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Abstract
Global environment changes rapidly alter regional hydrothermal conditions, which undoubtedly affects the spatiotemporal
dynamics of vegetation, especially in arid and semi-arid areas. However, identifying and quantifying the dynamic evolution
and driving factors of vegetation greenness under the changing environment are still a challenge. In this study, gradual trend
analysis was applied to calculate the overall spatiotemporal trend of the normalized difference vegetation index (NDVI) time
series of Xinjiang province in China, the abrupt change analysis was used to detect the timing of breakpoint and trend shift, and
two machine learning methods (boosted regression tree and random forest) were used to quantify the key factors of vegetation
change and their relative contribution rate. The results have shown that vegetation has experienced overall recovery over the past
20 years in Xinjiang, and greenness increased at a rate of 17.83 10−4 year−1. Cropland, grassland, and sparse vegetation were the
main biome types where vegetation restoration is happening. Nearly 10% of the pixels (about 166000 km2) were detected to have
breakpoints from 2004 to 2016 of the monthly NDVI, and most of the breakpoints were concentrated in the ecotone of various
biomes. CO2 concentration was the most prevalent environmental factor to increase vegetation greenness, because continuous
emission of CO2 greatly enhanced the fertilization effect, further promoted vegetation growth. Besides, cropland expansion and
desertification control were the vital anthropogenic factors to vegetation turning “green” in Xinjiang, and most areas under
anthropogenic were mainly in oasis areas. These findings provide new insights and measures for the regional response strategies
and terrestrial ecosystem protection.
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Highlights
The Sen’s and BFAST analysis were jointly used to explore the
vegetation dynamics of various biomes in Xinjiang, China.
The growth rate of vegetation in Xinjiang accelerated significantly after 2010.
In space, most of the breakpoint pixels concentrate in the ecotone of
various biomes.
CO2 fertilization effectwas the primary driving factors of vegetation greening.
Land-use management directly leads to the vegetation turn “green”
around the oasis.
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Introduction

Vegetation plays an important role in regulating the carbon
cycle and offsetting greenhouse gas emissions as an interme-
diate link between the hydrosphere, atmosphere, and litho-
sphere (Piao et al. 2019b). Accurate and efficient comprehen-
sive investigation and evaluation of the spatiotemporal varia-
tions of vegetation in the regional and scales are essential for
understanding the sustainability of terrestrial ecosystems, es-
pecially in areas extremely sensitive to environmental changes
(Sun et al. 2015). However, alteration of land-atmosphere en-
ergy exchanges fluxes caused by global climate change is
further affecting the growth of vegetation. Therefore, a com-
prehensive understanding of the vegetation evolution charac-
teristics and its contributing factors in the context of climate
change is of great significance for ecosystem protection, water
resources management, and climate change adaptation
strategies.

Under the background of global environment change,
mechanisms and driving factors of vegetation dynamics have
become of growing research interest. NDVI (normalized dif-
ference vegetation index) is one of the most prevalent indica-
tors for quantitative assessing vegetation growth status, wide-
ly used in vegetation coverage monitoring and vegetation-
climate correlation researches (Fensholt et al. 2012a, Kong
et al. 2018). Recent observations has revealed widespread
vegetation greening, especially in the middle and high latitude
regions of the northern hemisphere (Zhu et al. 2016), among
which the vegetation greenness in China (Du et al. 2019a),
Europe, and North America (de Jong et al. 2011, Liu et al.
2015) has increased in varying degrees. In arid and semi-arid
areas, the vegetation also showed a noticeable increasing trend
(Fensholt et al. 2012b), such as savannah areas in Africa
(Brandt et al. 2015) and Australia (Donohue et al. 2009).
However, temperature and precipitation, the two primary im-
portant meteorological factors regulating the vegetation dy-
namic on the earth’s surface, are not adequate to explain the
phenomenon of turning “green” in the arid regions at global or
local scale. This highlights the demands for thorough analysis
of vegetation changes in the hydrothermal deficient areas.

Inter-annual and seasonal variations are descriptive indica-
tors to evaluate the vegetation resilience to external distur-
bance and are of great significance for assessing the impact
of climate change on vegetation (Ma et al. 2019a). At present,
there are typically two approaches to quantify the spatiotem-
poral dynamics of vegetation greenness: gradual change anal-
ysis and abrupt change analysis. The gradual change can be
estimated by the linear or Sen’s trend, because the slope re-
flects the direction and rate of vegetation change over time.
For the long-term trend of vegetation characteristics and its
response to climate, gradual change analysis has a more intu-
itive description. However, in the growth process of vegeta-
tion, it is likely to experience various kinds of short-term

stresses, such as heatwaves, drought events, etc. (Marengo
and Espinoza, 2016, Ummenhofer and Meehl, 2017).
Information of abrupt changes induced by extreme weather
events can be omitted by gradual change analysis of satellite
time series (Pan et al. 2018).Moreover, the ecosystem is prone
to undergone abrupt and drastic change when the interference
of human activities, such as afforestation and coal mining,
exceeds the threshold (Tong et al. 2018). Vegetation green-
ness trend can be easily interrupted by natural or artificial
disturbance and then stagnated or reversed completely (de
Jong et al. 2013). Therefore, gradual change analysis still
has some shortcomings in analyzing vegetation indicator
change characteristics in the long-term dataset. Based on this,
it is crucial to effectively and accurately identify the abrupt
change events in satellite time series (Verbesselt et al. 2010a).
Segmentation algorithms detect breakpoints and estimate
trends that can generalize vegetation dynamic characteristics,
and among which are Detecting Breakpoints and Estimating
Segments in Trend (DBEST) (Jamali et al. 2015), the
Vegetation Change Tracker (VCT) (Huang et al. 2010), and
Breaks For Additive Season and Trend (BFAST) (Verbesselt
et al. 2010b). All these algorithms use linear or piecewise
linear models to quantitatively measure vegetation’s annual
and seasonal changes. In particular, the BFAST algorithm
can automatically analyze at per pixel level in time series
dataset without the need of parameters turning; and for which
reason, it has been widely applied in the classification of land
use (Xu et al. 2020), accurate monitoring of forest interference
(Wu et al. 2020), monitoring of breakpoint time, and detecting
marks of flood and fire in recent years (Watts and Laffan,
2014). However, there is still a lack of understanding of veg-
etation greenness’s abrupt change characteristics in the time
series.

Besides, the dynamics of vegetation greenness is influ-
enced by precipitation, solar radiation, and CO2 (Piao et al.
2019a). Among them, the fertilization effect of CO2 can stim-
ulate the plant’s photosynthetic capacity, expediting plants to
produce more carbohydrates (Liu et al. 2016), promote leaf
and stem growth (Donohue et al. 2013), and further enhance
the carbon sequestration capacity and the canopy greenness of
vegetation. Some studies have shown that CO2 concentration
is the dominant factor controlling global vegetation change
(Ballantyne et al. 2012, Zhu et al. 2016). However, there has
been limited amount of quantitative analysis on the contribu-
tion of CO2 concentration to vegetation greenness, especially
in arid areas with relatively low vegetation greenness.
Moreover, human activities through land-use management
will significantly change the vegetation greenness and cover-
age (Chen et al. 2019). For example, the rapid urbanization
process can reduce the city’s greenness and biomass at the
initial stage, but the construction of parks and green belts will
indirectly compensate for the loss of urban vegetation green-
ness after the city matures (Zhong et al. 2019). Recent studies
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have shown that human-induced processes such as afforesta-
tion and intensive agriculture practices have also made a great
contribution to the trend of vegetation turning “green” (Chen
et al. 2019). The implementation of large-scale afforestation
and other ecological engineering in China can directly in-
crease the carbon storage of terrestrial ecosystems (Yue et al.
2021), while intensive agriculture can enable people to plant
more crops on the same area of land. In particular, the expan-
sion of cropland can serve as an indicator of the magnitude of
anthropogenic disturbance in that agricultural activities can
contribute to the increasing photosynthetic capacity reflected
by spectral information from satellite images (Huang et al.
2018). Modern Resolution Imaging Spectroradiometer
(MODIS) satellite observation dataset improves our abili-
ty to monitor spatial change of vegetation, which makes
accurate evaluation at finer resolution possible. Therefore,
a comprehensive analysis of the driving factors affecting
the vegetation greenness and the quantification of their
contribution is needed, which can provide suggestions
for improving sustainability of ecosystems and the imple-
mentation of environmental management policies under
the background of global climate change.

