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Abstract
Wind energy, as one of the renewable energies with the most potential for development, has been widely concerned by many
countries. However, due to the great volatility and uncertainty of natural wind, wind power also fluctuates, seriously affecting the
reliability of wind power system and bringing challenges to large-scale grid connection of wind power. Wind speed prediction is
very important to ensure the safety and stability of wind power generation system. In this paper, a new wind speed prediction
scheme is proposed. First, improved hybridmode decomposition is used to decompose the wind speed data into the trend part and
the fluctuation part, and the noise is decomposed twice. Then wavelet analysis is used to decompose the trend part and the
fluctuation part for the third time. The decomposed data are classified. The long- and short-term memory neural network
optimized by the improved particle swarm optimization algorithm is used to train the nonlinear sequence and noise sequence,
and the autoregressive moving average model is used to train the linear sequence. Finally, the final prediction results were
reconstructed. This paper uses this system to predict the wind speed data of China’s Changma wind farm and Spain’s Sotavento
wind farm. By experimenting with the real data from two different wind farms and comparing with other predictive models, we
found that (1) by improving the mode number selection in the variational mode decomposition, the characteristics of wind speed
data can be better extracted. (2) According to the different characteristics of component data, the combination method is selected
to predict modal components, which makes full use of the advantages of different algorithms and has good prediction effect. (3)
The optimization algorithm is used to optimize the neural network, which solves the problem of parameter setting when
establishing the prediction model. (4) The combination forecasting model proposed in this paper has clear structure and accurate
prediction results. The research work in this paper will help to promote the development of wind energy prediction field, help
wind farms formulate wind power regulation strategies, and further promote the construction of green energy structure.

Keywords Short-term wind speed prediction . Variational mode decomposition . Improved particle swarm optimization . Long-
and short-termmemory neural network . Autoregressivemoving average model . Noise decomposition

Introduction

In recent years, with the rapid development of national econ-
omy and society, the demand for electric energy is gradually
expanding, and the traditional fossil energy has caused serious
pollution, such as global warming, heat pollution, air pollu-
tion, and ecological damage. Countries all over the world have
reached a consensus on green development and put forward
green development plans, hoping to accelerate the transforma-
tion of energy structure and establish a cleaner and more flex-
ible clean energy system. China, the USA, Japan, and other
countries have put forward the goal of carbon neutrality in the
middle of this century. The transition to a low carbon society
is dependent on renewable energy-based electrification (Nazir
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et al. 2020a). Wind energy is an important substitute for tra-
ditional fossil energy (Nazir et al. 2020b). According to the
latest data, in 2019, the global installed 176 GW of new re-
newable energy (just under 2018 new 179 GW), accounting
for 72% of the world’s new generating capacity, renewable
energy share in the global electricity generation rose to 34.7%
from 33.3% at the end of 2018 (International Renewable
Energy Agency’s 2020).

Wind energy is inexhaustible, with low development cost
and clean (Chaurasiya et al. 2019). Wind power in China has
been given full attention by the government and developed
rapidly. According to the latest data of the national energy
administration, in the first three quarters of 2020, the new
installed capacity of wind power in China will be 13.92 million
kilowatts, including 12.34 million kilowatts on land and 1.58
million kilowatts on the sea. By the end of the third quarter of
2020, the total installed capacity of wind power in China will be
223 million kilowatts, including 216 million kilowatts of on-
shore wind power and 7.5 million kilowatts of offshore wind
power. At present, China has become the largest wind power
market in the world (National Energy Administration 2020).

With the rapid development of the wind power industry, the
height of wind turbines has gradually increased. Although the
height limitation of mast technology has been solved, its instal-
lation cost and maintenance have become expensive and cum-
bersome. Thus, SODAR and LIDAR technologies are used to
replace wind turbines in complex regions to measure wind
speed, which improves the credibility of wind speed data and
reduces power generation costs. At the same time, the nonlinear
relationship between wind power and wind speed determines
the accuracy of wind speedmodeling and has a direct impact on
wind power generation (Prem Kumar Chaurasiya et al. 2017;
Chaurasiya et al. 2018a). However, wind speed has high ran-
dom fluctuation and intermittency, which leads to high random
fluctuation of wind power. Large-scale wind power grid con-
nection will bring challenges to power system safety and power
quality. And accurate wind speed prediction can help control
wind power output, power plant wind power safety scheduling,
and other issues; therefore, wind speed prediction has very im-
portant theoretical significance and practical value.

