
REVIEW ARTICLE

Assessment models and dynamic variables for dynamic life cycle
assessment of buildings: a review

Shu Su1,2
& Huan Zhang1

& Jian Zuo3
& Xiaodong Li4 & Jingfeng Yuan1

Received: 24 November 2020 /Accepted: 18 March 2021
# The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Life cycle assessment (LCA) is widely used to quantify the environmental performance of buildings. Recently, the potential
temporal variations in the lifetime of buildings and their influences on assessment results have attracted considerable attention.
Dynamic LCA (DLCA) is an emerging research topic. This study provides an overview of the current scenario of DLCA studies
in the building field. A literature survey was conducted by searching through scientific literature databases; 48 articles met the
inclusion criteria. Eleven dynamic variables as well as their addressing approaches were summarized and analyzed. A few typical
dynamic assessment models were synthesized and compared to present the methodology progress. Finally, considering the
existing limitations, a few research directions were recommended: setting cutoff criteria for dynamic variables, developing a
dynamic database, and considering the interactions between dynamic variables. The analyses in this study indicate that research
on the DLCA of buildings needs interdisciplinary cooperation. This review promotes in-depth understanding about DLCA
research of buildings and offers valuable implications for environmental practice. The highlighted future research directions
facilitate further explorations in this research area.
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Introduction

According to the International Energy Agency, global build-
ings and construction activities occupy 36% of the world’s
energy consumption and 40% of the total CO2 emissions
(International Energy Agency 2017). Building-related green-
house gases (GHGs) will approximately double in the next 20
years if remedial actions are not taken (Sustainable Buildings

and Climate Initiative 2009). An increasing number of coun-
tries have identified the sustainable buildings as a key poten-
tial solution to global warming and energy crisis. Life cycle
assessment (LCA), a systemic and objective environment
management tool, has been used in the building field to quan-
tify environmental impacts (EIs) and guide decision-making.
Research on the LCA of buildings has developed rapidly, and
related studies have increased significantly in recent decades
(Geng et al. 2017). Some leading organizations, such as the
European Committee for Standardization and the International
Organization for Standardization (ISO), have established spe-
cific standards for investigating the sustainability of buildings
(European Committee for Standardization 2011). A variety of
LCA tools and databases for buildings have been developed at
multiple scales, including product comparison tools (e.g.,
Building for Environmental and Economic Sustainability,
SimaPro, and Life Cycle Explorer), decision support systems
(e.g., Athena and Envest), and assessment tools (e.g., the
Building Research Establishment assessment method).

However, traditional LCA studies exclude temporal infor-
mation and aggregate activities and elementary flows at dif-
ferent times, which has been viewed as a significant bottle-
neck (Chau et al. 2015; McManus and Taylor 2015). The ISO
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states that the environmental relevance of the assessment re-
sults decreases due to missing temporal information (ISO
2000). In an assessment, the elementary flows vary with ex-
ternal changes (Cardellini et al. 2018; Faraca et al. 2019).
Emissions at different time points have different implications
for environmental damage processes and impacts (Lebailly
et al. 2014; Struijs et al. 2010). In addition, environmental
preferences and treatment costs may change over time (Su
et al. 2019c; Zhang 2017). If these variations are neglected,
the assessment results may not adequately reflect real situa-
tions, thereby risking result-based decisions and improve-
ments (Yuan et al. 2015). Since the last decade, scholars have
conducted many dynamic LCA (DLCA) studies that
attempted to describe temporal variations using time-varying
parameters and incorporate them into assessment. DLCA
studies have been conducted in many industries and areas,
such as energy (Kumar et al. 2019; Milovanoff et al. 2018),
crops (Laratte et al. 2014), and vehicles (Onat et al. 2016;
Walker et al. 2015). Many studies have shown that the
DLCA is capable of providing more accurate, reliable, and
meaningful assessment results (Breton et al. 2018; Demertzi
et al. 2018). DLCA has been an emerging research topic in the
international environmental management area.

Conducting a DLCA of buildings (DLCA-B) is meaningful
and complex for the specifics of buildings (Mequignon et al.
2013; Su et al. 2019b). Firstly, a building has a much longer
life cycle than most general products, up to many times. The
potential changes over decades may be large and can sway
decisions. Secondly, buildings generate large energy con-
sumption, emissions, and EIs; hence, buildings play signifi-
cant roles in reaching the energy conservation and emission
reduction targets of many countries. The DLCA can offer
more accurate assessment results and support timely deci-
sions, thereby making enhanced contributions to sustainable
development goals. Thirdly, buildings are a very complex
application of LCA (Buyle et al. 2013; Cabeza et al. 2014).
Buildings involve numerous types of materials with different
lifetimes and production processes. They also consist of var-
ious activities, and they have a large diversity of stakeholders.
The related temporal variations are multiple, complex, and
uncertain (Breton et al. 2018). Conducting a DLCA for build-
ings is more difficult than that for other products. Considering
the above three specifics (i.e., long life cycle, large EIs, and
complex application), it is highly necessary and valuable to
conduct DLCA-B research.

