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Abstract
Understanding the impact on the thermal effect by urbanization is of great significance for urban thermal regulation and is
essential for determining the relationship between the urban heat island (UHI) effect and the complexities of urban function and
landscape structure. For this purpose, we conducted case research in the metropolitan region of Beijing, China, and nearly 5000
urban blocks assigned different urban function zones (UFZs) were identified as the basic spatial analysis units. The seasonal land
surface temperature (LST) retrieved from remote sensing data was used to represent the UHI characteristics of the study area, and
the surface biophysical parameters, building forms, and filtered landscape pattern metrics were selected as the urban landscape
factors. Then, the effects of urban function and landscape structure on the UHI effect were examined based on the optimal results
of the ordinary least squares and geographically weighted regression models. The results indicated that (1) Significant spatio-
temporal heterogeneity of the LST was found in the study area, and there was an obvious temperature gradient with “working–
living–resting”UFZs. (2) All types of urban landscape factors showed a significant contribution to the seasonal LST, in the order
of surface biophysical factors > building forms > landscape factors; however, their contributions varied in different seasons. (3)
The major contributing factors showed a certain difference due to the variation of urban function and landscape complexity. This
study expands the understanding on the complex relationship among urban landscape, function, and thermal environment, which
could benefit urban landscape planning for UHI alleviation.
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Introduction

Rapid urbanization has profoundly altered the underlying
landscape features in urban regions, manifested as a massive
transformation of natural landscapes into artificial surfaces
(Grimm et al. 2008; Wang et al. 2012). This change has

resulted in significantly intensive thermal absorption and re-
lease processes with ever-expanding urban built-up regions
and increasing anthropogenic activities than ever before, thus
leading to a severe urban heat island (UHI) phenomenon
(Gago et al. 2013). As one of the most concerning urban
environment issues, the growing UHI effect will induce sev-
eral adverse impacts on urban and residential health, such as
thermal discomfort, energy waste, air pollution, and increas-
ing morbidity/mortality (Arnfield 2003; Ulpiani 2021; Wu
and Ren 2018). Because of this, more in-depth information
on the UHI effect within an urban region has drawn greater
attention from urban planners and the related research
community.

To better understand and solve the problem of the UHI
effect, it is essential to establish its relationship with urban
landscape features. To this end, both UHI and urban land-
scapes should be indexed reasonably for quantitative analysis.
With the rapid development of thermal infrared remote sens-
ing technology, imagery-retrieved land surface temperature
(LST) has been widely recommended for representing the
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near-surface UHI in urbanized regions, in view of its merits in
accurately mapping the spatial features of urban thermal envi-
ronments at various spatial scales (Weng 2009). A consider-
able number of studies have been conducted to depict the
urban landscape characteristics for assessing their relationship
with the LST, enabling the classification of urban landscapes
pattern as composition and configuration factors, which both
have been argued to cause a significant influence on the var-
iation of LST (Buyantuyev and Wu 2010; Chen et al. 2014a;
Li et al. 2012). Landscape metrics, referring to the theory of
landscape ecology, are often used to quantify the spatiotem-
poral changes in landscape composition and configuration
when describing urban thermal complexities (Chen et al.
2012). However, traditional landscape metrics are not always
optimal for analyzing landscape patterns due to metric redun-
dancy (Chen et al. 2016) and a lack of clear ecological ana-
logues (Kedron et al. 2018). Additional indices have thus been
introduced into UHI-related studies. For example, the normal-
ized difference vegetation index (NDVI), as one of the remote
sensing-based surface biophysical parameters to characterize
the status of urban green spaces, has been widely reported to
have a significantly correlation with the LST (Deilami et al.
2018; Peng et al. 2018). Recently, increasing attention has
been focused on the landscape factors assigned urban 2D or
3D morphology to expound the connection between urbani-
zation and UHI with a new dimension (Yang et al. 2013).

