combined
application of PGRs and EDTA under Cd stress while

a b

c d

µµ

µ

Fig. 2 Effect of different treatments on stress-related metabolites of
Chenopodium ambrosioides under Cd-contaminated soil. a Total pheno-
lics, b proline contents, c MDA contents, and d total soluble proteins.
Where C = normal soil; C1 = Cd only; T1 = Cd + EDTA; T2 = Cd + GA3;

T3 = Cd +GA3 + EDTA; T4 = Cd + IAA; T5 = Cd + IAA +EDTA; and T6
= Cd + GA3 + IAA + EDTA. In all Cd treatments, Cd was applied @
100 mg Cd kg−1 soil. EDTA, GA3, and IAA were applied @ 40 mg
EDTA kg−1 soil, 0.1 μM and 10 μM, respectively
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that of the minimum value (0.49%) was observed with-
out application of PGRs and EDTA under Cd stress.

Correlation analysis

All the parameters measured from the root samples showed a
statistically significant and positive correlation with Cd con-
centration (Tables 4 and 5). As clear from the data presented in
Table 4, Cd concentration in root samples showed a positive
and statistically significant correlation with total water content
(R2 = 0.82), fresh (R2 = 0.75), and dry biomass (R2 = 0.89).
Similarly, Cd concentration in the root also showed a highly
significant positive correlation with total phenolic (R2 = 0.95)
and proline contents (R2 = 0.95). With Cd concentration, al-
most all parameters measured from leaf samples showed a
significant positive correlation. The Cd concentration in
leaves showed significant correlation with dry biomass
(R2 = 0.88), total water content (R2 = 0.83), SOD (R2 =
0.88), POX (R2 = 0.57) and CAT (R2 = 0.90). Similarly,
proline and total phenolic contents also showed a statistically
significant correlation (R2 = 0.97 and R2 = 0.65), respectively
with Cd concentration (Table 5)

Discussion

Heavy metal (HMs) stress is among one of the abiotic stresses
that limit plant growth and metabolism, which eventually re-
duces crop yield and biomass (Ahmad et al. 2016). Heavy
metals after entering the plant body are known to induce toxic
effects on photosynthetic pigments, biosynthesis of reactive
oxygen species (ROS), and assimilation of heavy metals in-
stead of micronutrients (Irshad et al. 2021; Liu et al. 2020;
Mehmood et al. 2018a, 2018b). This situation is very critical
especially during the phytoextraction of HMs where the main
objective to have larger biomass for the higher accumulation
of HMs. In response to HMs stress, plants activate their de-
fense system via the production of various plant growth reg-
ulators (PGRs) such as gibberellic acid (GA3) and indole
acetic acid (IAA). Recently, various researchers have found
that phytohormones play an important role in the amelioration
of abiotic stress (Cabello-Conejo et al. 2014; Chen et al. 2020;
Ghorbani et al. 2019; Mousavi et al. 2020; Santos Neri Soares
et al. 2020; Zhang et al. 2020; Zhou et al. 2020).

In the present investigation, the main objective was not
only to enhance Cd phytoextraction but also to increase plant
biomass for the maximum accumulation of Cd under Cd

Table 4 Pearson’s correlation
analysis of different root
parameters regarding different
antioxidant activities and other
biochemical parameters of
Chenopodium ambrosioides

FBM DBM TWC Cd conc. Cd accumulation Proline

DBM 0.93***†

TWC 0.96*** 0.98***

Cd conc. 0.75** 0.89** 0.82**

Cd accumulation 0.89** 0.97*** 0.96*** 0.94***

Proline 0.67* 0.79** 0.74** 0.95*** 0.89**

Phenolics 0.61* 0.75** 0.68* 0.95*** 0.84** 0.97***

†Where * = P < 0.05, ** = P < 0.01, and *** = P < 0.001 (n = 5)

FBM, fresh biomass; DBM, dry biomass; TWC, total water contents

Table 5 Pearson correlation analysis of different leaf parameters regarding different antioxidant activities and other biochemical parameters of
Chenopodium ambrosioides

FBM DBM TWC Cd conc. Cd accumulation SOD POX CAT Proline

DBM 0.81**†

TWC 0.94*** 0.85**

Cd Conc. 0.04 0.57* 0.12

Cd accumulation 0.78* 0.88** 0.83** 0.43

SOD 0.45 0.80** 0.52* 0.74* 0.88**

POX 0.02 0.42 0.07 0.78* 0.57* 0.87**

CAT 0.50 0.81** 0.55* 0.72* 0.90*** 0.99*** 0.84**

Proline 0.46 0.71* 0.53* 0.62*** 0.89** 0.96*** 0.86** 0.95***

Phenolics 0.40 0.72* 0.51 0.65* 0.84** 0.94*** 0.86** 0.91*** 0.97***

†Where * = P < 0.05, ** = P < 0.01, and *** = P < 0.001 (n = 5)