Currently, wind speed prediction methods can be generally
divided into physical model method (Higashiyama et al. 2018;
Harty et al. 2019), statistical model method (Erdem and Shi
2011; Nourani Esfetang and Kazemzadeh 2018; Chaurasiya
et al. 2018b), and artificial intelligence (Sharifian et al. 2018;
Chitsaz et al. 2015). The physical model method makes wind
speed prediction by calculating the terrain, air pressure, cli-
mate, and other information around the wind farm, and the
data obtained is generally used as input for other statistical
models. The statistical model method uses the historical wind
speed data to establish the statistical model and obtain the
wind speed time series; artificial intelligence method uses
ANN, SVM, and other methods to predict wind speed

according to the characteristics of historical wind speed data.
Nowadays, BP (Zhao et al. 2014; Wang et al. 2019; Li et al.
2019a; Glowacz and Glowacz 2018), LSTM (Gu et al. 2020;
Shahid et al. 2020), RBF (Tang et al. 2020; Cao et al. 2019;
Zhang et al. 2015), Elman (Yu et al. 2017; Li et al. 2019b),
and so on are widely used and have excellent effect.
Zendehboudi et al. (2018) used SVM as the basic model.
Wang et al. (2016) used BP neural network as the basic model.
Wu et al. (2015) used RBF neural network as the basic model
for wind speed prediction. The prediction results were gener-
ally better than statistical model method (Yuan et al. 2015;
Zafirakis et al. 2019). To improve the algorithm of single
neural network is a widely used method to improve the accu-
racy of prediction (Zhang et al. 2019a; Tian et al 2019).
Therefore, in this paper, IPSO is used to improve the LSTM
neural network prediction model. All kinds of wind speed
prediction methods have their own advantages and
disadvantages. Compared with the single prediction model,
the combined forecasting model based on artificial
intelligence algorithm will be more used in the research of
wind speed prediction. Peng et al. (2020) proposes a negative
correlation learning-based regularized extreme learning ma-
chine ensemble model (NCL-RELM) integrated with optimal
variational mode decomposition (OVMD) and sample entro-
py (SampEn) for multi-step ahead wind speed forecasting.
Zhang et al. (2020a) combined artificial intelligence methods
with statistical knowledge and proposed an optimized radial
basis function model and interval prediction model of the
Fourier distribution of wind speed based on FCBF. Zhang
and Pan (2020) proposed an RBF-ARMA model based on wind
speed characteristics by combining statistical model method and ar-
tificial intelligence method. An autoregressive integral moving aver-
age model based on repeated wavelet transform is used to improve
the accuracy of ARIMAmodel for short-termwind speed prediction
(Bri-Mathias Hodge et al. 2011). A combined forecasting model is
established, which is composed of three main modeling steps: qua-
dratic decomposition, integration method, and error correction (Liu
et al. 2018a). A new wind speed multi-step prediction framework
based on WPD, CEEMDAN, and ANN is proposed (Liu et al.
2018b). It is proved that the performance of the combined model is
better than that of the corresponding neural network model.

Wind speed is random and non-stationary. From the per-
spective of wind speed characteristics, the commonly used
signal processing methods include principal component anal-
ysis (Skittides and Früh 2014), wavelet transform (Dang et al.
2013; Zhang et al. 2020b), EMD (Wang et al. 2016;
Dragomiretskiy and Zosso 2014), and its improved EEMD,
WPD, and VMD (Zhang et al. 2019b). In the process of
obtaining the decomposed components, VMD determines
the frequency center and bandwidth of each component by
iteratively searching for the optimal solution of the
variational model, so as to realize the frequency domain
segmentation of the signal and the effective separation of
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each component adaptively. Because VMD overcomes the
endpoint effect and modal aliasing of EMD and has good
decomposition effect, it has been applied to wind speed
sequence decomposition. Zhang et al. (2020c) used VMD to
decompose the original wind speed and compared with EMD
method to verify that VMD has a better decomposition effect.
In view of the inconvenient choice of mode number K in
VMD, Chen (2020) selects the appropriate decomposition
times K by judging the value of sample entropy. From the
perspective of energy, Chen (2020) proposed an energy dif-
ference component selection method to calculate the number
of comparative mode decomposition. Combined with the sin-
gular value decomposition (SVD) difference spectrum pro-
cessing error, a hybrid HMD data processing method is con-
structed. This method improves the quality of decomposition
and overcomes the defect of random mode number selection.
Experiments show that HMD method is better than VMD
method.

Therefore, based on the improvedVMDmethod and IPSO-
LSTMneural network, a newwind speed prediction scheme is
designed. The specific process is as follows:

Firstly, data preprocessing is used to extract data features.
The SVD differential spectrum is used to denoise, MIV and
PCA are used for multi factor analysis, and the energy differ-
ence mode number selection method is used to optimize the
VMD mode number, and VMD decomposition is carried out.
After the decomposition, WT is used to decompose the modal
components again.

Then the decomposed time series are classified, and the
nonlinear time series are trained and predicted by LSTM neu-
ral network, and the linear time series are trained and predicted
by ARMAmodel. In this paper, fitting interpolation is used to
predict the noise sequence.

Finally, each predicted value is reconstructed to obtain the
final prediction result.

The rest of this paper is arranged as follows:
Section 2 introduces the improved VMD method used
in this paper; Section 3 introduces IPSO-LSTM model
and ARMA model; Section 4 introduces the forecast
flow of the wind speed forecast scheme described in
this paper; Section 5 uses this prediction scheme to
predict the real wind farm data, compares the results
of China’s Changma wind farm and Spain’s Sotavento
wind farm, and makes comparisons with other schemes;
Section 6 draws the conclusions.

