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Abstract
The real-time location of pollution sources is the process of inverting pollution sources based on the dynamic optimization model
constructed by the time-varying pollution concentration detected by the water quality sensor. Due to the vast quantities of the
water supply networks, the water quality sensors will only be placed on critical nodes, resulting in multiple solutions. However,
the increased monitoring data enhances the uniqueness of the solution. Combinedwith the real-time location of pollution sources,
this work proposed a multi-strategy dynamic multi-mode optimization algorithm based on domain knowledge, which could
guide the population search and avoid trapped into local optimal. The merging mechanism was used to keep the diversity of the
population and prevent sub-population clustering on the same optimal solution. The simulation results showed that the algorithm
could effectively solve the real-time location problem of pollution sources in different pipe networks and pollution scenarios.
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Introduction

With global industrialization and urbanization, drinking water
pollution incidents occur frequently. Through real-time mon-
itoring of the urban water supply network, relevant depart-
ments can take measures whenwater pollution occurs to avoid
economic losses and social panic. The network system of
drinking-water sensors can monitor the water quality in real-
time. Once the pollution is found, the pollution source should
be located in real time to reduce the pollution range, which is
essential to ensure the safety of drinking water (Hu et al.
2018a, b, 2020; Gu et al. 2017, 2019a, b, c; Gu et al.
2017;Yan et al. 2020). Semih Kuter et al. use satellite data

and snow classification for water resource management
(Kuter et al. 2018, 2019).

Recently, the water supply network system detects the con-
centration of pollutants through the arranged water quality
sensors and gives early warning. According to the monitored
time-varying pollution concentration, the real-time location of
the pollution sources reduces the scope of pollution sources in
real-time, to locate the real pollution sources. The increase of
pollution time and concentration data is more restrictive to the
optimal solution, which makes it easier to find the pollution
sources. Once the pollution is detected, the real-time location
of the pollution sources can optimize the potential pollution
sources and locate the real source. Besides, reducing the dif-
fusion time of pollution in the water supply network, it ensures
the safety of citizens’ water use and reduces economic losses
and negative impacts.

The algorithms of pollution sources location can be divided
into particle backtracking, machine learning, and simulation-
optimization. In early research, PBA was widely used to de-
duce pollution sources by tracking the state of the last time
point (Shang et al. 2002; Laird et al., 2005, 2006). Then,
machine learning and simulation-optimization appeared one
after another. The machine learning algorithms calculate the
pollution probability of each node in the water supply network
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to determine the highest probability is the pollution source.
The simulation-optimization methods are transform the pollu-
tion sources lcocation problem into the optimization problem
and use the intelligent optimization algorithms to solve it. The
intelligent optimization algorithms have widely applications
(Yang et al. 2018, Li et al. 2019, Wang et al. 2020a, b, 2021).
Ayse Özmen, Fatma Yerlikaya-Zkurt, and their groups pro-
posed the multivariate adaptive regression splines (MARS); it
is a form of non-parametric regression analysis for building
high-dimensional and nonlinear multivariate functions and
applied in many fields of science, engineering, technology,
finance, and control design in recent years. It is a modern
methodology of statistical learning, data mining, and mathe-
matical estimation theory which is important in both regres-
sion and classification (Özmen, 2016; Roche and Yalcinkaya,
2019, Yerlikaya-Zkurt and Taylan, 2020).

Huang et al. (Huang and Edward, 2009) considered the
uncertainty of water demand, sensor measurement and model-
ing, so the algorithms of data mining combined with the max-
imum likelihood process are used to predict the location and
time of pollution sources. Perelman et al. (Perelman and Avi,
2013first used a clustering algorithm to simplify the water
supply network system and then combined with a Bayesian
network to predict the most likely pollution sources through
probability.