In the past decade, dozens of papers investigating DLCA-B
have been published, and some progress has been achieved.
Currently, only one related review has been published (Breton
et al. 2018). However, that review was mainly devoted to
comparing the methodologies of two dynamic approaches
(i.e., pairing time-differentiated inventory with dynamic char-
acterization factors and using biogenic global warming poten-
tial) to identify the more suitable one for buildings. Many

potential temporal variations in the life cycle of buildings were
not mentioned, and building characteristics were rarely con-
sidered. A comprehensive analysis and review are still needed
to offer a holistic picture of the actual research status.

This study aims to summarize the current achievements
and limitations of DLCA-B research. It makes three contribu-
tions. First, dynamic variables during the entire life cycle of a
building are systematically identified, and their research prog-
ress is well presented. The addressing approaches and main
data sources are synthesized. Second, some typical dynamic
models for buildings are analyzed and compared to provide
reference for future dynamic studies. Third, some potential
future research opportunities are provided: setting cutoff
criteria for dynamic variables, developing a dynamic database
for buildings, and considering the interactions between dy-
namic variables. This review provides a foundation for future
dynamic studies and could significantly contribute to building
sustainability.

Method

To fulfill the aim, this review adopted the following proce-
dures: a literature survey, screening, and analysis and summa-
ry. Figure 1 illustrates the workflow of the research method.

Literature survey

The literature survey was conducted using Scopus as the
search engine. Scopus leads over many other databases by
covering a wider journal range (more than 22,000 journals)
(Falagas et al. 2008). It is regarded as one of the most com-
plete databases and has been widely used to conduct system-
atic literature reviews (Calabrese et al. 2018; Muller et al.
2019). After selecting the database, a structured search was
conducted to retrieve the literature. The LCA, temporal dy-
namics, and buildings were the three central topics. The fol-
lowing terms: “life cycle assessment”OR “life cycle analysis”

Dynamic 
variables

Life cycle assessment

Temporal dynamics

Buildings

Search engine:
Scopus

Literature
retrieval

48 selected 
DLCA-B studies

Dynamic 
models 

Section 4

Step 1
Literature 
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future directions
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Fig. 1 Flow chart of research method for this paper
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OR “LCA,” AND “time-dependent” OR “time-varying” OR
“dynamic” OR “temporal,” AND “building” OR “construc-
tion” were used to retrieve papers wherein these terms were
found in the title, abstract, and/or keywords. No starting point
was determined for publication date, and papers that were
published before the end of 2019 were retrieved.

Screening

To guarantee the relevance and eligibility of the retrieved pa-
pers, the authors carefully reviewed them on a case-by-case
basis, based on the full body of text of each paper. Four in-
clusion criteria were defined as follows to identify relevant
papers. Finally, 48 DLCA-B papers that met these inclusion
criteria were selected (as summarized in Table 1).

& Language: English
& Document type: Only journal articles and conference

papers
& Availability of full text: Available
& Research content: LCA of buildings with temporal varia-

tions considered

Analysis and summary

After analyzing the selected articles, the following interesting
findings can be found.

& DLCA-B studies were conducted around the world and
most of them were published during the last 10 years

& The assessment scopes of less than one third of these stud-
ies covered the entire life cycles

& Various time steps were used, including annual, monthly,
and daily

& Nearly 70% of the DLCA-B papers were conducted prior
to the construction phase or operation phase, and they
belonged to pre-assessment studies

By using the selected papers, a clear report can be per-
formed, including dynamic variables summary (“Dynamic
variables” section), methodological research progress analysis
(“DLCA models for buildings” section), and discussion of
existing problems and future research directions (“Existing
problems and future directions” section).

Dynamic variables

In DLCA studies, dynamic variables are essential and signif-
icant. Scientifically identifying dynamic variables and accu-
rately describing their variations over time is a primary task
(Negishi et al. 2018; Yang and Chen 2014). Some dynamic
variables are highly associated with the assessed objects

(herein buildings), and their values vary when the assessed
building changes. These dynamic variables usually affect the
material inputs and emission outputs of the building during its
life cycle, and they are analyzed in the “Building-related dy-
namic variables” section. In addition, some dynamic variables
are related to LCA methodology and have little relationship
with buildings. Their temporal values are usually adaptive to
many products. Dynamic characterization factors and dynam-
ic weighting factors are typical examples. They are briefly
introduced in the “Other dynamic variables” section.

Building-related dynamic variables

This section focuses on eight building-related dynamic vari-
ables, including occupants and behaviors, energy evolution,
degradation of materials and devices, carbon absorption, ex-
pected service lives (ESLs) of components and devices, tem-
perature change, technological evolution, and waste recycling
rates.