The improved VMD method

Singular value difference spectrum

Let the time series V(t) = [v(1),⋯, v(t)] with noise con-
stitute Hankel matrix of m × n order, and make the

matrix as square as possible, so as to achieve better
noise reduction effect.

H ¼
v 1ð Þ v 2ð Þ
v 2ð Þ v 3ð Þ

⋯ v nð Þ
⋯ v nþ 1ð Þ

⋮ ⋮
v mð Þ v mþ 1ð Þ

⋱ ⋮
⋯ x tð Þ

0B@
1CA ð1Þ

By singular value decomposition of V, we can get the fol-
lowing result:

H ¼ Um�nΣn�nVT
n�n ð2Þ

where Um × n, Vn × n is an orthogonal matrix, Σ is a nonnega-
tive diagonal matrix, and the non-zero value on the diagonal
of Σ is the singular value of H.

There are k singular values, which are sorted as follows

σ ¼ σ1;⋯;σkð Þ ð3Þ
where σi is the i-th singular value after sorting (i is from 1
to k).

The singular value mutation of noisy sequences can be well
expressed by using differential spectrum:

di ¼ σi−σi−1; i ¼ 1; 2;⋯; r−1 ð4Þ

The order P of reconstruction can be determined by the
point with the largest singular value mutation, and the
denoising sequence and noise sequence can be obtained
finally.

V tð Þ ¼ x1 tð Þ þ r1 tð Þ ð5Þ
where x1(t) is the denoising sequence and r1(t) is the noise
sequence.

Variational mode decomposition

The VMD method was proposed by Dragomiretskiy and
others. It was originally used to analyze the early failure
of rolling bearings. Because this method overcomes a
series of shortcomings of EMD mode aliasing and end-
point effect and has good decomposition effect and good
noise robustness, it is introduced into wind speed pre-
diction to decompose wind speed time series. According
to the center frequency and bandwidth of each decom-
position component, the frequency domain decomposi-
tion of the signal and the effective separation of each
component are realized (Glowacz 2018; Glowacz 2019).

The VMD first constructs the variational problem. Let the
original time series be decomposed into k components to en-
sure that the decomposed sequence is a modal component
with a finite bandwidth and a central frequency. At the same
time, the sum of estimated bandwidth of each mode is the
minimum. The constraint condition is that the sum of all
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modes is equal to the original signal:

min
ukf g wkf g

∑k ∂t δ tð Þ þ j
πt

� �
*uk tð Þ

� �
e− jωk t

���� ����2
2

( )
s:t:∑kuk tð Þ ¼ x tð Þ

(
ð6Þ

where K is the number of modes to be decomposed, {uk} {wk}
is the k − th mode component and center frequency after de-
composition, ∂t is the pair function φk(t) find the partial deriv-
ative of t, δ(t) is Dirichlet function,∗is convolution, and x(t) is
the original input signal.

Then, by introducing the Lagrange multiplication operator
λ, the constrained variational problem is transformed into an
unconstrained variational problem.

Then, Eq. (6) is solved, and the Lagrange multiplication
operator λis introduced to transform the constrained variation-
al problem into a non-constrained variational problem. The
expression of augmented Lagrange is:

L ukf g; ωkf g;λ tð Þð Þ

¼ α∑k ∂t δ tð Þ þ j
πt

� �
*uk tð Þ

� �
e− jwk t

���� ����2
2

þ x tð Þ−∑kuk tð Þk k22 þ λ tð Þ; x tð Þ−∑kuk tð Þ½ � ð7Þ

In the formula,α is the quadratic penalty factor to reduce the
interference of Gaussian noise. Alternate wind direction multi-
plier iterative algorithm combined with Parseval/Plancherel and
Fourier equidistance transform is used to optimize to obtain
each modal component and center frequency and to search
the saddle points of the augmented Lagrange function.

The expressions of {uk}, {ωk}, λ(t) after alternating opti-
mization iteration are shown in Formula (8), (9), and (10):

bunþ1

k ωð Þ ¼
bx ωð Þ−∑i< kbuni ωð Þ þ

bλ ωð Þ
2

1þ 2α ω−ωkð Þ2 ð8Þ

ωnþ1
k ¼

∫∞0 ω bunþ1

k ωð Þ
���� ����2dω

∫∞0 bunþ1

k ωð Þ
���� ����2dω

ð9Þ

bλnþ1
ωð Þ ¼ bλn

ωð Þ þ γ bf ωð Þ−∑kbunþ1

k ωð Þ
� �

ð10Þ

If the convergence satisfies the condition (11), the iteration
is finished:

∑k bunþ1

k −bunk���� ����2
2

= bunk��� ���2
2
< ε ð11Þ

where ε is the set precision.

Modal number selection method

In order to make up for the deficiency in subjective selection
of influencing parameters, Bing (2020) proposed a modal
number selection strategy to overcome the defects caused by
random selection of modal numbers, and strict experiments
proved that the use of HMD was superior to VMD method.