Wang and Xin (Wang and Xin 2013) used the Markov
Chain Monte Carlo Algorithm to predict the characteristics
of pollution sources due to the uncertainty of the water supply
network system. On this basis,Wang and Harrison (Wang and
Harrison 2014) used a support vector regression algorithm to
speed up the likelihood estimation to reduce the calculation
time. Wagner et al. (Wagner et al. 2015) proposed a method
based on ad-joint probability to identify the location, time, and
quality of pollution sources. Such methods can not accurately
locate the pollution source, but only give the possibility that
the node is a source of pollution. However, with the increased
pipe network scale, the calculation complexity of node prob-
ability rises dramatically.

Seth and co-workers (Seth et al., 2016) compared the algo-
rithms for solving pollution source locations, which are the
Bayesian probability method, pollution source state-based
method, and simulation optimization method, where the last
one can solve most pollution intrusion events. The simulation-
optimization process continually searches for the optimal so-
lution by comparing the similarity between the actual moni-
toring data of sensors and the simulation data set of
EPANET. Avi and Elad (Avi and Elad 2005) used the genetic
algorithm to maximize the random pollution matrix to search
for pollution sources. Guan et al. (Guan et al. 2006) designed
the optimization model as a corrector to identify the similarity
between the simulation response data and the measured data
of the monitoring point and then determine the pollution
source. Zechman et al. (Zechman and Ranjithan, 2009) used

the global evolution strategy algorithm based on tree coding
format to search for pollution sources. Lv et al. (Lv et al. 2010)
used a simulation-optimization algorithm to compare the op-
eration results of different input parameters, and the accuracy
of successfully locating pollution sources reached 93.3%. Hu
et al. (Hu et al. 2015) quantified the non-uniqueness of the
localization solution of pollution sources. They proposed a
parallel niche genetic algorithm based on MapReduce, which
calculated the location, quality, and time vectors of pollution
sources. Yan and other researchers (Yan et al. 2017a, b, 2018,
2019a; Gong et al. 2019) transformed the problem of pollution
source location into different optimization problems and
solved themwith different intelligent optimization algorithms.

Based on the pollution source location, the real-time loca-
tion is studied. De et al. (De et al. 2010) developed the alter-
native practical method to locate pollution sources in real-time
by judging the consistency of the candidate source node's
pollution possibility state and time interval with the sensor
data. Liu et al. (Liu et al. 2011) proposed adaptive dynamic
optimization algorithms, including strategies of adaptive mu-
tation and multiple groups. Once the sensor detects the pollu-
tion, the algorithm can locate the source in real-time and nar-
row the scope. Costa et al. (Costa et al. 2013) first found the
paths between pollution points and sources with PBA, then
evaluated possible sources, and finally searched the source in
real-time according to the continuous reading of the sensor.
Wang and Zhou (Wang and Zhou 2017) proposed the time
series Bayesian method. First, obtain the probability distribu-
tion of sensor observations of polluted nodes in offline mode.
Then calculate the posterior probability in real-time and de-
compose it into a hierarchical tree structure. Finally, the nodes
with the highest likelihood are polluted ones in real time. Yan
et al. (Yan et al. 2019b) simulated uncertain water demand
through the Gaussian models and proposed a real-time posi-
tioning algorithm, which can find real pollution events with
fewer sensor data in a short time.

The main algorithms of pollution source location are ma-
chine learning and simulation optimization. However, the lat-
ter is only suitable for small- or medium-sized pipe network
nodes because of the slow solution speed.

Materials and methods

Simulation software

The simulation software of this work is EPANET (Rossman
2000), which can simulate and analyze the water supply sys-
tem. EPANET traces chemical concentration, pipeline water
flow, and node pressures by simulating the characteristics of
reservoirs, valves, pumps, pipelines, and nodes, which is ben-
eficial to water supply enterprises and scientific research.
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In the EPANETwater supply network system, any node can
be used as the source water quality. In the time mode of source
water quality, pollutants can be dynamically injected into a
node and diffuse. Different ways of injecting pollutants at the
source cause the actual pumping of pollutants to be changed.
Source injection methods include mass injection, flow step in-
jection, set point injection, and concentration injection.