Occupants and behaviors

Occupants and their behaviors play roles in the operational
energy consumption of many buildings, and they affect as-
sessment results. This has been well demonstrated by many
studies performed in different countries (Al-Mumin et al.
2003; Lopes et al. 2005). Occupants and behaviors change
over time. Some studies have dedicated significant portions
of their investigations to the significance of occupants and
their behaviors and viewed this aspect as a typical dynamic
characteristic of DLCA-B studies (Negishi et al. 2018;
Thomas et al. 2016).

Current DLCA-B studies have addressed this dynamic var-
iable mainly in two ways. (1) Some scholars described the
variations of occupants and/or behaviors over time and then
quantified their influences on operational consumption. The
involved dynamic data were mainly from reports and
statistics. Here are some examples. Negishi et al. (2019) ac-
quired the temporal data of family size from national statistics
and estimated the related influences on indoor heat gains and
hot water needs. Su et al. (2019b) estimated the variations in
number, usage intensity, and usage time of household devices
until 2050 by referring to a forward-looking forecast report
and then calculated the temporal energy consumption. (2)
Some scholars have addressed the dynamic occupants and
behaviors by using simulation tools. Thomas et al. (2016)
used EnergyPlus and a system dynamic model to simulate
the dynamic electricity and natural gas demands. Su et al.
(2017) suggested a simulation of future operational energy
levels by forecasting time-varying occupancy profiles.

Existing research regarding this dynamic variable is still
insufficient. The types of occupants and behaviors are various,
and their potential changes are complex. For example, even by
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simply examining the air conditioner usage behaviors, 25 be-
havior patterns were produced in a study (Su et al. 2019a). The
current DLCA-B studies have only addressed a few types. For
future studies, descriptions of potential variations in the types
of occupants and behaviors and the quantification of their
influences on consumption are vital undertakings.

Energy evolution

Energy is an essential expenditure for buildings owing to the
large amount of consumption associated with them. It is also a
major contributor to environmental damage because it dis-
charges considerable GHGs, especially in the form of CO2.
Energy evolution over time appreciably affects the environ-
mental performance of buildings, and it has been recognized
as a significant dynamic variable. Energy evolution primarily
originates from two aspects: energy mix improvement and
production efficiency promotion. They are introduced in the
following two paragraphs.

Renewable energy will make up an increasing share of
future grid mixes. Energy mix improvement is an upcoming
trend. It will change the composition of a unit energy and
affect the input and output flows. The energy mix improve-
ment has been addressed by various approaches, and the fol-
lowing are three typical approaches in current DLCA-B stud-
ies. (1) Some studies have quantified future energy mix by
varying the mix composition, as shown in the calculation for-
mula (1). The impacts of one unit energy grid are an aggrega-
tion of the impacts of various energy sources according to
their shares. Roux et al. (2016b) estimated temporal energy
mix on an hourly basis and a yearly basis with data from
statistics. Negishi et al. (2019) conducted an inventory analy-
sis for future energy mix in two scenarios. Su et al. (2019b)
and Roux et al. (2017) calculated the basic inventory datasets
of one unit energy grid with inventory databases. (2) Some
scholars have modeled future energy mix by adopting scenar-
io analyses and prediction tools. Gimeno-Frontera et al.
(2018) set scenarios according to EU policy planning to de-
scribe prospective changes in electricity generation mix.
Horup et al. (2019) adopted five different forecasts of future
energy mix in Denmark. Roux et al. (2016a) used a high
temporal resolution model to simulate the time-dependent
electricity system in France by 2050. (3) Some studies have
directly acquired time-dependent energy generation mix data
from historical statistics (Collinge et al. 2018; Vuarnoz and
Jusselme 2018) and from future development reports
(Fouquet et al. 2015).

I tð Þ ¼ Pi tð Þ
∑
i
Pi tð Þ � I i ð1Þ

where I(t) is the vector of impacts of one unit of energy grid at
time t; Pi(t) is the production amount of energy type i at time t;T
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Ii is the vector of impacts of one unit of energy type i; and i
represents different energy types.

In contrast, few scholars have examined the promotion of
energy production efficiency and related influences. Energy
production efficiency promotion saves raw materials and
produces less emissions. Ikaga et al. (2002) set three scenarios
to quantify the potential changes in CO2 emissions from unit
electricity production over time. Collinge et al. (2013b) and
Hu (2018) adopted time-varying air pollutant emission inten-
sities of different fuel types in assessments, and the data were
from the US Environmental Protection Agency.

Degradation of materials and devices

Due to the influence of external conditions and excessive us-
age, the technical performance of construction materials and
devices degrades over time (Thomas et al. 2016). The degra-
dation of the insulation materials used for walls, roofs, and
floors leads to considerable changes in energy consumption
(Choi et al. 2018; Stazi et al. 2014). These processes and
changes occur slowly and slightly. However, given the long
lifespan of buildings, they are worthy of attention.

Until now, limited studies have considered this dynamic
variable. Negishi et al. (2018) discussed it in theory. They later
involved the heat transfer performance degradation of three
insulation materials and the energy efficiency reduction of
electric convectors and heat pumps in an application study
(Negishi et al. 2019). Related dynamic data were primarily
derived from other studies. Thomas et al. (2016) generated
three material performance curves and then assessed the relat-
ed influences on operational energy demand. However, the
dynamic data in these studies were not combined with the
specifics of the evaluated buildings and only reflected the
average levels. Future studies could make improvements on
this front.