From the optimal theoretical result of VMD decomposition,
the sum of the energies of each component is equal to the
original signal. When k value is too large, the generation of
the fictitious component will cause the energy sum of the com-
ponents to be too high. Based on this principle, according to the
calculation (Formula (12)) of wind speed signal energy and
energy difference, when the value of θk, k − 1is small, the signal
will be underdecomposed. With the increase of the value of θk,
k − 1, VMD is overdecomposed obviously. Therefore, with the
increase of parameters k, there will be decomposition phenom-
enon, and the corresponding valueθk, k − 1 will increase signifi-
cantly. In this case, it can be regarded k − 1 as the optimal mode
number of VMD decomposition.

El
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1xl
2 ið Þ

n

r
; l ¼ 1; 2;⋯k

Ek ¼ ∑k
l¼1E

l
k

θk;k−1 ¼ Ek−Ek−1j j
Ek−1

8>>>><>>>>: ð12Þ

where Ekis the energy sum of all components when the mode
number is k, Ek − 1is the sum of component energies after the
last decomposition, θk, k − 1represents the energy difference, xl(i)
is the l − th component sequence under the current mode num-
ber, and n is the number of sampling points.

IPSO-LSTM model and ARMA model

Improved particle swarm optimization

The LSTMmodel is based on the deep neural network, which
is very complex to set and optimize the hyperparameters. In
this paper, the particle swarm optimization (PSO) algorithm is
used to optimize the super parameters in the model. The PSO
algorithm has the advantages of simple principle, small con-
sumption of computing resources, good convergence, and
high computational efficiency.

The speed and position update formula of PSO algorithm is
as follows:

Vtþ1
id ¼ ωVt

id þ c1r1 Pid−X t
id

	 
þ c2r2 Qid−X
t
id

	 

X tþ1

id ¼ Vtþ1
id þ X t

id

�
ð13Þ

where ω is the inertia weight, c1, c2 is the learning factor, r1, r2
is an independent random number distributed between [0,1],
Vt
id represents the velocity component of the ith particle in d
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dimension in the t iteration, X t
id represents the position com-

ponent of the ith particle in d dimension in the t iteration, Pid

represents the individual optimal value of the ith particle in
ddimension in the t iteration, andQid represents the population
global optimal value of the ith particle in d dimension in the t
iteration.

But PSO algorithm has the phenomenon of local optimum,
premature convergence, or stagnation, so it needs to be im-
proved. This paper proposes that the learning factors change
linearly with evolution, such as Formula (14). In this way, the
particles can move in the whole search space in the early stage
of optimization and move around the optimal solution in the
late stage of optimization, so as to improve the convergence
rate of the optimal solution. The inertia weight decreases
nonlinearly with evolution, as shown in Formula (15). In this
way, the search speed is gradually reduced, and the algorithm
convergence is convenient.

c1 ¼ a1 þ a2l=Lmax
c2 ¼ a3−a4l=Lmax

�
ð14Þ

ω lð Þ ¼ ωmax− ωmax−ωminð Þ*arcsin l
Lmax

*
2

π
ð15Þ

where l is the number of iterations, Lmax is the maximum
number of iterations allowed, and a1, a2, a3, a4 are constants.

Long- and short-term memory neural network

The RNN has memory, parameter sharing, and Turing com-
pleteness, which has certain advantages in learning the non-
linear characteristics of sequences. With the development of

deep learning technology, the concept of time series has also
been applied in the structural design of RNN. Therefore, RNN
has good time series analysis capability. As an improved
RNN, LSTM inherits RNN’s ability to analyze time series
data while enhancing long-term memory. LSTM neural net-
work model has been applied in the field of wind speed pre-
diction because it can keep memory for a long time
effectively.

All RNNs have a chain structure of repetitive neural net-
work modules, which is a simple structure in standard RNN.
But there are three gates in the memory unit of LSTM neural
network, which are input gate, forget gate, and output gate.
The calculation process of LSTM update unit is as follows:

Input gate

The information passed first is input at t, and then the value of
input layer of memory unit is updated to it:

it ¼ αi Ri � ht−1; xt½ � þ bið Þ ð16Þ

The candidate value of hidden layer state is updated as eCt :

eCt ¼ tanh RC � ht−1; xt½ � þ bCð Þ ð17Þ

Forgetting gate

The value of forgetting layer in memory unit is ft:

f t ¼ α f R f � ht−1; xt½ � þ þbf
	 
 ð18Þ

Fig. 1 Cell update process of
LSTM
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At this point, the status update value of the hidden layer is
Ct:

Ct ¼ f t*Ct−1 þ it*eCt ð19Þ

Output gate

The value of the output layer and the output value of the final
memory unit are updated to ot, ht:

ot ¼ αo Ro � ht−1; xt½ � þ boð Þ ð20Þ

ht ¼ ot*tanh Ctð Þ ð21Þ
where xt is the input vector, ht is the output vector, α repre-
sents the gate activation function,∗ is the element multiplica-
tion between two vectors, R represents the corresponding
weight matrix, and b is the relevant partial vector.