Xinjiang, located in the northwest of China and the center
of Eurasia, plays an irreplaceable role in maintaining ecolog-
ical security in China (Du et al. 2020). In recent years, the
changing environments make the vegetation dynamics in
Xinjiang increasingly unstable and unpredictable. Increasing
temperature and moisture have changed the terrestrial ecosys-
tem’s energy and water balance (Yao et al. 2020), and the
evolving climate anomaly has changed the spatiotemporal
pattern of vegetation in Xinjiang (Guli·Jiapaer et al. 2015).
Some studies had explored the spatial-temporal variation of
vegetation and climate parameters in Xinjiang and their rela-
tionship. For example, Guli et al. studied leaf area index of
Xinjiang and revealed that the vegetation in this area had
displayed obvious geographical differentiation and has been
gradually recovering over the last decade and also found veg-
etation varies in biological communities and seasons (Guli·
Jiapaer et al. 2015). Peng et al. found that precipitation is the
main climatic factor affecting the seasonal variation of net
primary productivity in Xinjiang (Peng et al. 2008). Du et al.
claimed that hydrothermal conditions should be the primary
control of vegetation growth in Xinjiang. NDVI was more
sensitive to the thermal factors such as temperature and poten-
tial evapotranspiration in spring and autumn. At the same
time, precipitation and humidity index was stronger in
summer (Du et al. 2015). However, previous studies
rarely discussed the impact of CO2 fertilization effects
and land-use management on vegetation dynamics in
Xinjiang. There is lack of discussion on the controlling
factors and relative contributions of environmental fac-
tors and human activities to vegetation greenness under
the rapid climate change.

Based on this, this study intends to explore the spatiotem-
poral dynamics and driving factors of vegetation greenness
change in Xinjiang by considering more comprehensive cli-
mate factors and different biome types, which not only pro-
vides a novel approach for the study of the vegetation-climate
relationship in arid areas but also establishes an important
basis for scientific assessment and response to climate change.
This study’s main objectives are (1) to investigate the spatio-
temporal evolution characteristics of vegetation greenness
during 2000–2019 and (2) to explore the main driving factors
that affect vegetation greenness and quantify their
contribution.

Materials and methods

Overview of study area

The study area is located in the Xinjiang Uygur Autonomous
Region of China, the center of Eurasia. Its unique geograph-
ical location has formed a regional unit of the diverse land-
scape consisting of mountain, oasis, and desert ecosystems.
The two of the largest deserts in China (Taklimakan Desert
and Gurbantunggut Desert) are inside Xinjiang. The main
mountains are Altai Mountain in the north, Tianshan
Mountain in the middle, and Kunlun Mountain in the south
(Fig. 1a). The vegetation showed spatial heterogeneity in
Xinjiang (Fig. 1b); the distribution of vegetation is character-
ized by higher density of vegetation in the West and
Northwest and lower in the East and Southeast. Most of the
areas with good vegetation growth are concentrated in
Tianshan, Altai, Kunlun Mountains, and the oasis around
Junggar Basin and Tarim Basin. Dominant vegetation types
include herbs and small shrubs, which belong to a typical
temperate desert with few species and low greenness. The
climate characteristics belong to temperate continental arid
and semi-arid climate, with annual sunshine of 2500–3500
h, an annual average temperature of 5–7 °C. The annual pre-
cipitation in most areas is less than 200 mm, more precipita-
tion in the West than in the East, and more in the mountains
than in plains and basins (Guli·Jiapaer et al. 2015). On the
whole, the area is characterized by abundant photothermal
resources, deficient precipitation, and strong evaporation. As
a typical arid and semi-arid area, its ecosystem has low vege-
tation coverage, extremely sensitive to climate change and
human activities.

Data introduction

Vegetation greenness datasets

NDVI has a linear or near-linear relationship with green leaf
density, vegetation productivity, photosynthetic effective
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radiation, and cumulative biomass, reflecting vegetation
greenness and growth. The MODIS NDVI dataset for 2000–
2019 was obtained from the MOD13A1 product from the
NASA data distribution center, which is widely used in the
study of global and regional vegetation change due to its mod-
erate resolution (500 m) and low uncertainty (Novillo et al.
2019). Its original value range is −2000–10000, multiplied by
the scale factor of 0.0001, and its value range is −0.2~1 after
the calibration. Generally, the larger the NDVI value, the bet-
ter the vegetation greenness and growth condition. In this
study, to reduce the influence of cloud, atmosphere, solar el-
evation angle, and other uncertain factors, the maximum value
composite (MVC) was used to generate annual NDVI maxi-
mum values (Holben 1986). The formula is as follows:

NDVImax ¼ Max NDVIið Þ ð1Þ

In this formula, NDVImax refers to the NDVI annual maxi-
mum corresponding each pixel during 2000–2019. Besides, to
avoid the interference of non-vegetation information on the un-
derlying surface to the vegetationNDVI, referring to the previous
study of vegetation NDVI threshold (Zhang et al. 2017), the area
with NDVI value greater than 0 is selected as the study area.

Climate datasets

Climate datasets such as temperature, precipitation, and radiation
were collected from China Meteorological Forcing Dataset
(CMFD) (He et al. 2020). The climate dataset from 1979 to
2018 has a time resolution of 3 h and a spatial resolution of 0.1
degrees. Previous studies have demonstrated that the climate
dataset of CMFD coincides with the observed data. In this paper,
we used gridded meteorological forcing variables (0.1 degree,

2000–2019) of precipitation rate (Prec), air temperature
(Temp), and shortwave radiation (Radi) for further analysis.

CO2 concentration scenarios

The CO2 dataset is derived from the earth’s carbon dioxide
concentration data observed at Mauna Kea Observatories in
Hawaii, USA, which is the most frequently quoted CO2 back-
ground dataset in the world. Its concentration change can be
regarded as the trend of CO2 emissions on the earth. By
December 2019, the CO2 concentration has reached 413.2
ppm, breaking the record (Supplementary Figure 1).

Land cover datasets

Global land cover product MCD12Q1, with a spatial resolu-
tion of 500 m, contains 6 types of land cover classification
systems. In this study, the global vegetation classification
scheme of IGBP (the International Geosphere-Biosphere
Programme) was used for further analysis. The land-use types
were reintegrated into 6 types of biomes: forest (FR), shrub
(SS), grassland (GL), cropland (CL), urban areas (UB), and
sparse vegetation (SV) (Fig. 2a).

In addition, MOD13A1 and MCD12Q1 datasets were initial-
ly processed and downloaded on Google Earth Engine (GEE)
platform.

Methods

Detect the trend of time series

In this paper, the Manner-Kendall (M-K) nonparametric test
method was used to calculate the trend of NDVI, climate

Fig. 1 The location of the study area. a Spatial distribution of elevation.
The 30-m resolution digital elevation data was obtained from the Shuttle
Radar Topography Mission dataset; b spatial distribution of vegetation

greenness. Value is the intercept of theMODISNDVI during 2000–2019,
representing the average value of vegetation greenness over the past 20
years.
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variables, and land-use probability over time (Kendall and
Gibbons, 1990). Suppose there are n years of time series (x1,…
, xn), for all k, j ≤ n, and k ≠ j and the distribution of xj and xk is
different, calculate the test statistic S; the formula is as follows:

S ¼ ∑
n−1

k¼1
∑
n

j¼kþ1
Sgn x j−xk

� � ð2Þ

Sgn x j−xk
� � ¼

þ1 x j−xk
� �

> 0
0 x j−xk
� � ¼ 0

−1 x j−xk
� �

< 0

2
4

3
5 ð3Þ

S is a normal distribution with a mean value of 0, variance
(S) =n (n-1) (2n+5)/18. When n > 10, the standard normal

statistical variables are calculated by the following formula:

Z ¼
S−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp S > 0

S−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp S < 0

2
664

3
775: ð4Þ

In this formula, when Z > 0, the trend is increased; other-
wise, it decreases.