FBM, fresh biomass; DBM, dry biomass; TWC, total water contents; SOD, superoxide dismutase; POX, peroxidase; CAT, catalase
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stress. Earlier, plants grown under metal-contaminated soil
showed arrested growth and biomass which eventually affect
their phytoextraction potential (Denton 2007). However, the
hyperaccumulators bioaccumulate higher concentrations of
metals and produce large biomass (Baker and Brooks 1989;
Baker et al. 2000). Reduction in plant growth and biomass
under heavy metal stress is due to decreased nutrient uptake
(Gopal and Rizvi 2008). In the present study, the application
of Cd significantly decreased root and shoot length, biomass,
and total water content of D. ambrosioides. Our results are in
line with earlier reports (Hasanuzzaman et al. 2017; Saeed
et al. 2019). The reduced growth of cabbage under Cd stress
was also reported by Kamran et al. (2019). The reduction in
growth and metabolism under stress conditions might be due
to the suppression of cell division and extended cell cycle. It
may also be due to the reduced number of lateral roots and
inhibition of various metabolic enzymes that are directly in-
volved in plant growth (Samantary 2002). Reduction in bio-
mass, under Cd stress, is reported for Zea mays L. Parthenium
hysterophorus L., Raphanus sativus L., Lycopersicon
esculentum Mill. (Ghani et al. 2016; Hadi et al. 2010). Low
water and nutrients uptake might be the main cause of growth
inhibition due to Cd stress (Ahmad et al. 2016).

In the present study, foliar application of GA3 and IAA,
sole or combined increased growth and biomass under Cd
stress. Earlier, it has been found that PGRs especially GA3

accelerate cell division in the apex portion of the plant, shoot
growth, and increased metal stress resistance due to the dilu-
tion effect (Hussain et al. 2019). PGRs are also known to
enhance the root growth of the plant, which may lead to en-
hanced water and nutrient uptake (Bashri and Prasad 2016;
Hadi et al. 2010; Zhou et al. 2020). This premise is supported
by the increased total water contents of the plants with the
application of GA3 and IAA under Cd stress (Table 2).

The current study showed that the concentration of Cd and
accumulation in various parts of the significantly increased by
PGR. Phytohormones affect the synthesis of protein, RNA, and
DNA (Broughton andMcComb 1971), and the multiplication of
polyribosomes (Evins and Varner 1972) might contribute to
higher biomass production. Ethylenediaminetetraacetic acid
(EDTA) is a renowned metal chelator that enhances metal bio-
availability to the crop plants and ultimately increased metal
phytoextraction (Anning and Akoto 2018; Li et al. 2020;
Saffari and Saffari 2020). Earlier, foliar application of PGRs
significantly increased Cd accumulation in plants (Chen et al.
2020; Hadi et al. 2010). In the present study, exogenous appli-
cation of PGRs enhanced plant growth, biomass, and ultimately
enhanced metal stress tolerance. Earlier, it has been found that
PGRs enhance the rate of transpiration, which may lead to an
increase in metal uptake (Chen et al. 2020). Increased Cd accu-
mulation may also be due to improved plant growth (Khan et al.
2016). The Cd concentration and accumulation in various parts
of the plant were in the order of roots > leaves > stems (Table 3).

These results are in line with Chen et al. (2019), D’Souza et al.
(2013), and Sun et al. (2008).

Cd Stress significantly reduced the photosynthetic pig-
ments in D. ambrosioides as compared to control. The reduc-
tion in photosynthetic pigment might be connected with re-
duced enzyme activities involved in the biosynthesis of pho-
tosynthetic pigments (Hussain et al. 2019; Saleem et al. 2020).
Cd stress alters chloroplast structure by substitution of Mg
with Cd, thereby resulting in reduced photosynthetic pigments
(Jibril et al. 2017; Marques et al. 2018). It may also be due to
chaotic epidermal and cortical layers cell division in the apex
region, which results in leaves chlorosis (Yang et al. 2009).

Under Cd stress, biosynthesis of different stress-related
metabolites was enhanced which otherwise protects cells from
oxidative stress caused (Chen et al. 2020; Naveed et al. 2020).
Stress-related metabolites such as proline and phenolics are
compatible solutes and known to reduce the injurious effect of
Cd (Ali and Hadi 2015; Khatamipour et al. 2011; Michalak
2006; Sakihama and Yamasaki 2002).

Among metabolites, proline is synthesized in plants during
abiotic stress (Jan et al. 2017). The accumulation of free pro-
line in the plant cell is environmental stress indicator, i.e.,
salinity, drought, metals stress. Proline behaves like a buffer
in the cell, providing protection and stability to the cellular
macromolecules (Mattioli et al. 2009). Inside the cell, proline
is bound with Cd and forms a nontoxic complex of Cd-proline
(Khatamipour et al. 2011). Proline plays a vital role in the
detoxification of Cd within the plant cell. Its biosynthesis is
also reported in several plant species under metal stress, i.e.,
Triticum aestivum L., Solanum nigrum L., Lycopersicon
esculentum Mill., and Silybum marianum L. (Khatamipour
et al. 2011; Szabados and Savoure 2010).