The cell update process diagram is shown in Fig. 1.

Process of IPSO optimizing LSTM

Step 1: Initialize LSTM neural network. The input and out-
put data are selected and normalized to create LSTM

Fig. 2 IPSO-LSTM flow chart
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neural network. The number of neurons in each lay-
er, learning rate, and training iteration times are
determined.

Step 2: Initialization of particle swarm. The particle swarm
size is determined, and the particle velocity v0, posi-
tion x0, inertia weight ω, learning factors c1, c2, max-
imum iteration number Lmax, minimum inertia
weight ωmin, maximum inertia weight ωmax, mini-
mum velocity vmin, and maximum velocity vmax are
initialized.

Step 3: Construct LSTM prediction model and determine the
optimization range of parameters. The number of neu-
rons in each layer, learning rate, and training iteration
times are taken as parameter variables to determine
the optimization range of parameters. The original
data is divided into training samples and test samples.

Step 4: Define the fitness value fi of LSTM model as:

f i ¼
1

2

1

P
∑p

p¼1

yp−byp
yp

þ 1

Q
∑p

p¼1

yq−byq
yq

 !
ð22Þ

where P, Q are the number of training samples and test sam-
ples, yp;byp are the true value of the training sample and the test

paper, and yq;byq are the true value and predicted value of the

validation sample.

Step 5: Update and calculate the velocity and position of
each particle, generate the next generation of particle
swarm, and calculate the individual and global ex-
tremum of the next generation particle swarm. The
fitness value of particles is calculated. If the current
fitness value of particles is less than the individual
extreme value of the previous generation, the indi-
vidual extreme value and individual optimal posi-
tion are updated; if the minimum fitness value of
all particles is less than the current global optimal
value, the global optimal value and global optimal
position are updated.

Step 6: Judge whether the termination conditions are met. If
the training reaches the maximum number of times
or the training error meets the accuracy require-
ments, the iteration is terminated, and the particle

Fig. 3 Combination forecasting
scheme
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position corresponding to the final global optimal
solution is output. Otherwise, go to step 5.

Step 7: Using the optimized parameters of LSTM neural
network model, a new LSTM neural network model
is created. Input the training set and calculate the
final wind speed prediction value.

The flow chart of IPSO-LSTM is shown in Fig. 2:

ARMA model

ARMA model is a basic model for time series analysis.
Let the time series {Yt} is a linear difference equation,

Y t−ϕ1Y t−1−ϕ2Y t−2−⋯−ϕpY t−p

¼ et−θ1et−1−θ2et−2−⋯θqet−q ð23Þ

{et} is white noise, ϕ1⋯ϕp,θ1⋯θq is regression parameter,
and p and q are autoregressive coefficient and moving average
order. If ϕ1⋯ϕp,θ1⋯θq is not all 0, then the sequence {Yt} is
called autoregressive moving average mixing process, which
is called ARMA (p, q).

Combination forecasting scheme

In this paper, 600 data from China’s Changma wind farm and
Spain’s Sotavento wind farm were used, 500 data of which
were intercepted as training sets, and the last 100 data were
used as test sets. The specific steps are as follows:

Step 1. The SVD differential spectrum is used to decompose
the original wind speed data for the first time, and the
original wind speed data is changed into two parts:

Fig. 4 (a–b) Wind speed data of different wind farms. (a) Wind speed of
Changma Wind Farm in China. (b) Wind speed of Sotavento wind Farm
in Spain

(a) 

(b) 

Fig. 5 (a–b) Wind rose chart of different wind farms. (a) Wind rose chart
of Sotavento wind Farm in Spain. (b) Wind rose chart of Changma wind
farm in China
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noise reduction sequence x1(t) and noise sequence
r1(t).

Step 2. MIV screening and PCA were used for multivariate
analysis. Use the energy difference modal number
optimization method to calculate the energy differ-
ence between different modal numbers and select k
value.

Step 3. The SVD noise reduction sequence is decomposed
into k components, namely, IMF1,⋯, IMFk. At the
same time, the noise r2(t) is proposed.

r2 tð Þ ¼ x1 tð Þ−IMF1−⋯−IMFk ð24Þ

Step 4. Wavelet decomposition is used to decompose each
component again to get the denoising sequence x3(t)
and noise sequence r3(t).

Step 5. Analysis of denoising sequence x3(t). Using IPSO-
LSTM neural network to train nonlinear sequence
and ARMA model to train linear series, the predic-
tion result of denoising sequence is y1, ⋯, yk.

Step 6. The noise sequence is fitted with probability distri-
bution. The results show that the data obey normal
distribution. The result of noise analysis yr can be
made up of random numbers from the normal distri-
bution of error sequence.