The Sen’s slope estimation is the method of selecting the
sampling points (simple linear regression) to fit the line to the
plane iteratively through the median value of the slope of all
points of the pair points. This method can well reflect the
change range of the series trend, and the formula of Sen’s

Fig. 2 A case study verifies the effectiveness of the BFAST algorithm for
monitoring the breakpoint on the time series. (a) Classification of biome
types in Xinjiang. FR, SS, GL, CL, UB, and SV represent forests, shrub,
grassland, cropland, urban areas, and sparse vegetation. The black spots
in the map represent the pixels selected to verify the effectiveness of the
BFAST algorithm. (b) BFAST algorithm to decompose the three
variables in the time series, and Yt represents the trend of vegetation

during 2000–2019. St represents the seasonal component by the
representative. Tt represents the breakpoint (abrupt change) caused by
the BFAST algorithm; (c) the BFAST algorithm detected the Landsat
NDVI on the breakpoint pixel, which is gradually encroached cropland
with high greenness from the bare land with very low greenness. The
GEE platform processes the Landsat NDVI value, and the cloud
interference is removed to generate the annual maximum NDVI value.
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slope is as follows:

Slope ¼ median θið Þ ð5Þ
θi ¼ x j−xk

j−k
ð6Þ

In this formula, i is the constant and the value is (1, 2,… ,
n); n is the length of time series; xj and xk are the sequences of j
and k, respectively, and j > k.

Detection of breakpoint and shift in time series dataset

The BFAST algorithm decomposes the original time series into
three parts: long-term trend, seasonal phenology, and residual
components by iterative time series decomposition method
(Fig. 2b). This algorithm can be directly applied to the original
satellite time series, without additional calibration, and does not
need to set threshold and pre-define the prior phenological track
(Verbesselt et al. 2012). Meanwhile, BFAST also integrates the
phenological harmonic model, which can effectively handle less
sample data, and has higher accuracy when monitoring vegeta-
tion abrupt changes at the pixel level (Verbesselt et al. 2010a). As
shown in Fig. 2b, the BFAST algorithm is sensitive to monitor-
ing the abrupt change of MODIS NDVI in the time series due to
cropland’s reclamation. And Landsat NDVI, as a validation
dataset, also found that the vegetation greenness in 2006 sudden-
ly increased (Fig. 2c).

Y t ¼ St þ Tt þ et t ¼ 1;…; nð Þ ð7Þ

In this formula, Yt is the observation data at t time. St, Tt, and et
represent the seasonal phenology, the long-term trend, and the
residual of the whole time series, respectively. T is the observa-
tion time, and n represents the length of the time series.

Suppose there is p breakpoint (τ#1;…; τ#p ), which defines

theτ#1 ¼ 0; τ#pþ1 ¼ n. The fitted seasonal harmonic model St is
expressed as follows:

St ¼ ∑
k

k¼1
aj;ksin

2πkt
f

þ δ j;k

� �
ð8Þ

τ#j−1 < t < τ#−1; j ¼ 1;…; p
� �

ð9Þ

In this formula, j is the breakpoint location, the value is
1~p, p is the number of breakpoints, and k is the number of
harmonic items. aj, k, δj, k, and f respectively represent ampli-
tude, phase, and frequency of a segment.

Suppose there are p breakpoints (τ#1;…; τ#p ), the time series is

divided into p+1 intervals. Tt is a piecewise linear combination of
all time intervals, which is directly related to the slope of each
interval, and then Tt can be expressed as follows:

Tt ¼ αi þ βt t τ#j−1 < t < τ#j

� �
ð10Þ

In this formula, i = 1, …, p, τ#1 ¼ 0; τ#pþ1 ¼ n, αi, and βtt
represent the constants and trends of the piecewise linear trend
model, respectively.

In the BFAST decomposition algorithm application pro-
cess, it is necessary to determine the specific time, the number
of breakpoints, and other parameters. Due to the interference
of natural disasters, human activities, or sensor errors, it is
possible to miscalculate the breakpoint of satellite time series.
How to precisely detect and distinguish these abrupt points
from seasonal phenology and trends is a challenge. Verbesselt
et al. solved this problem using the ordinary least squares
residual-based moving sum. They used the Bayesian informa-
tion criteria to determine the optimal number of breakpoints
(Verbesselt et al. 2010b).

In this paper, to detect the NDVI major breakpoint of the
time series, we applied the BFASTmethod by “bfast01” func-
tion in R to detect the most important breakpoints at a per-
pixel level during 2000–2019 and further determine the posi-
tion and time of the breakpoint. In addition, the breakpoint
types of vegetation were divided into 6 categories according
to the previous studies (de Jong et al. 2013) (Supplementary
Figure 2).

Identification of influence factors and their relative
contribution to NDVI dynamics

In this study, to analyze the impact of different factors on
vegetation, we preprocessed the dataset as follows:

First, considering the spatial resolution mismatch between
climate datasets and NDVI, we resampled NDVI to 0.1 de-
grees. It is noteworthy that the CO2 concentration in the atmo-
sphere is uniform for per pixel, and the increase is consistent.
Thus, we generate the grid dataset of CO2 concentration based
on Hawaii observatory at the 0.1° resolution as a replacement
for Xinjiang’s CO2 dataset.

Second, to analyze the impact of human activities on veg-
etation dynamics, we calculated the transfer matrix between
land use in 2001 and 2018. Considering that MODIS land
classification has a resolution of 500 m, while other environ-
mental driving factors as 0.1 degree resolution (about 11 km).
Therefore, we build a grid of 0.1° and count the probability of
500 mMODIS pixels falling on the grid of 0.1° for each land-
use types (2001–2018). We then, selected all datasets in our
study area (Xinjiang) and study period (annual, 2001–2018)
for further analysis.

Boosted regression tree (BRT) is self-learning and nonlin-
ear regression algorithm based on classification and regression
tree algorithm, which combines regression characteristics and
boosting model (Elith et al. 2008). The advantage of BRT is
that it has great flexibility in dealing with different data for-
mats, can improve the model’s stability and predictability, and
improve the accuracy of the model. Moreover, BRT analysis
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can reveal the contributing factors and the relative contribu-
tion of each independent variables (Ma et al. 2017). In this
study, BRT was used to analyze and evaluate the relative
contribution of driving factors to NDVI dynamics at per-
pixel level in Xinjiang. In addition, the random forest (RF)
method was used to verify the reliability of the BRT method.
When deploying machine learning algorithm s (BRT and RF),
we first takeMODISNDVI of annual time series as dependent
variables and take temperature, precipitation, radiation, CO2

concentration, cropland probability, and spare vegetation
probability of annual time series as independent variables.
Then, we applied “gbm” and “randomForest” package of R
software to calculate the order of influence factors (annual
climate factors, land-use changes, and CO2) and their relative
contribution to NDVI dynamics.

Results

Temporal and spatial characteristics of vegetation
greenness

The annual maximum value of NDVI for 2000–2019 was
taken as the representative of vegetation greenness for each
year, and the annual trend of NDVI was plotted (Fig. 3).
NDVI value fluctuated between 0.17 and 0.21 in Xinjiang,
the minimum year appeared in 2001, and the maximum year
appeared in 2017. From2000 to 2009, the overall is slightlymore
positive than neutral, while the growth rate of NDVI during
2010-2019 was obviously higher than that before 2010.

Vegetation greenness showed a predominantly increasing
trend across the entire Xinjiang. The pixels with trend > 0
accounted for 90.63%, and the pixels with trend > 20 and
trend > 40 accounted for 22.43% and 10.69% of the areas,

respectively (Fig. 4). More than 50% of the pixels showed a
significant increase, while only 1.19% of the areas showed a
significant decrease. During 2000–2019, the area with a sig-
nificant increase in Xinjiang vegetation was mainly the north-
ern base of the Tianshan Mountains and the edge of Tarim
Basin. The areas with a decrease in vegetation were randomly
scattered in Xinjiang. In particular, it could be noticed that the
pixel of increased vegetation is mainly found in the oasis,
which was obviously consistent with the pixel of cropland.
Moreover, pixels with minor change magnitude were mainly
distributed in the areas with a sparse population and harsh
condition. For each biome, the biomewith a maximum growth
rate is cropland at 91.28 10−4 year−1, the biome with a mini-
mum growth rate is forest at 4.24 10−4 year−1, and the aver-
aged growth rates of shrub, grassland, and sparse vegetation
were 40.59, 31.12, and 8.63 10−4 year−1, respectively (Fig. 5).