Although the above issues have fostered discussions in the
UHI field, there are still questions that require further discus-
sion. Most of the previous studies concerning the impacts of
urbanization on its thermal effect preferred regular grids or
concentric buffers as the analysis units, with better accessibil-
ity and comparability for analysis (Chen et al. 2014a; Hou and
Estoque 2020). However, relevant scholars believe that the
use of these analysis units is often faced with the problem of
choosing an appropriate spatial scale, and different types/
scales of spatial analysis units may alter the thermal contribu-
tions of different types of landscape features (Zhou et al.
2014). Furthermore, the spatial expression of both urban ther-
mal and landscape characteristics at the local scale is usually
characterized by significant heterogeneity (Li et al. 2017; Wu
2004). Urban landscape heterogeneity should be expressed by
structure–function boundaries rather than simple regular units.
Urban landscape planning implemented for UHI mitigation
also requires the rearrangement of not only the urban spatial
landscape but also urban functions, and the research units
should be closely linked to urban planning so that the results
can be easily applied to policy formulation. To this end, Sun
et al. (2013) and Yao et al. (2019) adopted the urban function
zone (UFZ) as a special spatial unit for the study of UHI. The
UFZ is directly combined with irregular urban blocks with
specific socioeconomic activities, spatial characteristics, an-
thropogenic activity, and energy consumption, which thus
function as the effective urban planning unit (Tian et al.

2010). Using the UFZ as the unit to study the UHI effect thus
enables better conclusions to be drawn regarding urban plan-
ning to improve the urban thermal environment. However,
there are still few studies that have tried to further investigate
the interactions between urbanization and the UHI effect at the
urban function scale. Therefore, there is an urgent need to
identify appropriate urban landscape factors for characterizing
the UHI effect under an urban functional framework that
would be both ecologically meaningful and useful and intui-
tive to urban planners.

In view of this, a highly urbanized region in the city of
Beijing, China, was selected as the study area to discuss the
issues related to UHI effect. The study area was divided into
>5000 UFZ blocks with different spatial forms, and the quan-
titative relationship between the seasonal LST and three types
of urban landscape factors (surface biophysical parameters,
building forms, and landscape pattern metrics) in these UFZ
blocks were explored using two different spatial regression
models, i.e., the ordinary least squares and the geographically
weighted regression models. Specifically, the aims of this
study were as follows: (1) to examine the potential spatiotem-
poral heterogeneity of the seasonal LST assigned UFZs and
(2) to identify the potential heterogeneity in the urban land-
scape factors controlling the seasonal LST variations in dif-
ferent UFZs.

Materials and methodology

Study area

The city of Beijing is located on the Northern China Plain
(39°26′~41°03′ N and 115°25′~117°30′ E), which belongs
to a temperate continental monsoon climate with an average
temperature of 12°C and distinct seasons (Wu et al. 2020a;
Yao et al. 2020). As the capital city of China, Beijing has
experienced rapid urbanization since the reform and
opening-up policy (Peng et al. 2016). At present, Beijing has
become a comprehensive metropolis with a dense population
and diverse urban functions (Yao et al. 2019). Along
with this, the UHI effect in the metropolitan region of
Beijing has become increasingly significant. In this re-
gion, a nearly > 4 °C daily temperature gap has been
reported by relevant studies (Sun et al. 2013).
Coordinating the contradiction between sustainable ur-
ban health and thermal environmental regulation has
thus become a great challenge for the local government.
For this reason, we chose the urbanized region within
the fifth ring road of Beijing (with an area of
approximately 670km2; Fig. 1) as the study region,
which covers most of the central urban districts that
have the highest rates of urbanization and the greatest
population densities.
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Data collection and processing

Interpretation of land cover and UFZ

In this study, we used high-resolution (pan-sharped to 1×1 m)
IKONOS imagery (cloud-free, acquired on 29 July 2012) to
interpret the information related to the land cover and UFZs.
An object-oriented classification method was applied to ex-
tract six types of land cover, i.e., built-up area, water body,
farmland, forest, lawn, and bare land, as shown in Fig. 2. We
validated the classification by ground-truthing images at ap-
proximately 400 random points. The overall accuracy of the
classification was 85.8%, and the kappa coefficient was 0.75,
indicating that the classification results were highly reliable
(Yao et al. 2018).