Carbon absorption

Some materials used in buildings have the capacity to absorb
carbon, which influences carbon flows and EI results. For
example, bio-based construction products discharge emis-
sions through biomass transformation and uptake carbon
through plants. Lime-based materials can bind CO2 from the
atmosphere through the carbonation process. The carbon ab-
sorption process is very slow and may require several decades
to occur.

Very few DLCA-B studies have attempted to integrate this
variable into assessment. Only Pittau et al. (2018) considered
carbon absorption in an application, and the related data were
obtained from other research studies. Many studies have spe-
cifically focused on quantifying the carbon absorption of bio-
genic materials (Levasseur et al. 2013; Peñaloza et al. 2016)
and lime-based materials (Despotou et al. 2016; Pavlík et al.

2012). These studies could provide a research foundation and
data for considering dynamic carbon absorption in future
DLCA-B studies.

Expected service lives of components and devices

Building structures and products have long life cycles, nearly
40–100 years. However, the involved components and de-
vices typically cannot survive that long according to the reli-
ability standards in many countries (British Standards Institute
2002; International Code Council 2018; MOHURD and
GAQSIQ 2018). An ESL of 30 years is often used for floors,
roofs, and drain pipes and 10 years for painting and air con-
ditioners (Wang 2011; Zhang and Wang 2017). The technical
performances of these components and devices will diminish
over time and, ultimately, be useless at the end of their lives,
when they have to be replaced or refurbished. Related
manufacturing, transport, and installation activities will bring
EIs. Some traditional LCA studies of buildings have assumed
that these components and devices have the identical life cy-
cles as the structures and choose to neglect related activities
and EIs (Li et al. 2019;Wang et al. 2018). However, DLCA-B
research involves a time dimension, and this variable should
be considered.

Current DLCA-B studies have estimated the replacement
frequencies of components and devices mostly according to
their ESLs. Subsequently, the corresponding EIs due to these
periodic replacement and refurbishment activities could be
assessed. The data of the ESLs of components in these studies
came from standards (Su et al. 2019b) and literature (Zhang
and Wang 2017). However, these data were empirically de-
signed values and may be different from the actual situations.
It is more accurate to identify ESL data according to the local
climate and usual practices. Recently, intelligent maintenance
and management systems for components and devices have
developed rapidly. This may uncover new research ideas and
opportunities to address this dynamic variable.

Temperature change

Temperature changes over time influence indoor heating/
cooling demands and subsequently affect the operational en-
ergy consumption of buildings (Wei et al. 2014). Until now,
only two DLCA-B studies have tried to assess the influence of
temporal climate change on the EIs of buildings. Williams
et al. (2012) used a weather generator to obtain temperature
data on an hourly basis and then modeled the annual heating
and cooling energy demands. Roux et al. (2016a) developed
four temperature scenarios up to 2100 by using a meteorolog-
ical data prediction tool and assessed the varying EIs of
buildings.

Although the influence of climate change on operational
consumption has been recognized, very few DLCA-B studies
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have considered this dynamic variable. The primary reason
may be the knowledge gap. Discovering a method to scientif-
ically forecast climate change is a persistent concern in the
environmental research field.

Technological evolution

Maintenance, repair, and EOL activities typically occur decades
after the original construction activities. Thus, technological evo-
lution over time could affect these activities and the correspond-
ing EIs. Current DLCA-B studies have illuminated the role of
technological evolution from two perspectives: production tech-
nique evolution and on-site construction technique evolution.
The following two paragraphs introduce their research progress.

With the evolution in the production technique of materials
and devices, greener components and devices with longer
lifetimes may be used in maintenance and repair activities
(Negishi et al. 2018). The current DLCA-B studies only fo-
cused on this evolution for a few materials and devices. The
involved dynamic data were mainly from literature review and
expert opinions. Fouquet et al. (2015) considered the GHG
emission reductions in cement and expanded polystyrene.
Negishi et al. (2019) roughly assumed a 10% energy reduction
each decade for material production. Frijia et al. (2012) pro-
posed a few improvement scenarios for efficiency changes in
HVAC systems. In fact, thousands of material types are in-
volved in a building. Determination of the potential influences
of technological evolution on each material and component is
impossible. Therefore, focusing on the technological evolu-
tion of some major components and devices is a workable
solution at present.

On-site construction techniques will improve and become
more efficient over time. For repair activities, energy con-
sumption and material loss due to the installation of a compo-
nent may be different from those during the original construc-
tion phase. For EOL activities, related input-output flows may
significantly vary from the current levels. However, predicting
these improvements and quantifying the related influences on
assessment results is complex. Only theoretical analyses have
been performed in existing DLCA-B studies (Su et al. 2019b;
Wang et al. 2018).