Step 7. Reconstruct the predicted value to get the final pre-
diction result.

y ¼ y1 þ y2 þ⋯þ yk þ yr ð25Þ

The flow chart is shown in Fig. 3:

Experiment

Data analysis

In this paper, wind speed data of Changmawind farm in China
and Sotavento wind farm in Spain were used for analysis. The
data of Sotavento wind farm include wind speed, wind direc-
tion, air temperature, air pressure, specific volume, specific
humidity, and surface roughness; the environmental factors
of China Changma wind farm include wind direction, air tem-
perature, motor speed, and pitch angle. The hub height of
Sotavento wind farm and Changma wind farm is 45m and
65m, respectively. Six hundred data were selected for training
with a sampling interval of 10min. The first 500 data were
taken as training samples, and the last 100 data were taken as
test sets.

The original wind speed diagram is shown in Fig. 4.
Figure 4a shows the wind speed data of the Changma wind
farm in China, and Fig. 4b shows the wind speed data of the
Sotavento wind farm in Spain. It can be seen from the figure
that the wind speed of Changma Wind Farm in China has a
strong random volatility and no obvious periodic characteris-
tics within the range of 4m/s, 16m/s, while the wind speed of
Sotavento in Spain has a strong random volatility and no ob-
vious periodic characteristics within the range of 4m/s, 17m/s.

(a)

(b)

Fig. 6 (a–b) Sum of wind speed energy decomposed by VMD of
different wind farms. (a) Sum of wind speed energy decomposed by
VMD in Changma wind farm. (b) Sum of wind speed energy
decomposed by VMD in Sotavento wind farm

Table 1 Energy difference between different modes (×10−4)

Modal number 3.4 4.5 5.6 6.7 7.8

E/Sotavento −0.9 −1.1 6.0 −4.3 −5.7
E/Changma 0.4 −1.1 −0.6 −0.4 0.9
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Figure 5 shows the wind rose for two different wind farms.
The wind rose diagram shows the wind direction and the wind
frequency in this direction, which is convenient for readers to
understand the wind data. In this wind data, it can be seen
from Fig. 5a that the main wind directions of Sotavento wind
farm are west wind and south wind. It can be seen from Fig. 5b
that west wind is the main wind direction in Changma wind
farm.

Data processing

Firstly, SVD difference spectrum is used for the first error
decomposition to extract the periodic features in the original
wind speed data and obtain the denoising sequence and noise
term.

Then use the formula to calculate the energy of the wind
speed sequence after preliminary to remove noise and the
results are shown in Fig. 6. It can be seen from Fig. 6a that
the energy at k = 8 is higher than that at k = 7, and the change
range is obvious. Therefore, the mode number of the wind
speed sequence VMD of Changma wind farm is 7. It can be
seen from Fig. 6b that the energy at k = 6 increases significant-
ly compared with that at k = 5. Therefore, the mode number of
VMD of the wind speed series of Sotavento wind farm in
Spain is selected as 5.

It can be seen from Table 1 that when the modal number
changes from 5 to 6 in Sotavento wind farm, the energy of
the denoising sequence after decomposition changes great-
ly; that is, the energy difference becomes larger. Therefore,
the mode number of VMD is 5. Similarly, in Changma
wind farm, when the mode number changes from 7 to 8,
the energy difference becomes larger. Therefore, the mode
number of VMD is 7.

In order to improve the prediction accuracy, we use MIV
method to deal with multiple factors. Firstly, the results of
MIV among multiple factors are shown in Table 2 and
Table 3. We filter out the environmental factors that have little
influence on the wind speed prediction results of Sotavento
and Changma wind farms, that is, temperature, specific

volume, and surface roughness of Sotavento wind farm and
pitch angle of Changma wind farm.

Then, the other factors are analyzed by principal com-
ponent analysis, and all the principal components whose
cumulative variance contribution rate reaches 85% are se-
lected as the fixed inputs of the prediction model. The
results are shown in Table 4. Both wind farms choose the
first three principal components to participate in the
prediction.

After determining the mode number of VMD decomposi-
tion, the wind speed series after noise removal is directly
decomposed into trend sequence part and fluctuation se-
quence part, as shown in Fig. 7. Figure 7a shows the VMD
decomposition data of Changma wind farm. Figure 7b shows
the decomposition data of VMD wind speed of Sotavento
wind farm.

Wavelet decomposition is used to decompose the noise of
the decomposed IMFs for the last time. The final wind speed
sequence which can be used for training is obtained.

Wind Speed prediction

A unit of LSTM neural network contains three gates.
This structure can effectively alleviate the gradient dis-
appearance problem and is more suitable for solving
nonlinear time-varying problems. Therefore, IPSO-
LSTM is used to predict the trend part of the wind speed
sequence. The ARMA model is used to train the linear
sequence.

Figure 8 shows the variation of fitness values when using
IPSO and PSO to optimize the parameters of LSTM neural
network using two different wind farm data. It can be seen
from Fig. 8a that IPSO converges faster. When using the same
parameters, it can be seen from Fig. 8b that PSO has fallen into
obvious local convergence. Therefore, the improvement of
PSO is necessary and successful.