The IKONOS imagery and land cover data were then used
to identify UFZs. Some scholars believe that the urban land-
scape, such as urban streets, rivers, or greenbelts, function as
thermal blocking corridors (Sun et al. 2013; Yao et al. 2019).
Therefore, these linear landscapes were firstly used to divide
the city blocks in the study area. Then, the urban functions
assigned to these blocks were identified according to the attri-
bute information acquired through a web survey. By follow-
ing the detained standard proposed byYao et al. (2015), a total
of 5116 urban blocks were identified and delineated into 10

types of UFZs (Table 1 and Fig. 2), including high-density
residential zone (HRZ), low-density residential zone, (LRZ),
government zone (GOZ), industrial zone (INZ), commercial
zone (COZ), recreational zone (REZ), preservation zone
(PRZ), agricultural zone (AGZ), public service zone (PSZ),
and development Zone (DEZ). Then, we selected six of the
types of UFZs (HRZ, COZ, GOZ, PSZ, REZ, and INZ) for
subsequent analysis, which occupied >90% of the study area.
The land cover coverage in each type of UFZ is summarized
and illustrated in Fig. 3, showing that built-up area, forest, and
lawn were the major types in the selected types of UFZ for
analysis.

Land surface temperature retrieval

Four radiometrically calibrated Landsat 8 imagery of the study
area were collected from a geospatial data cloud platform
provided by the Chinese Academy of Sciences (www.
gscloud.cn) to retrieve the LST, acquired in spring (15
May 2014), summer (19 August 2014), autumn (6 October
2014), and winter (25 December 2014), respectively. By
following the LST retrieval procedure presented by Li et al.
(2020), the radiation equation algorithm was used to estimate
the LST from the Landsat 8 data for the study area, and the
results are shown in Fig. 4.

Fig. 1 Spatial location of the study area
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Urban landscape factor selection

By reviewing previous studies on the relationship between
urban landscape factors and the UHI effect (Chen et al.
2012; Deilami et al. 2018; Wu and Ren 2018), this study
selected three types of factors to explain the variations in the
LST for the study area (Table 2), i.e., surface biophysical
parameters, building forms, and landscape pattern metrics.
All of these factors were calculated based on the UFZ blocks
as the analysis units.

Surface biophysical parameters

Surface biophysical parameters can be treated as important
ecological indicators for describing land surface features in
urban regions. With the rapid development of remote sensing

technology, surface biophysical factors have beenwidely used
in UHI-related studies (Peng et al. 2018). In this paper, three
types of surface biophysical parameters, including the normal-
ized difference vegetation index (NDVI), the normalized dif-
ference built-up index (NDBI), and the modified normalized
difference water index (MNDWI), characterizing urban green
spaces, impervious surfaces, and water bodies, respectively,
were chosen as the potential factors on the urban thermal
environment variations. All three indices were obtained from
remote sensing imagery (Landsat 8).

Building forms

Buildings are the most important landscape components in
urban regions, which can directly disturb both the sensible
and latent heat fluxes in urbanized regions (Kikegawa et al.

Fig. 2 The spatial details of the land cover and urban function zones of
the study area. UFZ urban function zone, AGZ agricultural zone, COZ
commercial zone, DEZ development zone, GOZ government zone, HRZ

high-density residential zone, INZ industry zone, LRZ low-density resi-
dential zone, PRZ preservation zone, PSZ public service zone, REZ rec-
reational zone

Table 1 Detailed interpretations of the urban function zones in the study area

UFZ Area
(km2)

Description

High-density residential
zone (HRZ)

213.73 High proportion of impermeable surfaces; a typical residential area in Beijing, consisting mainly of low- and
high-rise buildings with a dense population

Low-density residential
zone (LRZ)

3.71 Low proportion of impermeable surfaces; mainly for low-rise buildings with a sparse population

Government zone (GOZ) 63.58 Mainly government buildings, such as research institutes and campuses

Public service zone (PSZ) 37.54 Public areas serving the public, such as hospitals, libraries, and plazas