Shift and timing in trends of NDVI time series

It can be clearly seen from Fig. 6 that the pixels with
breakpoint account for 9.11% in vegetation time series over
the Xinjiang areas, and most of the pixels has not been detect-
ed with abrupt change in the past 20 years. Increase to in-
crease, monotonic increase, and decrease to increase were
the relatively dominant breakpoint types, accounting for
2.92%, 2.20%, and 1.61% of all pixels in Xinjiang, respec-
tively. From the perspective of space, most of the abrupt
change pixels were concentrated in the ecotone of the oasis,
grassland, and desert, such as the Tarim Basin and the alluvial
plain in Northern Xinjiang.

The BFAST algorithm detected the significant breakpoints
in 2003–2016 based onMODIS NDVI dataset, most of which
are concentrated in 2010 and 2016 (Fig. 7a). The cumulative
number of pixels with detectable breakpoints in each year
showed a gradually increasing trend, and for each biome, it
also displayed a gradual increase trend (Fig. 7b). The propor-
tion of SV pixels with breakpoint was much higher than that
of other types; the most important breakpoint type in SV was
“increase to decrease” (Table 1). Besides, GL and CL also
have relatively more breakpoint pixels.

1–6 represents different types of the breakpoint, refer to
Fig. 6a

In a broad view, the growth rate of vegetation is likely to
accelerate after the breakpoint. Before the breakpoint, the veg-
etation in Xinjiang increased at an overall rate of 1.36 10−4

month−1, while after the breakpoint, the growth rate increased
to 1.87 10−4 month−1 (Fig. 8). Moreover, the spatial pattern of
change direction is different before and after the breakpoint.
Before the breakpoint, the edge of Tarim Basin and most
northern Xinjiang areas showed an obvious positive trend.
After the breakpoint, the vegetation greenness in southern
Tarim Basin and eastern Xinjiang showed a negative trend.
Most of the biomes in Xinjiang showed a consistent direction

Fig. 3 Interannual variability of vegetation greenness in Xinjiang during
2000–2019. The black point represents the annual maximum vegetation
greenness of the MODIS NDVI dataset, and the standard deviation of
vegetation greenness per year (÷5) is given
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of change (Fig. 9). In particular, SV decreased from 0.47 10−4

month−1 before breakpoint to 0.07 10−4 month−1 after the
breakpoint.

Impact of influence factors on NDVI dynamics

The climate had shown a complex and divergent trend on the
Xinjiang (Fig. 10). The precipitation increased significantly
mainly in the southwest and north of Xinjiangwhile decreased
in the Tianshan Mountains and the East (Fig. 10a). The tem-
perature was relatively high in the northeast of Xinjiang;

however, it decreased significantly in the middle of Xinjiang
(Fig. 10b). The significant increase of solar radiation is mainly
in Xinjiang’s central region, and the spatial differentiation is
not obvious (Fig. 10c). On the whole, the climate was an
important factor affecting vegetation dynamics, but the main
climate factors (such as temperature, precipitation, and radia-
tion) were difficult to explain the vegetation greening trend on
the Xinjiang.

We further analyzed the impact of human activities on
vegetation dynamics (Fig. 11). Using the land-use transfer
matrix, we found that the change of land use from GL and

Fig. 4 Spaial distribution of vegetation greenness trend during 2000–2019. a Change direction and magnitude; b pixels with significant increase and decrease

Fig. 5 Interannual variation trends of vegetation greenness in each biome type. The standard error shownwas divided by 5. FR, SS, GL, CL, UB, and SV
represent forests, shrub, grassland, cropland, urban areas, and sparse vegetation
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SV to CLwas relatively dominant (Fig. 11a); that is, the pixels
classified as cropland in each oasis in 2018 increased signifi-
cantly compared with in 2001, which was closely related to
the increase of cultivated land due to the implementation of
land development policy in oasis area of Xinjiang. We also
found that the most significant land-use change in Xinjiang is
“SV to GL,” from spare vegetation and desert in 2001 to
grassland in 2018. This change was mainly concentrated in
the southern edge of the Gurbantunggut Desert in Northern
Xinjiang and around the oases in southern Xinjiang (Fig. 11a),
which means that the vegetation coverage in this area gradu-
ally changes from the original sparse vegetation to grassland
or cropland. As shown in Fig. 11b, the proportion of cropland
in Xinjiang has increased year by year, and sparse vegetation
has gradually decreased. Therefore, we realized that the main
human activities affecting Xinjiang’s vegetation dynamics are
the cropland expansion and desertification control. Then, we
found that the cropland in Xinjiang increased rapidly in space
from 2001 to 2018, especially in the main oases of northern
and southern Xinjiang (Fig. 11c). The degree of desertification

in most Xinjiang areas has decreased, especially in the south-
ern edge of the Gurbantunggut Desert and around the
Taklimakan Desert (Fig. 11d). On the whole, human activities
have a profound impact on vegetation dynamics in Xinjiang.
The increase of cultivated land transforms previous grassland
or wasteland with low greenness to cropland with high green-
ness. Meanwhile, desertification replaces makes the original
low greenness barren by newly planted grassland and crop-
land. In conclusion, the cropland expansion and desertifica-
tion control by human activities have greatly promoted the
raise of vegetation greenness on the Xinjiang.

Besides, to further analyze the environmental and human
factors that impact Xinjiang’s vegetation dynamics, we used
two machine learning methods to explore the key drivers. We
found that the results of boosted regression tree and random
forest methods were similar (Fig. 12). CO2 concentration was
the most important controlling factor affecting vegetation
greenness at the spatial scale, accounting for 73% of the total
pixel in Xinjiang (Fig. 12 a and c). The most important envi-
ronmental factors’ relative contribution rate was heteroge-
neous in spatial terms (Fig. 12 b and d). In areas with sparse
vegetation (such as Tarim Basin and Turpan-Hami Basin), the
relative contribution rate was more than 50%, while in
Tianshan Mountains and oases, the contribution rate of CO2

concentration was mostly between 30 and 50%. Climate fac-
tors (such as temperature, precipitation, and radiation) were
also important factors affecting Xinjiang’s vegetation dynam-
ics, especially in the Tianshan Mountains and oases areas.
Cropland expansion and desertification control were the most
important control factors of the area which are mainly distrib-
uted near oases or deeply affected by human activities.
Therefore, we can conclude that the rising CO2 concentration
may be the main driving factor for raising vegetation

Fig. 6 Spatial distribution of breakpoints in monthly time series during
2000–2019, (a) the vegetation breakpoint type; (b) the vegetation
breakpoint year. 1–6 represent 6 types of breakpoints, and type 1 is a
monotonic increase, type 2 is monotonic decrease, type 3 is increased

with a negative break, type 4 decreases with a positive break, type 5 is
increased to decrease, and type 6 is decrease to increase (Supplementary
Figure 1). Only pixels with significant breakpoints were shown

Table 1 The proportion of breakpoint pixels in different biome types
accounts for the proportion of the total pixels

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

FR 0.00 0.00 0.00 0.00 0.00 0.00

SS 0.04 0.00 0.01 0.01 0.01 0.05

GL 10.03 0.07 3.93 3.09 5.27 8.74

CL 3.62 0.00 1.34 0.17 1.02 1.11

UB 0.07 0.01 0.12 0.01 0.08 0.09

SV 10.57 0.23 11.58 5.33 25.65 7.76
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greenness in most deserts in Xinjiang, while climate change
and land-use change are the main influencing factors affecting
the oasis greenness.

Discussion

Spatiotemporal patterns of vegetation greenness in
Xinjiang over the past 20 years

Using the MODIS sensor, we studied the vegetation dataset
during 2000–2019, analyzed, and discussed the rate, spatial
pattern, and weigh of control factors of vegetation greening in
Xinjiang. Our results showed that Xinjiang’s vegetation
greenness increased during 2000–2019, similar to previous
studies (Du et al. 2015, Guli·Jiapaer et al. 2015, Peng et al.