The mass injection is to inject equal quality pollutants ac-
cording to the set mass curve. Flow step injection is to insert
fixed concentration pollutants into the water inlet end of the
nodes, while set point injection is to insert the pollutants into
the outlet. The above three methods are applied to simulate the
invasion of tracer, disinfectant, and pollutant without consid-
ering the water demand of the nodes. However, concentration
injection is suitable for simulating the source of water supply,
because it changes the pollutant concentration at the source
node, which is related to water demand.

Problem modeling

In the drinking water supply network, sensors at key nodes
monitor water quality in real time. Once pollution is detected,
it will warn and continuously record real-time water quality.
With the increase of information collected, it is essential to
locate the characteristics of pollution sources in real-time,
such as the location of pollution sources, injection time, dura-
tion, and quality vector. Sensors are only arranged to key
nodes owing to the large scale of the water supply network.
It makes the location of pollution sources “symmetrical,” lead-
ing to the non-uniqueness of solutions. This problem belongs
to multi-mode optimization (Hu et al. 2015; Yan et al. 2019c).

The real-time location of the pollution source is proposed
based on the source location. From the perspective of simulation
optimization, both are reverse-tracing problems, which is to solve
the pollution source by comparing the difference between the
cumulative concentration data of the potential pollution and the
real. However, the simulation optimization process of pollution
source location is static, while the other is dynamic. Figure 1 (a)
shows that when the sensor detects pollution, only by accumu-
lating enough concentration data can the optimization algorithm
locate the pollution source. In previous studies, the cumulative
concentrations calculated by the datamodel ranged from 24 to 48
h. When the pollution in the pipe network is detected, the source
location cannot show the scope immediately, and the pollution
will spread for 10–20 h. Therefore, this work proposes the real-
time location of pollution sources. Figure 1 (b) shows that when
pollution is detected, the real-time location of pollution sources
will be optimized in a short time. The ever-increasing real ob-
served concentration data makes the optimization algorithm
more accurate. Unlike the cumulative concentration data of the
data model of pollution source location, the real-time site is be-
tween the time when the pollution is first detected at the polluted
time t0 and the current time tc. Moreover, the increased tc

increases concentration data and the accuracy of the optimization
algorithm.

The non-uniqueness of the solution is more challenging in the
real-time location of pollution sources rather than the location.
The increased monitoring data will optimize the solution to re-
duce the quantity. As for optimization, it is necessary to compare
the real sensor concentration accumulation data with the simulat-
ed data at a specific time and take this as the individual fitness
value. With the spread of pollution sources, the pollution con-
centrationsmonitored by sensors vary at different times, resulting
in the inability to compare individual fitness values. Therefore,
this work expresses the optimization problem as Eq. (1),

Minimize f ¼
L;M;T0;Df g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
t¼t0

tc

∑
Ns

i¼1
cobsit −c*it
� �2

∑
t¼t0

tc
∑
Ns

i¼1
cobsitð Þ2

v
u
u
u
u
u
u
t

Subject to M

¼ m1;m2;⋯;mkf g; mi≥0 and L ¼ 1;⋯; Nf g ð1Þ

where f is the prediction error; t0 the time when the sensor first
detects the pollution in the real scene; tc the current time; Ns the

(a)

(b)

Fig. 1 Concentration comparison
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number of sensors; cit
obs the pollutant concentration of the obser-

vation sensor i at time t; cit
* the pollutant concentration of sensor i

when EPANET simulates potential pollution event at time t,
which can be obtained by function {L,M,T0,D}; L the total num-
ber of nodes; M the injection vector of the pollution source; T0
the initial injection time; and D the injection duration. The opti-
mization goal is to obtain the optimal solution {L,M,T0,D} by
finding a minimum value of f. This formula calculates the simi-
larity between the simulated and the real concentration from t0 to
tc. The data on increasing pollution concentration increases with
the increase tc, which leads to the optimization of the candidate

solutions. Also, the degree of non-uniqueness of the problem
reduces, that is, the number of potential pollution events
decreases.