Waste recycling rates

At the end of the life of a building, the waste must be disposed
of. Recycling is a typical treatment measure. Given that the
current recycling rates of wastes in many countries are not
satisfactory, the potential improvement of recycling levels
has attracted some attention. Some scholars have adopted
higher recycling rates in their DLCA-B studies by using as-
sumptions, adopting scenario analyses (Su et al. 2019b), and
referring to planning documents (Negishi et al. 2019). The
quality of these dynamic data still has room for improvement.

Summary

Eight building-related dynamic variables were analyzed, and
they can be classified into three levels according to their attri-
butes: the external level (including energy evolution, temper-
ature change, technological evolution, and waste recycling
rates), the building system level (including degradation of
materials and devices, carbon absorption, and ESLs of com-
ponents and devices), and the end-user level (occupants and
behaviors). The dynamic variables at these three levels had
different research progress and were addressed using different
approaches, as summarized in Table 2.

& Research on the dynamic variables at the external level
relied heavily on the maturity of the research in environ-
mental and industrial areas. Literature review and scenario
analysis were frequently adopted to quantify the possible
variations of these dynamic variables. Some scholars used
a weather generator (Williams et al. 2012) and a prediction
model (Roux et al. 2016a) to collect the temporal data of
temperature. The related dynamic data were mainly from
historical records, reports, and assumptions.

& The quantification of the dynamic variables at the building
system level requires specialized knowledge of building
materials and devices. The current studies primarily uti-
lized empirical data and other research achievements, fail-
ing to conduct specific dynamic assessments according to
the unique characteristics and actual situation of the
assessed building.

& As far as the dynamic variable at the end-user level, pre-
diction analysis (Su et al. 2019b) and simulation tools
(Thomas et al. 2016) were adopted to address it. During
recent decades, many intelligent tools and software have
been developed to introduce occupants and behaviors into
energy simulations. Scientifically embedding temporal
variations into these tools may be a potential direction.

These dynamic variables play roles in various life cycle
phases of a building, as shown in Fig. 2. The life cycle of a
building can be divided into a pre-use phase (extraction and
manufacture of raw materials, transport, construction, and in-
stallation), a use phase (operation, repair, and maintenance),
and an EOL phase (demolition and disposal). The use phase
spans the longest duration, and most dynamic variables influ-
ence activities during this phase. The input-output flows in the
EOL phase would be affected by technological evolution and
waste recycling rates. Barely any studies have discussed the
dynamic variables during the pre-use phase. Some scholars
believe that the pre-use phase is usually very short, only a
few years in length, and the related temporal variations might
be small (Su et al. 2019b). Neglecting potential variations
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during the pre-use phase and using static data were common in
current DLCA-B studies.

The above analysis clearly illustrates that DLCA is a com-
prehensive multidisciplinary research topic, involving envi-
ronmental science, engineering, and sociology. Conducting a
DLCA is complex. Its development and application require
more cooperat ion among scholars from different
backgrounds.

Other dynamic variables

This section analyzes three typical dynamic variables that are
not related to buildings: characterization factor, weighting fac-
tor, and significance of impacts at different times.

Characterization factor

Dynamic characterization studies considered time-dependent
processes such as mass transfer and chemical reaction and
acknowledged the differences in consequence due to
emissions released at different times. Levasseur et al. (2010)
proposed a dynamic characterization model for global
warming impact. They calculated instantaneous radiative forc-
ing caused by each pulse carbon emission according to when
it took place in time. The dynamic characterization formulas
and values were directly adopted by many DLCA-B studies
(Caldas et al. 2019; Fouquet et al. 2015; Pittau et al. 2019). In
addition, Ericsson et al. (2013) used the temperature change
indicator to conduct temporal characterization, and related
achievements were adopted by Negishi et al. (2019) to mea-
sure the increase in temperature due to a building’s activities.
Until now, dynamic characterizations for other impact catego-
ries have not been well addressed in DLCA-B studies.

Weighting factor

Weighted results could better support comparison and deci-
sion-making, and the time-dependence of weighting factors
has drawn some attention. Some scholars (Su et al. 2017;
Wu et al. 2005) pointed out that the environmental priorities
of different impact categories may change with external con-
ditions. To solve this dynamic issue, Su et al. (2019c) calcu-
lated short-term, medium-term, and long-term weighting fac-
tors using targets from governmental environmental policy
and planning reports. Zhang (2017) thought that people’s will-
ingness of paying a given amount of money to avoid global
warming would vary over time and established time-
dependent data for the unit pollution damage cost of carbon
emissions. The used dynamic cost data were obtained from
reports produced by the European Investment Bank.Ta
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Significance of impacts at different times

Some scholars have been concerned with the welfare of future
generations and pointed out that EIs that were performed now
and in the future needed to be treated differently (Bakas et al.
2015). Some DLCA-B studies have considered this temporal
issue. For example, Zhang (2017) proposed discounting to
convert impacts that happened at different time points to a
common basis. A scenario analysis was conducted with three
discount rates (4%, 6%, and 8%) in a residential building
application. Hu (2018) emphasized the influences of different
users’ value choices on assessment results and compared the
EIs of an elementary school with discount rates of 5%, 3%,
and 0%. Wang et al. (2018) thought that environmental deg-
radation should be considered, and they used four discount
rates to measure the time values of EIs.