2008, Xu et al. 2015, Zhuang et al. 2020). The spatial hetero-
geneity of vegetation greenness in Xinjiang is relatively
strong, with the obvious increase mainly concentrated in the
vicinity of oases, the browning trend mainly concentrated in
the agro-pastoral ecotone, the desert edge, and the interior of
Tianshan Mountains. In the past 20 years, vegetation has
turned green widely in Xinjiang, with 91% of the area show-
ing increases, while only 9% showing browning trend.
Meanwhile, the raise of vegetation greenness in Xinjiang is
mainly due to the increase of cropland, grassland, and sparse
vegetation. Among them, the greening trend of the oasis is
more obvious than other areas (Guli·Jiapaer et al. 2015).
Cropland is the main vegetation type in the oasis zone, which
is deeply influenced by human activities (Yang et al. 2019)
and has unique interannual characteristics compared with oth-
er biome types in natural habitats. The dynamics of cropland

Fig. 7 The year of vegetation breakpoint in each biome. a The number of breakpoints per year and b the accumulated breakpoints

Fig. 8 Spatial distribution of trend before and after vegetation the breakpoint. a The trend before breakpoint and b trend after breakpoint. Only
statistically significant pixels were counted
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greenness from 2000 to 2019 remained stable and continuous-
ly increased (Fig. 5d), which may be related to the progress of
cropland management measures (Du et al. 2015).

The vegetation dataset detected by the BFAST algorithm
has undergone an abrupt change in time series during 2004–
2016. The breakpoint type and breakpoint time are spatially
distributed with large dispersion and elusion sign of aggrega-
tion, which indicated that causes of the abrupt change of veg-
etation greenness had great spatial-temporal variations. Most
of the breakpoint pixels are concentrated in the ecotone zone
of sparse vegetation, grassland, and cropland, fragile and eas-
ily disturbed (Amuti and Luo, 2014). There are sophisticated
and multiple reasons for vegetation abrupt change in
Xinjiang’s ecotone, including succession and abrupt change
under strong disturbance. For example, the oasis expansion is
an important reason for vegetation breakpoint (Bai et al.
2014). Precision irrigation succeeded the sparse vegetation
with very low greenness by cropland (Fig. 2c), which to a

large extent leads to the fact that mosaic area of multiple
biome types is prone to the abrupt change of vegetation pixel.
Many oases in Xinjiang are still threatened by desertification.
The desertification process is likely to reverse the vegetation
type of natural grassland to sparse vegetation, leading to
abrupt points detected in the ecotone zone of vegetation time
series (Zhang et al. 2018). In addition, the latest report found
that the melting rate of glaciers and snow in the Tianshan
Mountains in Xinjiang has been accelerating during the past
20 years (Deng et al. 2019). Most of the glaciers and snow lost
in the mountains have infiltrated into the downstream soil and
end up refilling groundwater (Du et al. 2019b). Increasing
water potential of soil enhances the ability of herbs and small
shrubs to thrive in deserts and grasslands. It considerably in-
creases vegetation coverage and biomass (Zhang et al. 2012),
which may also be an important reason for the abrupt change
of pixels in the agro-pastoral ecotone.

Before 2010, vegetation, on the whole, showed a negligible
trend of increase, but after 2010, the growth rate of vegetation
was obviously faster than the previous period. It should be
mentioned that the trend of grassland and sparse vegetation
before and after 2010 is significantly different (Fig. 5 c and f).
Similar to the gradual analysis, the breakpoint algorithm also
detects that 2010 is the year with the most breakpoint pixels,
and 2010 is an important time node (Fig. 7a). Climate change
and human activities may jointly lead to the change character-
istics of vegetation in Xinjiang. On the one hand, climate
change can have a profound impact on vegetation in
Xinjiang. Land degradation caused by the destruction of
grassland and sparse vegetation by human activities before
2010 largely offset the increase of vegetation greenness in-
duced by climate change (Yang et al. 2017), while the overall
warming and moisturization of Northwest China after 2010
has a positive impact on vegetation greenness (Li et al. 2011,
Zhuang et al. 2020). On the other hand, afforestation, grazing
prohibition, and other ecological restoration projects are im-
portant driving forces for vegetation recovery (Lu et al. 2018,
Niu et al. 2019). The restoration effect of ecological project in
the early stage of implementation is limited by plant traits (low
survival rate of trees, small leaf area of seedlings, etc.), so

Fig. 9 The changing trend of NDVI dataset in time series before and after
breakpoint at the biome level. Before represents the changing trend before
the vegetation breakpoint, after represents the changing trend after the
vegetation breakpoint, and the difference represents the trend of after
minus before

Fig. 10 Spatial variation of climate factors in Xinjiang during 2001–2018. a Prec, precipitation rate; b Temp, air temperature; c Radi, downward
shortwave radiation
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vegetation’s increasing trend in the natural environment is not
evident. However, after 10 years of implementing the ecolog-
ical project, grassland and sparse vegetation’s photosynthetic
capacity has been generally enhanced and greatly restored
(Ma et al. 2019a). The greenness also showed an obvious
upward trend in the later stage. Hence, the number of vegeta-
tion breakpoint pixels that can be detected has reached the
maximum. Also, 2016 was a year with a vast number of
breakpoint pixels and mainly in sparse vegetation. The main
breakpoint type was an increase to decrease, which may be
due to the abnormal climate or the human disturbance (Chen
et al. 2020). For the sustainable development of the regional
environment, we should formulate and strengthen environ-
mental protection policies in regions of low resilience.

To sum up, two approaches of gradual change (trend anal-
ysis) and abrupt change (breakpoint analysis) have found that
NDVI has been generally increasing in Xinjiang. For more
accurate and rigorous monitoring of vegetation greenness’s

spatiotemporal dynamics, a combination of gradual change
and abrupt change should be used in the future to explore
the temporal and spatial dynamics of vegetation.

Influence factors affecting vegetation greenness in
Xinjiang

The excessive emission of greenhouse gases such as CO2

caused by human activities has been recognized as the most
important causes of global climate change (Kweku et al.
2018). At present, the atmospheric CO2 concentration is still
increasing at a rate of 1.8 ppm per year, which is equivalent to
a discharge of 3.8 PgC (1 PgC = 1015 g) in the air per year, and
further projections predicted that CO2 concentration will reach
600 ppm by 2030 (Stocker et al. 2013). The effects of elevated
CO2 can promote photosynthesis of plants in almost all func-
tional types, which can lead to the phenomenon of vegetation
becoming green. Previous studies had found that at least 40%

Fig. 11 Land-use change dominated by human activities in Xinjiang. a
The main types of land change in Xinjiang; b probability change of SV
and CL during 2001–2018; c spatial variation of probability for CL; and d

SV during 2001–2018. SV, GL, and CL represent sparsely vegetation,
grassland, and cropland, respectively
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of the global vegetation greening trend can be explained by
the fertilization effect of CO2 (Los 2013). Recently, Zhu et al.
applied the factor simulation of the global ecosystem model to
reveal that the CO2 fertilization effect contributed 70% to the
turning “green” of global vegetation. In the arid and semi-arid
regions of China, the increase of CO2 concentration was
claimed to contribute 5–10% to the increase of vegetation
coverage in the arid environment (Bi and Xie, 2015,
Donohue et al. 2013). More importantly, our study found that
the overall greening of vegetation in Xinjiang is mainly due to
the enhancement of the photosynthetic capacity of biological
communities caused by the CO2 fertilization effect. Increasing
atmospheric CO2 concentration promotes the large-scale res-
toration and turning “green” of vegetation, especially in areas
with sparse vegetation, which is similar to Zhu’s results (Zhu
et al. 2016).