The wind speed prediction results of Changma wind farm
are shown in Fig. 9a, and the wind speed prediction results of
Sotavento wind farm are shown in Fig. 9b:

Table 2 MIV value of Sotavento wind farm

Factor Wind speed Wind direction Air temperature Air pressure Specific volume Specific humidity Surface roughness

MIV 0.4113 −0.2264 −0.1286 0.2492 −0.1093 0.1769 −0.1135

Table 3 MIV value of Changma
wind farm Factor Wind speed Wind direction Air temperature Motor speed Pitch angle

MIV 1.4645 0.0188 −0.0426 −0.0544 0.0014
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It can be seen from the figure that the IPSO-LSTM-
ARMA-E combination prediction is closer to the real value.
IPSO-LSTM can predict the trend part of wind speed series
better than LSTM. LSTM-ARMAmodel can predict the peak
and trough of wind speed fluctuation more accurately than
LSTM neural network. The prediction results of HMD-
IPSO-LSTM-ARMA-E model are better than HMD-IPSO-
LSTM-E model.

In order to better judge the influence of various variables on
the final prediction results and verify the conclusion obtained
from direct observation in Fig. 9, it is necessary to conduct
accurate error analysis on the prediction results.

In this paper, MAPE, MAE, and MSE are selected to eval-
uate the model (Hu et al. 2020; Zhang et al. 2021). The cal-
culation formula is Formula (26)

MAPE ¼ 1

m
∑n

i¼1

xi−bxi
xi

�����
�����

MAE ¼ 1

m
∑n

i¼1jxi−bxij
MSE ¼ 1

m
∑n

i¼1 xi−bxi��� ���2

8>>>>>><>>>>>>:
ð26Þ

where xi bxi is the actual value and predicted value of wind
speed at time t and the sample size is m.

The error analysis is shown in Table 5.
It can be seen from the error analysis table that the con-

clusion obtained from direct observation of Fig. 9 is that
HMD-IPSO-LSTM-ARMA-E combination prediction is
more accurate and can effectively reduce the error. It can
be seen from the table that MAE, MSE, and RMSE are
reduced in varying degrees after adding noise prediction.
Although the prediction results of HMD-IPSO-LSTM-E
model and HMD-IPSO-LSTM model generally have large
errors, the noise prediction still effectively reduces the fi-
nal prediction error, which fully proves the necessity of
noise prediction.

To sum up, the prediction results of HMD-IPSO-LSTM-
ARMA-E scheme proposed in this paper are closer to the
actual values. LSTM-ARMA was used to analyze the differ-
ences of different types of time series. IPSO-LSTM optimizes
the parameters of LSTM model. Adding error analysis in the

reconstruction of prediction results also reduces the final pre-
diction error. The scheme is feasible.

We take data from Sotavento wind farms in Spain. The first
450 data were taken as training samples, and the last 150 data
were taken as test sets. LSTM, RBF, Elman, and BP neural
networks are used to predict the data, and the prediction results
are as follows (Fig. 10, Table 6):

It can be seen from the error analysis table that LSTM neural
network is more suitable for this system. The MAE of LSTM
neural network model is 22.5%, 23.5%, and 33.6% less than
that of RBF, Elman, and BP neural network model, respective-
ly. The MSE of LSTM neural network model is 38.9%, 41%,
and 60.2% less than that of RBF, Elman, and BP neural net-
workmodel, respectively. The RMSE of LSTMneural network
model is 21.9%, 23.4%, and 37.0% less than that of RBF,
Elman, and BP neural network model, respectively. Thus, in
this experiment, the advantage of LSTM neural network in
learning nonlinear sequence has been fully reflected.

Wind speed prediction based on artificial
intelligence

When forecasting wind speed, it needs a lot of historical and
weather information. Artificial intelligence is the best tool to
deal with a lot of data. Due to the lack of space-time data
density of the existing data, the effect of traditional prediction
methods is poor. Artificial intelligence has the ability to infer
incomplete and uncertain information and can achieve high-
precision wind speed prediction. In addition, artificial intelli-
gence can also summarize the knowledge and experience of
experts, improve the average prediction level, and use the
abstract prediction knowledge that cannot be used in statistical
and numerical models to comprehensively consider multiple
influencing factors, so as to improve the prediction level and
operation efficiency of the model.

In recent years, in the research field of wind speed pre-
diction at home and abroad, the application of artificial
intelligence has increased significantly, and it shows a
trend from traditional machine learning to deep learning.
Wind speed is fluctuant and random, which makes wind

Table 4 Results of PCA
Principal
component

Sotavento Changma

Characteristic
value

Cumulative variance
contribution rate (%)

Characteristic
value

Cumulative variance
contribution rate (%)

First 1.8101 45.2527

73.7252

93.1942

100.0000

1.6271 61.2153

81.7340

95.7751

100.0000

Second 1.1389 0.8211

Third 0.7788 0.5616

Fourth 0.2722 0.1690
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speed and wind power series highly nonlinear. Compared
with traditional machine learning methods, deep learning
has obvious advantages in massive data processing and
nonlinear space-time prediction. It has great application
potential in various technical links of wind speed simula-
tion and prediction and provides technical support for
faster, more efficient, and more accurate wind speed
prediction.