Summary

Fewer DLCA-B studies have been concerned with the above
three dynamic variables. Their values are not specific for the
assessed building. Current DLCA-B studies usually directly
adopted secondary data from other studies. Literature review
and scenario analysis were the major approaches used in these
studies (as summarized in Table 3).

In total, 11 dynamic variables were summarized. Among
them, energy evolution and characterization factor have re-
ceived most attention. More than 50% of the selected
DLCA-B papers considered energy evolution, and 5 studies
even only involved this dynamic variable in their assessments
(Gimeno-Frontera et al. 2018; Horup et al. 2019; Karl et al.
2019; Sohn et al. 2017a, b). Nearly 20% DLCA-B studies
adopted dynamic characterization factor values. Many of the

selected 48 studies involved more than one dynamic variable.
Energy evolution and characterization factor were often con-
sidered together in a dynamic study (Collinge et al. 2013b;
Fouquet et al. 2015; Hu 2018). Besides, occupants and behav-
iors and degradation of materials and devices were also in-
volved simultaneously (Negishi et al. 2018, 2019; Thomas
et al. 2016).

DLCA models for buildings

Some research groups have proposed specialized DLCA
models for buildings to provide assessment methodology.
The followings are three typical ones: the dynamic matrix
model, the data transformation–based model, and the static
model + dynamic variables. The frameworks and detailed in-
formation of these three dynamic models are provided in
Figures S1–S3.

Dynamic matrix model

Collinge et al. pioneered DLCA-B research early and used
dynamic matrices to perform the assessment process and pro-
posed a dynamic model (Collinge et al. 2013b). The calcula-
tion formula is shown below. Ct focused on temporal charac-
terization factors; Bt captured varying environmental interven-
tions for each process; At considered the upstream process
changes, which were independent of building management
decisions, such as the energy mix; and ft represented the vary-
ing required materials and energy amounts from various ac-
tivities. When conducting a dynamic assessment, the influ-
ences of dynamic variables on these four matrices were quan-
tified. Temporal matrices were developed, which may be
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Fig. 2 Dynamic variables and
their influenced life cycle phases
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mathematical functions of time or a time series. Finally, dy-
namic EIs were assessed using these dynamic matrices.

ht ¼ ∑
t0

te

Ct � Bt � A−1
t � f t ð2Þ

where ht is a temporally varying EIs vector, Ct is an environ-
mental system dynamic matrix, Bt is an inventory dynamic
matrix, At is a supply chain dynamic matrix, and ft is dynamic
building operation vector.

This dynamic model was adopted to quantify human health
impacts (Collinge et al. 2013a), assess productivity perfor-
mance in office buildings (Collinge et al. 2014), and compare
the dynamic impacts of a conventional green building and a
net zero energy building (Collinge et al. 2018). In addition to
Collinge’s research group, some other scholars also used dy-
namic matrices to present assessment. Hu (2018) replaced the
characterization matrix with a new “M” matrix of users’
choice values. The “M” matrix represented a dynamic
weighting system, and three archetypes (hierarchist, egalitari-
an, and individualist) with different environment priorities and
discount rates were analyzed. Fouquet et al. (2015) and Pittau
et al. (2018) simplified the above dynamic model and used
GHG emission vector and environmental system dynamic ma-
trix to assess dynamic global warming impacts.

Data transformation–based model

Su et al. analyzed the transformation of calculation data in EI
assessment and proposed four types of dynamic assessment
elements . The dynamic model was termed “data
transformation–based model” in this study. They developed
a dynamic framework in 2017 (Su et al. 2017), discussed
some prospective approaches, and conducted an application
study (Su et al. 2019b). In this model, dynamic variables af-
fected the values of four types of dynamic assessment ele-
ments. The final dynamic impact results were calculated by
following the data transformation pathway. Here are the as-
sessment steps. First, building material and energy consump-
tion data during the whole life cycle were collected annually.
Then, dynamic consumption data were transformed into dy-
namic inventory results with time-dependent energy mix

considered. Later, dynamic characterization factors that
allowed for the timing of pollutants were adopted to achieve
dynamic impact category indicators. Finally, dynamic
weighting factors quantified the severities of impacts at differ-
ent times and outputted annual impacts.

Static model + dynamic variables

Negishi et al. introduced dynamic variables individually based
on a static LCA model. It is termed “static model + dynamic
variables” in this study. They proposed a dynamic framework
and discussed some dynamic characteristics in 2018 (Negishi
et al. 2018) and later quantified the variations of some dynam-
ic variables and conducted an application (Negishi et al.
2019). The developed dynamic model included five steps.
First, building data were collected and some dynamic aspects
were discussed. In the second step, a static model of the life
cycle systemwas developed. Then, the involved dynamic var-
iables were analyzed and modeled using various scenarios.
The last two steps conducted a dynamic inventory analysis
and a dynamic characterization to achieve temporal EIs. In
this model, the static LCA system was developed as a base,
and various dynamic variables were incorporated into the stat-
ic system to perform the dynamic assessment.