Industry zone (INZ) 89.94 Industrial sites of various natures, such as urban infrastructure and energy supply plants

Commercial zone (COZ) 118.79 Including city shopping malls, restaurants, hotels, and other public facilities

Recreational zone (REZ) 87.85 Urban parks, scenic spots, and other areas with a high green coverage

Preservation zone (PRZ) 1.76 Sites or relics, areas with natural or artificial green space, such as forest parks

Agricultural zone (AGZ) 4.76 Agricultural land, such as farmland and orchards

Development zone (DEZ) 45.17 The area under construction
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2006). Previous studies have presented that both building area
and geometry can significantly influence the scope and inten-
sity of the UHI effect (Dai et al. 2018; Wang et al. 2019; Wu
et al. 2020a). In this study, building height, building density,

and building number were calculated to represent the charac-
teristics of building forms and to examine their potential in-
fluence on the UHI effect. The building data in the study area
were obtained from the open API of Baidu map (https://map.

Fig. 3 The land cover
compositions in each type of UFZ

Fig. 4 The land surface
temperature information in the
four seasons of the study area
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baidu.com/), including 230,769 building patches and
corresponding attribute data.

Landscape pattern metrics

Urban landscape patterns are significantly related to biophys-
ical factors and human activities. Landscape factors are thus
often applied to detect and quantify their relationship with
urban thermal complexities (Buyantuyev and Wu 2010; Hou
and Estoque 2020). Due to the complexity and redundancy,
however, the usage of landscape pattern metrics for ecological
process analysis has been a controversial issue (Chen et al.
2016). In this study, a total of 34 landscape pattern metrics
were calculated relating to the three major land cover types
(built-up land, forests, and lawns) (Fig. 3). All of these factors
with their full names/abbreviations are listed in Table S1. A
cluster analysis was firstly conducted to group factors, in order
to ensure the non-redundancy and representativeness of these
factors (Fig. 5) (Chen et al. 2016). Then, the random forest
recursion feature elimination (RF-RFE) method is a sequence
backward selection algorithm based on the principle of max-
imum interval and was used to rank these metrics according to
their relative importance (Table 3) and to select the metrics
with most importance in each group (Qi et al. 2018).

Eventually, four types of landscape pattern metrics were
determined, based on the above procedure, for subsequent
analysis, i.e., landscape percentage (PLAND), edge density
(ED), landscape shape index (LSI), and landscape division
index (DIVISION). Shannon’s diversity index (SHDI) is

sensitive to the unbalanced distribution of various patch types
in the landscape and can express the overall characteristics of
the landscape within each UFZ, so it was also selected for the
next analysis. The factors are as shown in Table 2.

Data analysis

The average LST values of all the seasons were calculated
based on each analyzed UFZ block (Fig. 6), as the dependent
factors. The spatiotemporal heterogeneity of the LST in the
study area was discussed by applying spatial cluster analysis,
i.e., global and local Moran’s I analysis (Wang et al. 2020;
Yao et al. 2019).

Then, the variance inflation factor (VIF) was used to detect
the collinearity of independent variables. It was found that the
VIF of all factors was less than 10, indicating poor
multicollinearity among the independent variables. Finally,
based on the calculated independent and dependent factors,
we conducted further regression analysis in order to elaborate
on the deeper quantitative relationship between urban land-
scape factors and seasonal LST. At present, the ordinary least
squares (OLS) regression model is the most widely used glob-
al analysis method in UHI-related studies, to quantify the re-
lationship between spatial and UHI variables (Deilami et al.
2018). The OLS regression model is shown as follows:

y ¼ a0 þ a1x1 þ a2x2 þ…þ anxn þ ε ð1Þ
where a0 is the regression constant; a1, a2, …, an are the
regression coefficients; y represents the average LST in UFZ
blocks; x is the selected independent factors; and ε is the
random error.