Furthermore, other climatic factors also play an important
role in vegetation turning green (Xiao et al. 2015, Zhou et al.
2020). Most researches about the impact of climatic factors on
vegetation change were based on analyzing plant physiology:
the pairwise correlation between vegetation greenness and
temperature, precipitation, etc. (Cui et al. 2018). However,
vegetation greenness’s response to the change of temperature
and precipitation varies greatly, so selecting a single climatic
factor may cause great deviation to the result (Piao et al.
2019b). Rishmawi et al. found that the change of NDVI and
multiple climatic factors such as precipitation, humidity, at-
mospheric pressure, and solar radiation can better explain the
change of vegetation greenness than precipitation or temper-
ature alone (Rishmawi et al. 2016). Jiang et al. indicated that
the shift in climate conditions was the predominant reason of
the increase of net primary productivity of vegetation,

Fig. 12 The most important influence factors controlling vegetation
greenness in Xinjiang. The most important environmental factors
through (a) boosted regression tree methods and (c) random forest
methods, respectively; the relative contribution of the most important
environment through (c) boosted regression tree methods and (d)

random forest methods, respectively. CO2, carbon dioxide
concentration; Prec, precipitation rate; Temp, air temperature; Radi,
downward shortwave radiation; CLep, cropland expansion; SVde,
sparse vegetation decrease
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precipitation, and solar radiation is likely to be the main fac-
tors that regulate the vegetation dynamics in Xinjiang (Jiang
et al. 2020). Guli et al. believed that the universal constraint
affecting vegetation dynamics in mountainous areas was pre-
cipitation. In contrast, the vegetation on plain substantially
constrained by the average temperature in spring and summer
(Guli·Jiapaer et al. 2015). Our research found that climatic
factors such as precipitation, radiation, and temperature were
the important reasons for affecting the vegetation dynamics of
the oasis in Xinjiang.

Moreover, it should be noted that the relative contribution
rate of the land-use management is strikingly prominent in
oasis with strong human disturbance (Fig. 12), which indi-
cates that the land-use factors affecting vegetation greenness
should be considered in the selection of influence factors as to
improve the reliability of the results. Croplands are intensively
managed by humans, so the vegetation greenness is extremely
susceptible to modification by cropland expansion and aban-
donment (Yu and Lu, 2018). Generally, the croplands had a
higher maximum photosynthetic capacity than areas of grass-
land and forest (Huang et al. 2018), and so the expansion of
cropland area will promote the increase of land greenness,
especially in arid and semi-arid areas (Ma et al. 2019b).
Previous study noted that the grassland or wasteland with very
low vegetation cover was directly cultivated by human beings
to grow high-yield cotton or wheat in Xinjiang (Ma et al.
2019b). We also found that annual cropland fractional in each
oasis showed a rapid increase, which means that cropland
expands rapidly over the past 20 years. Therefore, the rapid
and continuous increase of cropland greenness in the oasis
may be closely related to cropland expansion, and effective
land management has greatly improved the vegetation green-
ness in Xinjiang. Meanwhile, human-led desertification con-
trol can also significantly modify the vegetation greenness in
ecotone (Lal 2001). Over the past few decades, Xinjiang has
been threatened by large-scale desertification (Hu et al. 2004).
Previous prevention actions are restricted to reactive actions
and control projects in the marginal areas of each Oasis
(surrounded by desertification and sandy land), to slow down
the progress of desert and stop the pace of desertification (Fan
et al. 2002). However, since the beginning of the twenty-first
century, Xinjiang has formed and popularized a number of
proactive and practical desertification control maneuver (Lyu
et al. 2020), such as planting Tamarix, grass-grid laying, non-
irrigated afforestation, aerial sowing of forage, and engineer-
ing desertification control, gradually restoring ecosystems ser-
vices that have been undermined due to desertification and
transforming the desert into grassland or shrub landscape.
Moreover, the Chinese government has implemented a series
of ecological restoration policies (such as enclosure, nature
reserve construction), which greatly reduced the human dis-
turbance in the ecotone and indirectly promoted the vegetation
restoration (Lu et al. 2018, Niu et al. 2019). Therefore, we

deemed that the desertification reduction in Xinjiang acceler-
ates the rising rate of vegetation greenness to a great extent;
that is, the low greenness desert is replaced by high-greenness
new land cover (such as grassland). At present, the desertifi-
cation control has achieved outstanding results in policy
mechanism, technical mode, industrial development, and
management system in Xinjiang (Lyu et al. 2020). It is expect-
ed that the ecological security of oasis edge can be guaranteed
in the future.

Conclusions

In this study, Sen’s trend (gradual change) analysis and
BFAST breakpoint (abrupt change) analysis were applied to
study the spatiotemporal dynamics of vegetation greenness in
Xinjiang over the past 20 years and to further distinguish and
quantify the impact of influence factors on vegetation dynam-
ics. The results have shown that most Xinjiang areas showed
widespread vegetation greening during 2000–2019, and the
growth rate of vegetation greenness in 2010–2019 was signif-
icantly accelerated. The increasing trend of cropland green-
ness was the most obvious. About 10% (about 166000 km2)
of Xinjiang’s pixels have a breakpoint, and most of the
breakpoint was concentrated in the ecotone of cropland, grass-
land, and sparse vegetation. Besides, the combination of grad-
ual change and abrupt change can better monitor the vegeta-
tion dynamics of satellite time series. Furthermore, the CO2

fertilization effect was the most important factor to control
vegetation turning “green” over the sparse vegetation area.
The influence of climate factors on the long-term variation
of vegetation was complex, which has a great influence on
the vegetation dynamics of the oasis in Xinjiang. In particular,
our research highlights that land-use management such as
cropland expansion and desertification control will have pos-
itive feedback on vegetation greenness in the agro-pastoral
ecotone, which may be an important reason for the rapid in-
crease of cropland and sparse vegetation greenness.
Therefore, we recommend that when exploring the driving
factors of vegetation in other similar areas in the future, we
should pay more attention to the impact of human activities on
vegetation change and further promote a sustainable eco-
hydrological environment in the arid areas.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11356-021-13721-z.

Acknowledgements We thank Yipu Wang in School of Earth and
Space Sciences, University of Science and Technology of China
and Xixi Yang in School of Geography and Planning, Sun Yat-
Sen University for significant help in data analysis and language
services in this work.

42529Environ Sci Pollut Res  (2021) 28:42516–42532

https://doi.org/10.1007/s11356-021-13721-z


Author contribution The authors’ contributions to this article are as fol-
lows: conceptualization, Z.S. and J.M.; methodology, P.H. and X.M.;
validation, P.H. and Z.H.; formal Analysis, J.M. and H.L.; investigation,
Z.S., Y.D., and J.M.; resources, P.H. and X.M.; data curation, P.H. Z.H.
and X.M.; writing (original draft preparation), P.H., Z.H., and H.L.; writ-
ing (review and editing), Z.S., J.M., and Y.D.; visualization, P.H.; super-
vision, J.M. and Z.S.; project administration, Z.S.; and funding acquisi-
tion, Z.S. All authors have read and agreed to the published version of the
manuscript.

Funding This research was funded by the Science and Technology Basic
Resources Investigation Program of China (2017FY100200) and
National Natural Science Foundation of China (32060408, 41601181).

Data availability The datasets and codes used and/or analyzed during the
current study are available from the corresponding author on reasonable
request.

Declarations

Ethics approval The authors declare that the manuscript has not been
published previously.

Consent to participate All authors voluntarily participated in this re-
search study.

Consent for publication All authors consent to the publication of the
manuscript.

Competing interest The authors declare no competing interests.

References

Amuti T, Luo G (2014) Analysis of land cover change and its driving
forces in a desert oasis landscape of Xinjiang, northwest China.
Solid Earth 5:1071–1085

Bai J, Chen X, Li L, Luo G, Yu Q (2014) Quantifying the contributions of
agricultural oasis expansion, management practices and climate
change to net primary production and evapotranspiration in crop-
lands in arid northwest China. J Arid Environ 100–101:31–41

Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC (2012)
Increase in observed net carbon dioxide uptake by land and oceans
during the past 50 years. Nature 488:70–72

Bi Y, Xie H (2015) C3 Vegetation Mapping and CO2 Fertilization effect
in the arid lower Heihe River Basin, Northwestern China. Remote
Sens 7:16384–16397

Brandt M, Mbow C, Diouf AA, Verger A, Samimi C, Fensholt R (2015)
Ground- and satellite-based evidence of the biophysical mechanisms
behind the greening Sahel. Glob Change Bio 21:1610–1620

Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi R, Fuchs R, Brovkin
V, Ciais P, Fensholt R, Tømmervik H, Govindasamy B, Zhu Z,
Nemani R, Myneni R (2019) China and India lead in greening of
the world through land-use management. Nat Sustain 2:122–129