Comparison

The above three typical DLCA models have specific advan-
tages and limitations, and they are compared in Table 4.

& The dynamic matrix model was concise and clear.
However, it missed the dynamic characteristics and spe-
cifics of buildings. In fact, it was generally applicable to
all products. Besides, temporal information was merely
expressed as “t” in this model without a detailed analysis
and further discussion. It remained unclear how to
completely identify dynamic variables and scientifically
quantify them. This was a significant obstacle for
application.

& The data transformation–based model built a bridge be-
tween the temporal information and traditional assessment
procedures, making it easy to incorporate dynamic

Table 3. Parameters and addressing approaches of three dynamic variables

Dynamic variable Parameter Addressing approaches

Characterization factor Instantaneous radiative forcing Literature review and calculation formulas

Surface temperature change Literature review

Weighting factor Temporal environmental policy Distance to target approach and calculation formulas

Unit pollution damage cost Literature review and calculation formulas

Significance of impacts at different times Discount rate Scenario analysis and literature review
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var iables wi th the exis t ing LCA framework.
Unfortunately, it did not provide deep discussion regard-
ing the temporal attributes of some dynamic variables.

& The research idea in the “static model + dynamic vari-
ables” model was easy and clear to understand.
However, it lacked a complete and systematic expression
regarding the involved dynamic variables.

Existing problems and future directions

This study systematically analyzed the DLCA-B literature,
synthesized the involved dynamic variables, and compared
some dynamic assessment models. The following discussion
reviews the existing problems and proposes potential research
directions (as shown in Fig. 3).

Pre-assessment and post-assessment comparison

Current DLCA-B studies could be pre-assessed using predict-
ed future data and post-assessed using historical data. Nearly

70% of the selected DLCA-B papers belong to the former.
These two assessment types have specific advantages and
limitations. The post-assessment results are more accurate
for the used data consists of actual values. Post-assessments
are more meaningful for short-life products in standardized
production modes because effective measures and schemes
could be proposed on the basis of assessment results. This
could serve to improve the next round of manufacturing up-
grades. However, building processes are less standardized
than industrial processes. Every building is specific and pos-
sesses unique characteristics. Thus, the lessons and improve-
ment suggestions from one building may have limited refer-
ential values for other buildings. More importantly, the life
cycles of buildings are long, up to 40–100 years. The guidance
value of results is relatively small for future buildings.

In contrast, pre-assessment results can help identify major
EI sources and provide a basis for improving the design and
use (Li et al. 2017). Pre-assessment studies have been pre-
ferred in the past decade among DLCA-B studies and will
continue to be preferred in the future (Collinge et al. 2013b).
However, dynamic pre-assessment still faces some problems.
First, there is limited knowledge regarding future technolo-
gies, and this creates new uncertainties (Collinge et al.

Table 4 A comparison of three typical DLCA models

Model Main content Advantage Limitation

Dynamic matrix
model

Four matrices: environmental system dynamic matrix,
inventory dynamic matrix, supply chain dynamic
matrix, and dynamic building operation vector

It was concise and clear The involved temporal information
needed further analysis

Data
transformation–-
based model

Four types of dynamic assessment elements: dynamic
consumption, dynamic basic inventory datasets,
dynamic characterization factors, and dynamic
weighting factors

It built a bridge between the
temporal information and
traditional assessment
procedures

It did not provide deep discussion
regarding the temporal attributes
of some dynamic variables

Static model +
dynamic variables

Five steps: data calculation and collection, static model
of the life cycle system, temporality of the building
life cycle system, dynamic model of the life cycle
system, and dynamic impact assessment calculation

It was easy and clear to
understand

It lacked a complete and systematic
expression regarding the
involved dynamic variables

DLCA-B
research

Post-assessment results have 
limited referential values, while 
pre-assessment involves 
uncertainty and verification 
issues

Pre-assessment studies should 
be primary and results need 
validation

Lacking rules about what 
dynamic variables should be 
involved in an assessment

Setting cut-off criteria for 
dynamic variables

Difficulty of data acquisition

Dynamic variables are 

considered independently

Introducing time-dependent 
interactions between dynamic 
variables into assessment

Existing problems Future directions

A dynamic database for 
buildings

Fig. 3 Existing problems and
future research directions of
DLCA-B research
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2013b; Hu 2018). Second, the workability of a pre-assessment
model can be verified using cases and applications, as accom-
plished in many of the reviewed DLCA-B studies. However,
the accuracy and reliability are still unproven, and until now,
no studies have performed the necessary analyses. This is a
difficult but significant barrier. Future research could try to
solve these problems.