However, spatial heterogeneity exists objectively in almost
the geological/ecological processes, and the UHI effect may
show context sensitivity and vary significantly over time and
space (Buyantuyev and Wu 2010). Therefore, the issue of
spatial heterogeneity should be considered during parameter
analysis and estimation. To address this, both OLS and geo-
graphically weighted regression (GWR) analysis were devel-
oped and compared to quantify the relationship between the
selected urban spatial factors and seasonal LST assigned to
different types of UFZs. As a model suitable for processing
data with spatial heterogeneity, the GWR model can be
expressed as follows:

yi ¼ β0 ui; við Þ þ ∑k
i βk ui; við Þxik þ εi ð2Þ

where ui and vi are the latitude and longitude of sample i,
respectively; β0 and βk are the regression coefficients with a
weight of unity based on the Euclidean distance between sam-
ples; k refers to the number of variables; and εi is the random
error.

Table 3 The rank results of the landscape factors by the random forest
recursion feature elimination (RF-RFE) method

Landscape factor Rank Landscape factor Rank

PLAND 1 CLUMPY 18

NLSI 2 PROX_AM 19

CONTIG_AM 3 SPLIT 20

DIVISION 4 CONNECT 21

GYRATE_AM 5 TE 22

LPI 6 SHAPE_MN 23

CA 7 CONTIG_MN 24

ED 8 PROX_MN 25

PD 9 PARA_AM 26

LSI 10 CIRCLE_AM 27

PARA_MN 11 SHAPE_AM 28

FRAC_AM 12 AREA_MN 29

CIRCLE_MN 13 IJI 30

MESH 14 AREA_AM 31

GYRATE_MN 15 AI 32

COHESION 16 NP 33

FRAC_MN 17 PLADJ 34
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We then selected the main factors responsible for the var-
iations of LST and discussed the potential implications of
these factors for urban landscape planning.

Results

The heterogeneous characteristics of LST in UFZs

The seasonal average LST information in each type of UFZ is
shown in Fig. 7. Generally, all of the UFZs showed the highest
average LST in the summer and the lowest in the winter. The
INZ occupied the highest LST in all four seasons compared to
the other types of UFZs, with an average LST gap of 1–3°C.
In the spring, summer, and autumn seasons, the COZ showed
the second highest average LST, while the REZ had the lowest
average LST. The average LST differences among the PSZ,

GOZ, and HRZ were small and largely statistically insignifi-
cant (p > 0.05) during all of the seasons. Specially, however,
the REZ showed a relatively higher average LST than the
other UFZs in addition to the INZ in winter.

Global Moran’s I analysis for the seasonal UFZ LST of the
study area was accomplished in the ArcGIS platform, with the
I values of 0.431 (spring), 0.329 (summer), 0.392 (autumn),
and 0.269 (winter). The positive results indicate that the LST
had significant spatial clustering characteristics in all seasons
(p < 0.05). The local Moran’s I analysis further visualized the
spatial agglomeration features of the UFZ LST, as shown in
Fig. 8. The UFZ LST showed relatively fixed spatial agglom-
eration characteristics in all seasons, as the HH cluster was
distributed in the southern region of the study area and the
LL cluster in the north. In spring and autumn, both the HH
and LL cluster regions were larger than those in the summer
and winter seasons. By contrast, the lowest HH and LL cluster

Fig. 5 Dendrogram of the cluster
analysis for filtering of the
landscape pattern metrics

41198 Environ Sci Pollut Res (2021) 28:41191–41206



coverage was found in summer and winter, respectively. Most
of the UFZs of the study area were analyzed as insignificant
areas of the LST clusters in summer and winter.

Effects of the urban spatial pattern on the
heterogeneity of the LST

Comparison between the OLS and GWR models

In Table 4, the comparison results confirm that the GWR
model showed better performance in predicting the relation-
ship between the urban landscape factors and LST than that of
OLS model, with higher adjust R2 and lower AICc and RSS
values during all seasons. In addition, the prediction residuals
of the OLS and GWR models are illustrated in Fig. 9, to
further support the regression performance. Most of the resid-
ual of GWR model fluctuates ranged between –1°C and 1°C
in all seasons, and the average values of the residuals were all
nearly equal to 0. In contrast, the residual of the OLS fluctu-
ation range was significantly greater than that of the GWR in
any season, with higher average residual values. This indicates
that the GWR model, as the localized model with the premise

of spatial heterogeneity, can better explain the spatial non-
stationary of the seasonal LST and its influencing factors.
Therefore, the GWR model was used in following analysis
to explore the urban surface factors and LST variations.