Conclusion and future work

In order to reduce carbon emissions and solve environmental
problems such as air pollution and ecological damage, coun-
tries around the world are developing renewable energy tech-
nologies to reduce their dependence on fossil energy.With the
energy revolution facing many problems, wind power has
become an important source of renewable energy, and wind

(a) 

(b) 

Fig. 7 (a–b) VMD
decomposition results of different
wind farms. (a) VMD
decomposition data of Changma
wind farm. (b) VMD
decomposition data of Sotavento
wind farm
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forecasting technology is developing rapidly. New optimiza-
tion methods and combination schemes are constantly pro-
duced. High-precision wind speed predictionmethod provides
a scientific basis for realizing smart power grid and improving
economic benefits of wind farms.

In order to achieve high-precision wind power predic-
tion, this paper proposes an HMD-IPSO-LSTM-ARMA-E
prediction scheme based on the improved VMD method
and IPSO-LSTM neural network, which is verified by the
wind speed data of Changma wind farm in China and
Sotavento wind farm in Spain. The main experimental re-
sults are as follows:

(1) The HMD method is used to decompose the non-
stationary wind speed time series, and the relatively sta-
tionary components and residual terms are obtained,
which effectively solves the problems of the insignifi-
cant periodic characteristics of the wind speed time

series and the difficulty in choosing the VMD mode
number.

(2) Considering that as an improved RNN, LSTM neural
network not only has the ability of analyzing time series

(a)

(b)

Fig. 8 Fitness curves of different wind farms. (a) Fitness curve of
Sotavento Wind Farm. (b) Fitness curve of Changma Wind Farm

(a)

(b)

Fig. 9 (a–b) Wind speed prediction results of different wind farms. (a)
Prediction results of Changma Wind Farm. (b) Sotavento wind Farm
wind speed prediction results

Table 5 Prediction error analysis table

Prediction model Changma Sotavento

MAE MSE RMSE MAE MSE RMSE

H-I-L-A-E 0.2382 0.0837 0.2892 0.2165 0.0703 0.2651

H-I-L-A 0.3436 0.1565 0.3955 0.2969 0.1438 0.3793

H-L-A 0.3938 0.2284 0.4780 0.3034 0.1472 0.3836

H-I-L 0.8026 0.9828 0.9914 0.5792 0.5023 0.7087

H-I-L-E 0.7923 0.9651 0.9824 0.5308 0.4419 0.6648

39978 Environ Sci Pollut Res  (2021) 28:39966–39981



data but also has the ability of long-term memory, using
IPSO to optimize the parameters of LSTM neural net-
work which can improve the prediction accuracy of neu-
ral network.

(3) The ARMAmodel can take into account the dependence
of time series and the disturbance caused by random
fluctuation in the prediction and has a high accuracy in
the short-term trend prediction. In this paper, LSTM neu-
ral network and ARMA model are specifically used to
train and forecast the decomposed nonlinear wind speed
sequence and linear wind speed sequence, respectively,
and the prediction effect is significantly improved.

The results of the improved VMD method, the optimiza-
tion of LSTM neural network, the difference analysis of dif-
ferent sequences, and the multiple noise decomposition are
satisfactory. The combined model highlights the advantages
of each algorithm, and the wind speed prediction system has
more perfect wind speed processing and smaller prediction
error.

In the follow-up prediction work, consider improving the
quality of model input data, using NWP data with higher
resolution and combiningwith geographic information system
to correct wind speed, fully consider the impact of geograph-
ical conditions on wind speed, improve accuracy, further
study wind speed series prediction based on other deep

learning algorithms, try to use more optimization algorithms
to improve the performance of the model, consider that the
combination model combined with physical model, dynamic
model, and fluid mechanics model is constructed to improve
the prediction accuracy and efficiency.

Abbreviation ANN, Artificial neural network; ARMA, Autoregressive
moving average; ARIMA, Autoregressive integrated moving average;
BP, Back propagation; CEEMDAN, Fully integrated empirical mode de-
composition; EMD, Empirical mode decomposition; EEMD, Set empiri-
cal mode decomposition; FCBF, Fast correlation filter algorithm; HMD,
Hybrid mode decomposition; LIDAR, Light detection and ranging;
LSTM, Long- and short-term memory neural network; IMF, Intrinsic
mode functions; IPSO, Improved particle swarm optimization; MAE,
Mean absolute error;MIV,Mean impact value;MSE,Mean square error;
MAPE, Mean absolute percentage error; NCL-RELM, Negative correla-
tion learning-based regularized extreme learningmachine ensemble mod-
el; NWP, Numerical weather prediction; OVMD, Optimal variational
mode decomposition; PSO, Particle swarm optimization; RBF, Radial
basis function; RMSE, Root mean square error; RNN, Cyclic neural net-
work; SODAR, Sound detection and ranging; SVM, Support vector ma-
chine; VMD, Variational mode decomposition; WT, Wavelet transform;
WD, Wavelet decomposition; WPD, Wavelet packet decomposition
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