The cutoff criteria for dynamic variables

This review summarized 11 dynamic variables, and only a few
of them were considered simultaneously in current DLCA-B
studies. Neglecting some dynamic variables was taken as a
research limitation (Collinge et al. 2018; Roux et al. 2016a).
The following questions arise: How does the assessment prac-
titioner decide which dynamic variables should be included in
his assessment? How does the practitioner draw fair bound-
aries for the different building systems being compared? The
current DLCA-B studies scarcely discussed or tried to address
the above questions. Su et al. (2019b) thought that only the
variations that could be predicted and significantly influence
the final results should be considered. However, no measure
of the significance has been clearly stated.

There is a need to learn from traditional LCA studies and
develop cutoff criteria for dynamic variables. In traditional
LCA studies, a series of cutoff criteria are established to deter-
mine which elementary flows should be included in assess-
ments and to define the maximum level of detail (Raynolds
et al. 2000). The ISO 14044 standard (ISO 2006) suggests the
use of mass, energy, and environmental significance as cutoff
criteria. In dynamic assessments, cutoff criteria should consider
both the change degree of dynamic variables and the related
environmental significance because a combination of these two
aspects influences the final assessment results. (1) A reasonable
percentage change would be the baseline for the involvement. If
the change in a dynamic variable during the evaluation period is
very small and lower than the baseline, it would be reasonable
to disregard it to save time and reduce the workload. (2) The
environmental significance of the dynamic variable’s influence
should also be considered. The higher the related environmental
significance, the more important the corresponding dynamic
variable is, thereby making it more valuable to incorporate this
dynamic variable into the assessment. There is a requirement
for scientific and reasonable cutoff criteria, and they will play a
significant role in future DLCA-B studies.

Dynamic database

Collecting appropriate data to describe the temporal variations
of dynamic variables is a difficult job. Most dynamic data are
not available directly in existing LCA databases and tools.
Limited data availability has been recognized as a significant
difficulty in DLCA studies (Collinge et al. 2013b; Su et al.

2019b). The long lifespans and large amounts of materials and
products involved in buildings make this issue more pro-
nounced (Breton et al. 2018). As analyzed before, many
DLCA-B studies have relied heavily on secondary data from
scientific articles, industrial and governmental reports, regula-
tory documents, and other sources.

A dynamic database for buildings could save the time and
effort of practitioners, thereby promoting DLCA-B studies.
The prospective values and potential variation ranges of dy-
namic variables should be included. These dynamic variables
are systematically analyzed in the “Dynamic variables” sec-
tion, which lays a foundation for the development of the dy-
namic database. Prediction, scenario analysis, virtual reality,
and simulation are potentially feasible approaches.

Interactions between dynamic variables

Until now, dynamic variables have been independently intro-
duced into dynamic assessments. However, this is not a real-
istic simulation. In reality, the external climate change affects
the production efficiency of powers, such as wind power
(Koletsis et al. 2016), hydropower (Lehner et al. 2005), and
nuclear plants (Förster and Lilliestam 2010). The aging rates
of building materials vary with changes in the outdoor tem-
perature and humidity.

Involving these interactions would complicate the process
of conducting dynamic studies. This review clearly shows that
DLCA-B research is at an early stage. Knowledge of some
dynamic variables is still immature and incomplete. At this
time, research is unable to capture their time-dependent inter-
actions, and shelving these interactions may be a wise choice.
Future studies could consider them to enhance and improve
this research.

Conclusion

The main aim of this study was to present an overview of
DLCA studies in the building field. A total of 48 papers,
which were published prior to the end of 2019, were selected
and systematically analyzed. The review reveals that there has
been a growing interest in DLCA-B research recently. As an
emerging research area, DLCA-B is far from mature and re-
quires more in-depth interdisciplinary research.

In this review, 11 dynamic variables were synthesized, in-
cluding occupants and behaviors, energy evolution, degrada-
tion of materials and devices, carbon absorption, ESLs of
components and devices, temperature change, technological
evolution, waste recycling rates, characterization factor,
weighting factor, and significance of impacts at different
times. Their research achievements, addressing approaches,
data sources, and limitations were analyzed. Three typical
dynamic models (i.e., the dynamic matrix model, the data
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transformation–based model, and the “static model + dynamic
variables”) and assessment steps were comprehensively ex-
plained and analyzed. Their advantages and limitations were
compared to suggest potential methodologies. Finally, some
existing issues in the DLCA-B research were discussed, and
future research directions were proposed.

& Pre-assessment studies should be primary, and the in-
volved uncertainty and verification issues require more
attention

& Cutoff criteria for dynamic variables are suggested
& A dynamic database for buildings could provide an impor-

tant data support
& The interactions between dynamic variables are suggested

to be considered

This review comprehensively presented the research status
quo of DLCA-B studies, while providing references and re-
search directions for future research. The information
contained in this study can help practitioners improve building
assessments and promote sustainable development.
Unfortunately, some latest research achievements were not
analyzed since only the DLCA-B papers published prior to
the end of 2019 were included in this review.
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