Analysis results of the GWR model

The detailed GWR analysis results are shown in Fig. 10. The
absolute value of the model coefficient for each factor repre-
sents the relative contribution importance for predicting the
LST variation, where positive/negative values of the coeffi-
cient represent positive (+)/negative (–) relationships between
urban landscape factors and the LST. In general, in all sea-
sons, almost all of the independent factors except BN showed
a significant contribution to the LST variations among all of
the types of UFZs. The relative importance of these factors
can be generally sorted in the order of surface biophysical
factors > building forms > landscape factors. For different
UFZs, the contribution directions (+/–) of the selected inde-
pendent factors to the seasonal LST were similar, with their
difference mainly reflected in the factors’ contribution inten-
sities along with different seasons.

Fig. 6 The average land surface
temperature (LST) in the UFZs of
the four different seasons
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Fig. 8 LISA map for the average
UFZ LST using local Moran’s I
analysis. HH indicates the spatial
cluster with the higher LST; LL
indicates the spatial cluster with
the lower LST; the spatial outlier
of the high LST value is displayed
as HL, and that of the low LST
value is mapped as LH. Not sig
indicates that the spatial cluster is
insignificant

Fig. 7 The seasonal average LST
for each type of UFZ. Different
letters indicate significant
difference in LST (p < 0.05)
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In spring, the main effective factors were basically the same
for all UFZs, except for the relative importance of PLAND_f/l
being significantly higher in the REZ than in the other UFZs.
NDBI (+) was the major contributor for all UFZs, while
MNDWI (–) and NDVI (–) acted as the secondary contribu-
tion factors for the different UFZs (MNDWI for GOZ, INZ,
and REZ; NDVI for the others). For all of the UFZs, BD (+),
PLAND_b (+), SHDI (–), DIVISION_f/l (+) also performed
as effective factors for influencing the LST.

In the summer, the main effective factors of each type of UFZ
began to differ. NDBI (+) still contributed as the major contrib-
utors for all UFZs. However, the difference is that the contribu-
tion of the factors related to urban green space (forest and lawn)
increased, such as NDVI (–), PLAND_f/l (–), andDIVISION_f/l
(+). Among them, NDVI became the second most important
factor impacting the LST variation for all UFZs.

In autumn, MNWI (–) became the major contribution fac-
tor rather than NDBI (+) for all UFZs except for the INZ. The
relative importance of NDVI (–) in some UFZs went beyond
NDBI, such as the COZ, HRZ, PSZ, and REZ. Meanwhile,
the relative contribution of building-related factors increased
significantly, such as BD and PLAND_b.

In winter, the factors’ contribution intensities differed significant-
ly to those of the other seasons.MNWI (–) contributed as themajor
contribution factors, while both NDBI and NDVI acted as positive
contributors to theLST. The other types of factors showed relatively
lower contributions to the LST than those in the other seasons.

Discussion

The spatiotemporal heterogeneity in urban thermal
environments

This study enabled us to realize the high degree of heteroge-
neity in urban thermal environments. From a spatial perspec-
tive, the whole study area showed a general “working–living–
resting” thermal gradient (Fig. 7). However, the seasonal LST
varied significantly in both the spatial and temporal dimen-
sions, due to the disorderly spatial layout and the high diver-
sity of urban land surface characteristics of the UFZs (Sun
et al. 2013; Yao et al. 2020). There were a large number of
UFZ blocks with high temperature clustered around the south-
ern part of the study area, which were mostly in the INZ (Figs.
2 and 8). However, the UFZ blocks with low temperature, e.g.,
the REZ, were mainly clustered around the northern part of the
study area, which was spatially isolated from the regions under
higher thermal pressure. The imbalanced distribution of such
patches would further cause a significant segregation of urban
thermal environments (Wu et al. 2020b). From a temporal per-
spective, according to the results of the global Moran’s I anal-
ysis, more significant spatial heterogeneity of the LST was
found in the seasons of spring and autumn (with relatively mild

climatic background condition) rather than that in summer and
winter. Lower spatial heterogeneity, especially in summer,
means that the entire urban area has a relative homogeneous
high temperature, indicating a strong UHI effect of the study
area (Dai et al. 2018; Quan et al. 2014).