Therefore, the number of potential solutions for the real-
time location of pollution sources will decrease with time until
finding the source event. In this work, through the limited
sensor data set to search the whole water supply network,
we can obtain multiple possible pollution sources. When the
real time is considered, the data increases. The constraint on
the solution is more significant, which causes the non-
uniqueness degree of the solution to decrease. Thus, this work
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transforms the problem of the real-time location of pollution
sources into a dynamic multi-mode optimization problem.

Real-time location algorithm based on domain
knowledge

In this work, a simulation-optimization algorithm is used to
solve the real-time location of pollution sources. In the water
supply network system, the sensor detects the pollution for the

first time at time tc, which indicates that pollution intrusion
exists. The pollution concentration information recorded by
the sensor can be used as the real pollution source data after
each time step Δt. In real life, when pollution is detected for
the first time, relevant departments should launch a dynamic
multi-mode optimization algorithm to search the pollution
source information accurately. At a specific time tc, a series
of calculated pollution events are input to EPANET to gener-
ate the simulated concentration data.

Comparing the real concentration data with the simulation,
we can screen out hidden pollution events to locate the pollu-
tion source information as soon as possible. Figure 2 shows a
detailed flowchart for solving the real-time location of pollu-
tion sources. When the difference between the cumulative
simulated concentration and the actual cumulative monitoring
is 0 or less than a specific threshold value at the time tc, the
pollution event is the real pollution source (including pollution
source location, injection time and duration, and quality
vector).

Algorithm architecture

It is critical to detect environmental changes and the corre-
sponding methods in dynamic optimization problems, which
can be solved by dynamic multi-group optimization algo-
rithms (Cruz et al. 2011; Nguyen et al. 2012; Jin and Branke
2005; Yang and Li 2010). The environmental change is that
the collection of pollution information at each time step is
increasing, which means that the real-time location is a static
optimization problem at a specific time.

At time t, k sub-populations iterative evolve and optimize
simultaneous. During iterative evolution, the population
searches globally through selection, crossover, and mutation.
If an individual of the population satisfies certain conditions, it
enters the local optimizer for a local search to improve the
accuracy of the algorithm. The premise is to assume that the
optimal individual of each sub-population is a feasible solu-
tion to the problem. Before entering the next moment, the
population adopts strategies of merging populations, retaining

(a)

(b)

Fig. 4 Observed pollution concentrations

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 5 Domain search process
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excellent individuals and introducing random individuals to
respond to changes. When k populations are optimized, the
node positions of the optimal individuals of some populations
may be the same, which indicates that populations with the
same search direction need to merge. Environmental change
will lead to the premature convergence of k sub-populations
and increase search costs. Sub-population needs to keep the
optimal individuals of the same node while replacing the de-
leted individuals with new ones generated randomly. Figure 3
shows the specific optimization process.

Selection strategy based on domain knowledge

Previous real-time location studies of pollution sources had
ignored the moment when the water quality sensor first de-
tected pollution, which was essential for accurately locating
p o l l u t i o n s o u r c e s . F o r e x a m p l e , i n t h e
BWSN1_Ostfeld2008 Avi et al. 2008 pipe network, the 44th
node was injected with a pollution event. Figure 4 shows the
pollution concentrations detected by sensors 10 and 100 in a
day. The left side of the dotted line indicates that the pollution
concentration is zero, while the time when the pollution is first
detected is 6:10. According to the experience of experts, if the
time t0

* for the first detection of potential pollution is farther
from t0, the less likely it is to be the real pollution.

Priority is given to the optimization of individuals with A
close to B, which can find the real pollution events. The pro-
cessing formula is as Eq.(2).

t*0‐t0
�
�

�
� < ε ð2Þ

Each individual in the population is a pollution event, and
the first pollution monitoring time t0* can be obtained through
EPANET. When the individual’s satisfies Eq. (2), it can be
regarded as a potential pollution event and will not be elimi-
nated. Considering the individual fitness value, if the potential
individuals selected by each sub-population meet the Eq. (2)
dominate, the roulette wheel selection is improved by individ-
ual fitness value. Otherwise, it is improved by the individual’s
|t0*-t0| value. And the threshold ε=30 min.