Chen Y, Wang W, Guan Y, Liu F, Zhang Y, Du J, Feng C, Zhou Y
(2020) An integrated approach for risk assessment of rangeland
degradation: a case study in Burqin County, Xinjiang, China. Ecol
Indic 113:106203

Cui L, Wang L, Singh RP, Lai Z, Jiang L, Yao R (2018) Association
analysis between spatiotemporal variation of vegetation greenness
and precipitation/temperature in the Yangtze River Basin (China).
Environ Sci Pollut Res 25:21867–21878

de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011)
Analysis of monotonic greening and browning trends from global
NDVI time-series. Remote Sens Environ 115:692–702

de Jong R, Verbesselt J, Zeileis A, Schaepman M (2013) Shifts in global
vegetation activity trends. Remote Sens 5:1117–1133

Deng H, Chen Y, Li Q, Lin G (2019) Loss of terrestrial water storage in
the Tianshan mountains from 2003 to 2015. Int J Remote Sens 40:
8342–8358

Donohue RJ,McVicar TR, RoderickML (2009) Climate-related trends in
Australian vegetation cover as inferred from satellite observations,
1981-2006. Glob Chang Biol 15:1025–1039

Donohue R, Roderick M, McVicar T, Farquhar G (2013) Impact of CO2
fertilization on maximum foliage cover across the globe‘s warm,
arid environment. Geophys Res Lett 40:3031–3035

Du J, Shu J, Yin J, Yuan X, Jiaerheng A, Xiong S, He P, Liu W (2015)
Analysis on spatio-temporal trends and drivers in vegetation growth
during recent decades in Xinjiang, China. Int J Appl Earth Obs
Geoinf 38:216–228

Du J, Quan Z, Fang S, Liu C, Wu J, Fu Q (2019a) Spatiotemporal chang-
es in vegetation coverage and its causes in China since the Chinese
economic reform. Environ Sci Pollut Res 27:1144–1159

DuT,Wang L, YuanG, SunX,Wang S (2019b) Effects of distinguishing
vegetation types on the estimates of remotely sensed evapotranspi-
ration in arid regions. Remote Sens 11:18

Du J, Fang S, Sheng Z, Wu J, Quan Z, Fu Q (2020) Variations in vege-
tation dynamics and its cause in national key ecological function
zones in China. Environ Sci Pollut Res 27:30145–30161

Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted
regression trees. J Anim Ecol 77:802–813

Fan Z, Xia X, Shen Y, Kurban A, Ranghui W, Li S, Ma Y (2002)
Utilization of water resources, ecological balance and land deserti-
fication in the Tarim Basin, Xinjiang. Sci China Ser D Earth Sci 45:
102–108

Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince S, Tucker C,
Scholes R, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan A,
Helldén U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J,
Wessels K (2012a) Greenness in semi-arid areas across the globe
1981–2007— an Earth Observing Satellite based analysis of trends
and drivers. Remote Sens Environ 121:144–158

Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker
C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan
AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C,
Seaquist J, Wessels K (2012b) Greenness in semi-arid areas across
the globe 1981–2007— an Earth Observing Satellite based analysis
of trends and drivers. Remote Sens Environ 121:144–158

He J, Yang K, Tang W, Lu H, Qin J, Chen Y, Li X (2020) The first high-
resolution meteorological forcing dataset for land process studies
over China. Sci Data 7:25

Holben, B (1986) Characteristics of maximum-value composite images
from temporal AVHRR data. Int J Remote Sens 7:1417–1434

Hu L, Xiaofeng W, Yaqi G (2004) Analysis and assessment of land
desertification in Xinjiang based on RS and GIS. J Geogr Sci 14:
159–166

Huang C, Goward S, Masek J, Thomas N, Zhu Z, Vogelmann J (2010)
An automated approach for reconstructing recent forest disturbance
history using dense Landsat time series stacks. Remote Sens
Environ 114:183–198

Huang K, Xia J, Wang Y, Ahlström, A, Chen J, Cook R, Cui E, Fang Y,
Fisher J, Huntzinger D, Li Z, Michalak, A, Qiao, Y, Schaefer, KS,
Wang J, Wei Y, Xu X, Yan L, Bian C, Luo, Y (2018) Enhanced
peak growth of global vegetation and its key mechanisms. Nat Ecol
Evol 2:1897–1905

Jamali S, Jönsson P, Eklundh L, Ardö J, Seaquist J (2015) Detecting
changes in vegetation trends using time series segmentation.
Remote Sens Environ 156:182–195

42530 Environ Sci Pollut Res  (2021) 28:42516–42532



JiangY,Guo J, PengQ,Guan Y, ZhangY, ZhangR (2020) The effects of
climate factors and human activities on net primary productivity in
Xinjiang. Int J Biometeorol 64:765–777

Jiapaer G, Liang S, Yi Q, Liu J (2015) Vegetation dynamics and re-
sponses to recent climate change in Xinjiang using leaf area index
as an indicator. Ecol Indic 58:64–76

Kendall M, Gibbons J (1990) Rank Correlation Method. Biometrika
11(44):298

Kong D, Miao C, Borthwick AGL, Lei X, Li H (2018) Spatiotemporal
variations in vegetation cover on the Loess Plateau, China, between
1982 and 2013: possible causes and potential impacts. Environ Sci
Pollut Res 25:13633–13644

Kweku D, Bismark O,Maxwell A, Desmond K, DansoK, Oti-Mensah E,
Quachie A, Adormaa B (2018) Greenhouse effect: greenhouse gases
and their impact on global warming. J Sci Res Rep 17:1–9

Lal R (2001) Potential of desertification control to sequester carbon and
mitigate the greenhouse effect. Clim Chang 51:35–72

Li Q, Chen Y, Shen Y, Li X, Xu J (2011) Spatial and temporal trends of
climate change in Xinjiang, China. J Geogr Sci 21:1007–1018

Liu Y, Li Y, Li S, Motesharrei S (2015) Spatial and temporal patterns of
Global NDVI trends: correlations with climate and human factors.
Remote Sens 7:13233–13250

Liu S, Zhuang Q, Chen M, Gu L (2016) Quantifying spatially and tem-
porally explicit CO 2 fertilization effects on global terrestrial eco-
system carbon dynamics. Ecosphere 7:e01391

Los SO (2013) Analysis of trends in fused AVHRR and MODIS NDVI
data for 1982-2006: Indication for a CO2fertilization effect in global
vegetation. Glob Biogeochem Cycles 27:318–330

Lu F, Hu H, Sun W, Zhu J, Liu G, Zhou W, Zhang Q, Shi P, Liu X, Wu
X, Zhang L, Wei X, Dai L, Zhang K, Sun Y, Xue S, Zhang W,
Xiong D, Deng L, Liu B, Zhou L, Zhang C, Zheng X, Cao J, Huang
Y, He N, ZhouG, Bai Y, Xie Z, Tang Z,Wu B, Fang J, Liu G, Yu G
(2018) Effects of national ecological restoration projects on carbon
sequestration in China from 2001 to 2010. Proc Natl Acad Sci 115:
4039–4044

Lyu Y, Shi P, Han G, Liu L-Y, Guo L, Hu X, Guoming Z (2020)
Desertification control practices in China. Sustain 12:3258

Ma J, Xiao X, Qin Y, Chen B, Hu Y, Li X, Zhao B (2017) Estimating
aboveground biomass of broadleaf, needleleaf, and mixed forests in
Northeastern China through analysis of 25-m ALOS/PALSAR mo-
saic data. For Ecol Manag 389:199–210

Ma J, Xiao XM,Miao R, Li Y, Chen B, ZhangY, Zhao B (2019a) Trends
and controls of terrestrial gross primary productivity of China during
2000-2016. Environ Res Lett 14:084032

Ma L, Yang S, Gu Q, Li J, Yang X, Wang J, Ding J (2019b) Spatial and
temporal mapping of cropland expansion in northwestern China
with multisource remotely sensed data. Catena 183:104192

Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods
in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–
1050

Niu Q, Xiao X, Zhang Y, Qin Y, Dang X, Wang J, Zou Z, Doughty RB,
Brandt M, Tong X, Horion S, Fensholt R, Chen C, Myneni RB, Xu
W, Di G, Zhou X (2019) Ecological engineering projects increased
vegetation cover, production, and biomass in semiarid and subhu-
mid Northern China. Land Degrad Dev 30:1620–1631