Factors responsible for the seasonal LST

This study examined the relationship between seasonal LST
and urban landscape factors from the perspective of UFZ, and
the results revealed the dominant factors for the spatial vari-
ability in the seasonal LST of the study area.

Generally, all three types of factors were found to have
significant influence on the variation of the LST. By compar-
ison, the surface biophysical factors acted as the major con-
tributors for all the seasons, including NDBI, NDVI, and
MNDWI. The three types of indices have been widely used
to characterize urban buildings, urban green space, and water
body features that contain rich land cover spectral information
(Estoque et al. 2017; Peng et al. 2018). This indicates that, in
all seasons, the factors that characterized artificial buildings,
green spaces, or water bodies were always the most powerful
in affecting LST variations. Previous studies have identified
the above land cover types as the source and sink landscape of
urban thermal risk, respectively (Kong et al. 2014; Sun et al.
2018). Moreover, the building forms and landscape factors
also showed strong ability to explain the variation of the
LST, but with lower interpretation rates than that of surface
biophysical factors. This is consistent with the findings by
Peng et al. (2018), Yao et al. (2020), and Zhou et al. (2011);
namely, the most effective way to alter the urban thermal
environment is to simply change the landscape structure
(e.g., increasing urban green coverage) rather than altering
their pattern or layout.

Table 4 Comparison of the regression model performance between the
ordinary least squares (OLS) and geographically weighted regression
(GWR) methods. The adjusted coefficient of determination (adjust R2),
the Akaike Information Criterion (AICc), and the residual sum of squares
(RSS) were used to evaluate the performances of the built models, and
higher adjust R2 and lower AICc and RSS values indicate better model
performance (Mitchel 2005; Wang et al. 2020)

Adjust R2 AICc RSS

Spring OLS 0.73 10914.38 2864.68

GWR 0.84 9117.12 1399.64

Summer OLS 0.68 11152.86 3017.35

GWR 0.77 10095.79 1777.90

Autumn OLS 0.60 12148.47 3747.71

GWR 0.74 10572.93 2054.41

Winter OLS 0.55 8011.58 1522.65

GWR 0.71 6562.71 804.97
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Moreover, the factors affecting LST showed different phe-
nomena in different seasons. Artificial surfaces are the main
type of landscape in the study area, which are reported to be
closely related to urban thermal exchange process (Kuang
et al. 2015; Li et al. 2011). Building-related factors showed
a significant relationship with seasonal LST. More buildings
signify higher NDBI and PLAND_b and lower BD and would
thus strongly intensify the UHI effect. However, the growth
status and coverage of urban green space changed obviously
in different seasons (Yao et al. 2020). As one of the most
important sink landscapes for UHI mitigation, the role of ur-
ban green space in the LST would vary or even reverse under
different climate conditions, as shown in Fig. 10. For example,

in winter, after deciduous urban forest and lawn lose their
leaves due to the cold weather, the exposed soil beneath the
vegetation canopy shows similar thermal inertia characteris-
tics to non-vegetated landscapes, such as buildings (Kikegawa
et al. 2006; Morabito et al. 2016). By the same token, in
summer or autumn, urban green spaces reach their optimal
growth and largest canopy, with the latent heat flux capacities
by canopy evapotranspiration along with the shedding of
leaves benefiting the thermal exchange ability and thus pre-
senting a cooling effect for urban thermal environments (Sun
and Chen 2017; Yao et al. 2020). This explains the seasonal
fluctuation of vegetation-related parameters in predicting the
LST in different seasons.