Domain search strategy based on domain knowledge

At present, most studies have adopted single-point mutation
for the injection start and duration time after the hybrid coding
of pollution events. The two have no relevance, which makes
the algorithm fall into local optimum. Experiments found that
when the time series determined by the injection start and
duration time highly coincides with the real pollution source,
the mutation falls into local optimum. For example, the actual
injection start and duration time are (2, 4), while the time
sequence of (3,3) coincides with the real by 3, 4 and 5, which
means the feasible solution containing the gene fragment may
be a right solution. In the local optimum, the probability of
(3,3) single point mutation to (2,4) is low, indicating that (3,3)
is better than (5,4). Although the duration of (5,4) is consistent
and (3,3) is inconsistent, individuals with (3,3) gene fragments
have lower fitness values than (5,4). The above analysis
shows that the higher the time series coincidence of pollution
events, the smaller the prediction error. This work, from the
time series of injection start and duration, proposed a domain
search strategy. The start and duration time was taken as a
whole to search for the time series with the highest degree of
coincidence, keeping individual diversity and jumping out of
the local optimum. The Harley coding principle adopted here
made the time series obtained by the search different from
itself by only one time period.

Table 1 Pipe network parameters
Pipe Network Parameter Net3_Rossman2000 BWSN1_Ostfeld2008 ky5_Jolly2013

Number of nodes 97 129 430

Number of pipes 119 178 507

Reservoir 2 4 4

Pool 3 3 3

Hydraulic step 1 h 1 h 1 h

Water quality step 5 min 5 min 5 min

Sensor position distribution 37, 61 10, 83, 100 6, 22, 30, 34, 40, 42, 43,
76, 80, 87

Table 2 Algorithm parameters

Parameters Parameter description Parameter size

k Number of subpopulations 10

pop_size Size of subpopulations 10

gMax Population iterations 20

Pc Crossover probability 95%

Pm Mutation probability 70%

Δt Time step 10 min

tMax Positioning time 2 h

scale Local search scale 2*10

46271Environ Sci Pollut Res  (2021) 28:46266–46280



In Fig. 5, it is assumed that the time interval is 0–11 for a
total of 12 h, where the gray time quantum indicates that the
pollution source has been injected. The second line represents
the time series corresponding to (2,4). The adjacent search
directions may be different, but only search in four-time series
that differ by one time period, which is represented by (3,3),
(1,5), (2,3), and (2,5) represented by 3, 4, 5, and 6 in the
figure. Randomly selecting one of the searches results in a
corresponding new start and duration time.

Local search strategy based on domain knowledge

Individual gene coding methods include integer coding and
variable-length real-number coding. During selecting, cross-
ing, and mutation, the dynamic algorithm is easier to find the
integer coding genes composed of node position, injection
start, and duration time, while the variable-length real-number
coding quality vector is difficult to converge to the exact val-
ue. Experiments showed the fitness value of the dynamic op-
timization algorithm based on Darwin’s idea dropped rapidly
at the beginning and then slowly. It became invariant after
iteration, which could not reach a minimal value. The algo-
rithm accuracy was improved by searching for the quality

vector separately and increasing the optimization cost.
Referring to the analysis of improved selection strategies,
when the potential individual |t0

*-t0|=0, the quality of the in-
dividual is searched separately. In this work, the behavior of
optimizing the quality vector of potential individuals satisfy-
ing |t0

*-t0|=0 is called the local search strategy of the whole
multi-group dynamic algorithm.

Particle swarm optimization (PSO) algorithm is widely
used in engineering. It has a simple algorithm, fast conver-
gence, and few adjustment parameters, which is suitable for
optimizing continuous problems. Therefore, the standard PSO
algorithm is used in the local search of the quality vector for
the real-time location of pollution sources. In this paper, let
ω=0.8, c1=c2=2.