Phenolics are phytochemical compounds, which provide
defense during abiotic stress conditions (Khan et al. 2016).
Different environmental stresses are known to enhance the
biosynthesis of phenolic compounds in various plants
(Michalak 2006; Sakihama and Yamasaki 2002). Cd stress
significantly increased total phenolic contents in
D. ambrosioides (Fig. 2). Our results are in line with the find-
ing of Ali and Hadi (2015), who reported a high concentration
of phenolics under Cd stress. Phenolic compounds show vital
antioxidant activities and scavenge ROS during metals stress
(Michalak 2006). Moreover, phenolic compounds are capable
of metal chelation and stop superoxide-driven Fenton reac-
tions, which result in their enhanced antioxidant potential
against ROS species (Kaur et al. 2008). Exogenous applica-
tion of PGRs significantly enhanced biosynthesis of total phe-
nolics in the root and leaves ofD. ambrosioides in the present
study. Ali and Hadi (2015) also reported similar results in the
case of P. hysterophorus.

The formation of ROS in the plants is a continuous process
by inescapable release of electrons onto oxygen (O2) from
chloroplasts, peroxisomes, chloroplasts, or mitochondria
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(Michalak 2006). It has been found that the accumulation of
ROS results in the oxidation of protein (enzymes) and subse-
quent inactivation, lipid peroxidation, and damage to nuclear
structures (Leng et al. 2020; Sabir et al. 2020). To avoid ox-
idative injury, plants switch on the antioxidant enzymatic sys-
tem (Irshad et al. 2021; Liu et al. 2020). In the current study,
increased antioxidant enzyme levels, i.e., SOD, CAT, and
POX were recorded with the application of PGRs. The in-
crease might be linked to encounter oxidative stress and en-
hanced metal stress tolerance through the application of PGRs
(Kamran et al. 2019; Leng et al. 2020; Santos Neri Soares
et al. 2020; Zhang et al. 2020). These studies have confirmed
that increased levels of SOD, CAT, and POX can decrease the
level of active oxygen in the plant cell, thereby help in the
detoxification of ROS under stress conditions.

Bioconcentration and translocation factors are impor-
tant parameters for the evaluation of the phytoextraction
potential of a plant species. Earlier, poplar and willow
clones accumulated much higher amounts of Cd with
the highest BCF values in roots ranging from 84 to 175
(He et al. 2013). The higher BCF might be due to the
longer period (90 days) of growth with more biomass
compared to the present study (40 days). The BCF values
noted in the present study (15.21) were far more com-
pared to Rezapour et al. (2019) who noted the maximum
value of 3.1 with a growth period of 230 days. The
higher values noted in the present study might be due
to the use of EDTA and plant growth regulators, which
not only increased Cd availability to the plants but also
supported growth. In the case of the translocation factor,
the values noted were low (0.14) compared to the values
noted in other studies, i.e., 1.24 for He et al. (2013) and
0.22 for Rezapour et al. (2019). The phytoextraction ef-
ficiency of the present study is 6.5% and around 1.68
years would be required to gain the permissible safe limit
of Cd, i.e., 0.4 mg kg−1 (WHO 2004) in the soil under
the present condition of growth by D. ambrosioides. The
time required for the complete removal of Cd from the
soil is quite low as compared to the other studies. For
example, Yu et al. (2020) reported an annual removal of
273 g Cd from the soil which would require around 30
years for complete removal of soil contaminated with Cd,
i.e., 3.68 mg kg−1 soil. The time required is low as the
calculations were based continuously due to the perennial
nature of D. ambrosioides. In the present study, EDTA
was used to enhance the phytoextraction potential of
D. ambrosioides.

The RF values observed in the current study are in line with
Eissa (2016) who observed similar values while using EDTA
at 3, 6, and 10 mM kg−1 soil . In another study,
Neugschwandtner et al. (2008) observed very low values of
RF in maize (Zea mays L.) compared to that of RF values
observed in the present study, which might be due to the sole

application of EDTA in the former study. The higher values
might be due to the additive effect of PGRs and the plant
species used (Hammer et al. 2003; Yu et al. 2020).

After phytoextraction, the plant material could be pretreated
through pyrolysis, composting, and compaction and finally
discarded or incinerated (Sas-Nowosielskaa et al. 2004).
Overall, the present study confirmed that D. ambrosioides had
much potential for bioremediation of Cd-contaminated soils
with a shorter growth period.

Conclusions

With the exogenous individual or combined application of
plant growth regulators, i.e., GA3 and IAA, growth parameters
of D. ambrosioides were significantly enhanced which other-
wise were reduced under Cd stress. GA3 and IAA sole or in
combination significantly increased Cd accumulation. The
combined application of GA3 and IAA significantly enhanced
the biosynthesis of stress-related metabolites such as proline,
phenolics, SOD, CAT, POX, and MDA. Proline, phenolics,
and antioxidant enzymes showed a statistically significant cor-
relation with Cd accumulation in plants. D. ambrosioides
showed higher accumulation potential of Cd as clear from
the bioconcentration factor, i.e., BCF > 1. Moreover, it also
acted as a phytostabilizer as clear from the values of the trans-
location factor, i.e., TF < 1. In conclusion, the combined ap-
plication of plant growth regulators (GA3 and IAA) and che-
lating agent (EDTA) improves the phytoextraction potential
of D. ambrosioides under Cd stress.
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