Fig. 9 The residual fluctuation on
predicting the seasonal LST by
the OLS and GWR models. The
x-axis represents each UFZ block
for analysis
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When focusing on the UFZ perspective, the similarities and
differences in the key factors of the LST among different UFZs
are partly due to the above climate reasons and partly due to
their urban functional activities and landscape features. With
relatively high built-up coverage and intensive producing activ-
ities, the building-related factors (e.g., NDBI, BD, and
PLAND_b) contributed as more important factors than urban
greening factors, even in the autumn when NDVI performed as
a better predictor of the LST than NDBI in the other UFZs (Fig.
10). The COZ, PSZ, GOZ, and HRZ had similar LSTs and key
influence factors for all seasons. This can be explained by the
similar intensities of the production activities and the landscape
compositions and building forms in these UFZs (Li et al. 2020;
Wu et al. 2020a). For the REZ, the main difference to the other
UFZs lies in the factor sensitivity related to urban green spaces,

i.e., DIVISION_f/l (+). In the summer, with the strongest UHI
intensity, it is essential to develop large urban green parks with
scale advantage rather than discrete green patches to benefit
urban thermal risk regulation (Chen et al. 2014b).

Implications of this study

This study highlighted the significant role of urban landscape
factors on controlling an urban thermal environment at the ur-
ban function scale. The results related to surface biophysical
parameters, building forms, and landscape pattern metrics can
provide important insights on the impact of urbanization on the
UHI effect being mitigated by urban landscape optimization.

However, urban thermal regulation tasks should consider
the climate background and spatial planning unit. Peng et al.

Fig. 10 The contribution coefficients of the urban landscape factors to the
seasonal LST of different UFZs by GWR analysis. b, f, and l indicate
built-up area, forest, and lawn for landscape analysis at the class level; the

length of the color strip indicates the relative contribution of a specific
factor; – represents a value less than 0.001
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(2018) conducted a case study under subtropical marine mon-
soon climate conditions and found that NDVI retained a
strong contribution to the LST variation throughout the whole
year, because of the local climate conditions of evergreen
vegetation. This study adopted irregular UFZ blocks as spatial
units for analysis, which is different from most previous stud-
ies (Deilami et al. 2018). The whole study area presented a
significant urban thermal gradient assigned to different types
of UFZs. Due to different urban function activities and land-
scape heterogeneity (Yao et al. 2019; Yu et al. 2021), the
major responsible factors of different UFZs varied with the
types and contribution intensities (Fig. 10). To mitigate a high
thermal environment of a given UFZ, it would thus be appro-
priate to focus on specific landscape elements of said UFZ as a
suitable reference target. Furthermore, scholars have exam-
ined the effectiveness of various landscape factors on
predicting the urban LST at different spatial scales and con-
cluded that these landscape factors may not often provide the
same performance in explaining LSTs (Chen et al. 2014a;
Hamstead et al. 2016; Zhou et al. 2014). This may also explain
why the landscape composition factors (surface biophysical
parameters) contributed much more than pattern factors
(building forms and landscape pattern metrics) in our study.
However, in the face of urban land contradiction (Kikegawa
et al. 2006), optimizing the spatial configuration (e.g., BH or
SHDI) of the existing urban landscape is a more cost-effective
solution for alleviating urban thermal stress.

Conclusion

Understanding the impact of urban landscape heterogeneity
on the UHI effect is of great significance for urban thermal
regulation. In this study, surface biophysical parameters,
building form, and landscape pattern metrics were selected
to depict the urban landscape characteristics. The relationship
between the seasonal LST and the selected urban landscape
factors was discussed from the perspective of UFZ in the
metropolitan region of Beijing. The main findings can be
summarized as follows: (1) Significant spatiotemporal hetero-
geneity of the LST was found in the study area, and there was
an obvious temperature gradient assigned to the UFZs. (2) All
types of landscape factors showed a significant contribution to
seasonal LST, in the order of surface biophysical factors >
building forms > landscape factors; however, their contribu-
tions varied in different seasons. (3) The major contributing
factors showed a certain difference due to the diversity of the
urban functions and landscape structures in the study area.
This study expands the understanding on the complex rela-
tionships among urban landscape, function, and thermal

environment, which could benefit urban landscape planning
for UHI alleviation.
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