Algorithm steps

This work proposed multiple strategies based on domain
knowledge to analyze the characteristics of the real-time loca-
tion of pollution sources. When the original Dynamic Multi-
group Optimization algorithm (DMOA) was combined with
the three improved strategies, the algorithm could quickly
converge while improving accuracy. The steps of multi-

Table 3 Pollution scenarios of
Net3_Rossman2000 pipe
network

Scenes Node number Pollution
injection start time

Duration(h) Injected pollution
concentration(mg/L)Parameters

Pollution scene1 16 2 4 300, 180, 240, 180

Pollution scene 2 86 2 4 300, 180, 240, 180

Fig. 6 Net3_Rossman2000 pipe
network
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strategy dynamic multi-mode optimization algorithm based
on domain knowledge are as follows:

Step 1 Initialization: k sub-populations are initialized ran-
domly, namely, p1, p2,…pk, where the initial value of k
depends on the size of the network.
Step 2 Population iteration: Let the current time tc=t0+Δt,
and let the current iteration number g=0.
Step 2.1 Selection operator: Let g=g+1. Each sub-
population adopts an improved selection strategy. That
is when the potential individual of sub-population Pi

dominates, the roulette wheel selection is improved by
the prediction error. Otherwise, improved by the size of
the individual |t0

*-t0|.
Step 2.2 Crossover operator: Discrete coding (position
and time variables) adopts a two-point crossover, while
continuous coding (mass vector) adopts real number
recombination.
Step 2.3 Mutation operator: The position and quality vec-
tors adopt a single point mutation, while the time variable
takes the improved proximity search strategy in 3.3.
Step 2.4 Condition of stopping iteration: when g≤gMax,
update the fitness values and elite individuals of each sub-

Table 4 Results of Net3_Rossman2000 pipe network

Pipe Network Scale Pollution incident Algorithm Positioning accuracy Optimal fitness value Average fitness value
at successful positioning

Net3_Rossman2000 97 16 DMOA 36.67% 0.2324 0.3223

MSDMOA 66.67% 0.0078 0.1353

86 DMOA 46.67% 0.1001 0.3313

MSDMOA 90% 0.0104 0.0979

(a)

(b)

Fig. 7 Time-varying graph of the average fitness value of the Net3_
Rossman2000 pipe network

Fig. 8 Time-varying graph of the solutions to the Net3_Rossman2000
pipe network

46273Environ Sci Pollut Res  (2021) 28:46266–46280



population and continue Step 2.1. Otherwise, continue
Step 3.
Step 3 Local search: Considering the time cost of the
algorithm, PSO search is performed separately on the
quality vectors of the individuals satisfying |t0

*-t0|=0 after
each sub-population iteration.
Step 4 Response to changes: Only the best individuals
with the same position in each population are retained
after merging sub-populations, while new individuals re-
place the original ones.
Step 5 Condition of stopping the algorithm: When tc-
t0<tMax, the algorithm ends. Otherwise, Step 2 continues.

Results and discussion

Setting of pipe network and algorithm parameters

This work compared the networks Net3_Rossman2000,
BWSN1_Ostfeld2008, and KY5_Jolly2013 to verify the ef-
fectiveness of Multi-Strategy Dynamic Multi-Mode
Optimization Algorithm (MSDMOA) based on domain
knowledge. Table 1 shows the detailed settings of the three
experimental pipe networks (Ostfeld et al. 2008). The number

of nodes, pipes, reservoirs, and pools in the innovative pipe-
line networks determines their scales and complexity, which
in turn determines the location and number of sensors.

Assuming that all experiments are single-source injections,
the algorithm proposed in this work is compared with DMOA
to analyze the results. Table 2 is the parameters of the algo-
rithm proposed in this work.

The parameters of experimental equipment are as follows
CPU is Intel® Core™ i5-3230 2.6 GHz, RAM is 8G, Hard
Disk is 1 TB, and the computer operating system is win7
32bit.

Algorithm performance indicators

There are few existing evaluation indicators about the real-
time location of pollution sources, but this work gives useful
performance indicators based on the characteristics of the
problem. The purpose of real-time positioning research is to
locate the pollution source through an optimization algorithm
when the water quality sensor detects the pollution, which
minimizes the harm. The following are performance
indicators.