Novillo C, Arrogante-Funes P, Romero-Calcerrada R (2019) Recent
NDVI Trends in Mainland Spain: Land-Cover and Phytoclimatic-
Type Implications. ISPRS Int J Geo Inf 8:43

Pan N, Feng X, Fu B, Wang S, Ji F, Pan S (2018) Increasing global
vegetation browning hidden in overall vegetation greening:
Insights from time-varying trends. Remote Sens Environ 214:59–72

Peng D-L, Huang J-F, Cai C-X, Deng R, Xu J-F (2008) Assessing the
response of seasonal variation of net primary productivity to climate
using remote sensing data and geographic information system tech-
niques in Xinjiang. J Integr Plant Biol 50:1580–1588

Piao S, Wang X, Park T, Chen C, Lian X, He Y, Bjerke JW, Chen A,
Ciais P, Tømmervik H, Nemani RR, Myneni RB (2019a)
Characteristics, drivers and feedbacks of global greening. Nat Rev
Earth Environ 1:14–27

Piao S, Wang X, Wang K, Li X, Bastos A, Canadell J, Ciais P,
Friedlingstein P, Sitch S (2019b) Interannual variation of terrestrial
carbon cycle: issues and perspectives. Glob Change Bio 26:300–318

Rishmawi K, Prince S, Xue Y (2016) Vegetation responses to climate
variability in the northern arid to sub-humid zones of Sub-Saharan
Africa. Remote Sens 8:910

Stocker T, Dahe Q, Plattner GK (2013) Climate change 2013: the phys-
ical science basis. Cambridge University Press, Cambridge

Sun W, Song X, Mu X, Gao P, Wang F, Zhao G (2015) Spatiotemporal
vegetation cover variations associated with climate change and eco-
logical restoration in the Loess Plateau. Agric For Meteorol 209-
210:87–99

Tong X, Brandt M, Yue Y, Horion S, Wang K, Keersmaecker WD, Tian
F, Schurgers G, Xiao X, Luo Y, Chen C, Myneni R, Shi Z, Chen H,
Fensholt R (2018) Increased vegetation growth and carbon stock in
China karst via ecological engineering. Nat Sustain 1:44–50

Ummenhofer C, Meehl G (2017) Extreme weather and climate events
with ecological relevance: a review. Phil Trans Royal Soc B: Biol
Sci 372:20160135

Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010a) Detecting
trend and seasonal changes in satellite image time series. Remote
Sens Environ 114:106–115

Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010b) Phenological
change detection while accounting for abrupt and gradual trends in
satellite image time series. Remote Sens Environ 114:2970–2980

Verbesselt J, Zeileis A, Herold M (2012) Near real-time disturbance
detection using satellite image time series. Remote Sens Environ
123:98–108

Watts LM, Laffan SW (2014) Effectiveness of the BFAST algorithm for
detecting vegetation response patterns in a semi-arid region. Remote
Sens Environ 154:234–245

Wu L, Li Z, Liu X, Zhu L, Tang Y, Zhang B, Xu B, Liu M, Meng Y, Liu
BY (2020) Multi-type forest change detection using BFAST and
monthly Landsat time series for monitoring spatiotemporal dynam-
ics of forests in subtropical wetland. Remote Sens 12:33

Xiao J, Zhou Y, Zhang L (2015) Contributions of natural and human
factors to increases in vegetation productivity in China. Ecosphere
6:233

Xu Y, Yang J, Chen Y (2015) NDVI-based vegetation responses to
climate change in an arid area of China. Theor Appl Climatol 126:
213–222

Xu Y, Yu L, Peng D, Zhao J, Cheng Y, Liu X, Li W, Meng R, Xu X,
Gong P (2020) Annual 30-m land use/land cover maps of China for
1980–2015 from the integration of AVHRR, MODIS and Landsat
data using the. BFAST algorithm, Science China Earth Sciences

Yang H, Yao L, Wang Y, Li J (2017) Relative contribution of climate
change and human activities to vegetation degradation and restora-
tion in North Xinjiang, China. Rangeland J 39:289–302

Yang G, Li F, Chen D, He X, Xue L, Long A (2019) Assessment of
changes in oasis scale and water management in the arid Manas
River Basin, north western China. Sci Total Environ 691:506–515

Yao J, Chen Y, Zhao Y, Guan X,MaoW, Yang LM (2020) Climatic and
associated atmospheric water cycle changes over the Xinjiang,
China. J Hydrol 585:124823

Yu Z, LuC (2018) Historical cropland expansion and abandonment in the
continental US during 1850 to 2016. Glob Ecol Biogeogr 27:322–
333

Yue X, Zhang T, Shao C (2021) Afforestation increases ecosystem pro-
ductivity and carbon storage in China during the 2000s. Agric For
Meteorol 296:108227

42531Environ Sci Pollut Res  (2021) 28:42516–42532



Zhang Q, Singh VP, Li J, Jiang F, Bai Y (2012) Spatio-temporal varia-
tions of precipitation extremes in Xinjiang, China. J Hydrol 434-
435:7–18

Zhang Q, Kong D, Shi P, Singh V, Peng S (2017) Vegetation phenology
on the Qinghai-Tibetan Plateau and its response to climate change
(1982-2013). Agric For Meteorol 248:407–417

Zhang G, Biradar CM, Xiao X, Dong J, Zhou Y, Qin Y, Zhang Y, Liu F,
Ding M, Thomas RJ (2018) Exacerbated grassland degradation and
desertification in Central Asia during 2000-2014. Ecol Appl 28:
442–456

Zhong Q, Ma J, Zhao B, Wang X, Zong J, Xiao X (2019) Assessing
spatial-temporal dynamics of urban expansion, vegetation greenness
and photosynthesis in megacity Shanghai, China during 2000-2016.
Remote Sens Environ 233:111374

Zhou L, Wang S, Du M, Yang J, Zhu Y, Wu J (2020) An Integrated
approach for detection and prediction of greening situation in a

typical desert area in China and its human and climatic factors anal-
ysis. ISPRS Int J Geo Inf 9:364

Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P,
Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven
C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peñuelas J,
Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y,
Xiao Z, YangH, Zaehle S, Zeng N (2016) Greening of the Earth and
its drivers. Nat Clim Chang 6:791–795

Zhuang Q, Wu S, Feng X, Niu Y (2020) Analysis and prediction of
vegetation dynamics under the background of climate change in
Xinjiang, China. PeerJ 8:23

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Affiliations

Panxing He1,2
& Zongjiu Sun1

& Zhiming Han3
& Yiqiang Dong1

& Huixia Liu1
& Xiaoyu Meng4,5

& Jun Ma2

1 Ministry of Education Key Laboratory for Western Arid Region

Grassland Resources and Ecology, College of Grassland and

Environment Sciences, Xinjiang Agricultural University,

Urumqi 830052, China

2 Ministry of Education Key Laboratory for Biodiversity Science and

Ecological Engineering, Institute of Biodiversity Science, Fudan

University, Shanghai 200438, China

3 State Key Laboratory Base of Eco-Hydraulic Engineering in Arid

Area, Xi’an University of Technology, Xi’an 710000, China

4 State Key Laboratory of Desert and Oasis Ecology, Xinjiang

Institute of Ecology and Geography, Chinese Academy of Sciences,

Urumqi 830011, China

5 University of Chinese Academy of Sciences, Beijing 100049, China

42532 Environ Sci Pollut Res  (2021) 28:42516–42532


	Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China
	Abstract
	Introduction
	Materials and methods
	Overview of study area
	Data introduction
	Vegetation greenness datasets
	Climate datasets
	CO2 concentration scenarios
	Land cover datasets

	Methods
	Detect the trend of time series
	Detection of breakpoint and shift in time series dataset
	Identification of influence factors and their relative contribution to NDVI dynamics


	Results
	Temporal and spatial characteristics of vegetation greenness
	Shift and timing in trends of NDVI time series
	Impact of influence factors on NDVI dynamics

	Discussion
	Spatiotemporal patterns of vegetation greenness in Xinjiang over the past 20 years
	Influence factors affecting vegetation greenness in Xinjiang

	Conclusions
	References