Positioning accuracy: Due to the non-uniqueness of the
solution to the real-time location of the pollution sources, the
best solution of the dynamic algorithm may be one or a group

Table 5 BWSN1_Ostfeld2008 pollution scenes of the pipe network

Scenes Node number Pollution injection start time Duration(h) Injected pollution concentration(mg/L)
Parameters

Pollution scene1 23 2 4 300, 180, 240, and 180

Pollution scene 2 92 2 4 300, 180, 240, and 180

Fig. 9 BWSN1_Ostfeld2008 pipe network

46274 Environ Sci Pollut Res  (2021) 28:46266–46280



of pollution events. The pollution position of the best solution
is defined as {l1,…, lN}, N>0, where N is the optimal solution
set size. If the actual pollution source position is ltrue∈{l1,…,
lN}, the optimization locates the pollution source. In the same
pollution scene, R times of the same experiments are used to
locate Rsucceed times, and the positioning accuracy rate is
p=Rsucceed/R.

Average fitness value for positioning success: The increase
in observation time reduces the non-uniqueness of the prob-
lem, resulting in different observation time solutions. If the
optimal solution set of the dynamic algorithm is N at the cur-
rent time tc, then the fitness value is fc=ΣNi=lturefi/N. Since the
result of inaccurate positioning is meaningless, the average

value fc of successful positioning in multiple experiments is
an important performance indicator.

Algorithm performance discussion

Net3_Rossman2000 pipe network

In this experiment, the network of Net3_Rossman2000 was
used. Table 1 shows the parameters of the pipe network, while
Fig. 6 shows the topological structure. Table 3 shows the
settings of two pollution scenarios, in which the pollution
concentration continuously injected is in 1 hour.

Table 6 Results of BWSN1_Ostfeld2008 pipe network

Pipe network Scale Pollution incident Algorithm Positioning accuracy Optimal fitness value Average fitness value
at successful positioning

BWSN1_Ostfeld2008 129 23 DMOA 60.00% 0.0303 0.1937

MSDMOA 90.00% 0.0008 0.1004

92 DMOA 53.33% 0.0516 0.3484

MSDMOA 93.33% 0.0025 0.0744

Fig. 10 Time-varying graph of the average fitness value of BWSN1_
Ostfeld2008

Fig. 11 Time-varying graph of solutions number to BWSN1_
Ostfeld2008
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Fig.6 shows the optimization results of the two pollution
scenarios after the algorithms MSDMOA and DMOA are
conducted 30 times, and 2 h after the sensor first detects the
pollution. Table 4 shows the results of the algorithm perfor-
mance and comparison indicators proposed above.

Table 4 shows that the location accuracy of DMOA based
on multi-strategy is better than that of the general, meaning
that the ability of MSDMOA to search and jump out of local
optimization is better than that of DMOA. Besides, the opti-
mal fitness value and the average fitness value of successful
localization ofMSDMOA are less than that of DMOA, but the
convergence degree is reversed. The above indicates that the
start time, duration, and concentration curve of MSDMOA to
obtain the optimal solution. However, although the accuracy

of MSDMOA is better than DMOA in the pollution incidents
at the 16th node, there is still room for improvement. The
accuracy of the algorithm improves with the increased posi-
tioning time or sensors; however, because of the damage and
cost of pollution, it can only do more efficient positioning in
limited time and sensors.

Pollution events 16 and 86 were first detected by water
quality sensors at 3:30 a.m. and 3:25 a.m., respectively.
Figure 7 shows the average real-time location fitness values
of the two dynamic algorithms within 2 h after the pollution is
first detected, where the first performance of MSDMOA is
similar to DMOA. However, in the later stage, MSDMOA’s
fitness value decreases rapidly, and the searched pollution
source is more accurate, which shows a better ability to jump
out of local optimization and search. Besides, the pollution
concentration detected by the sensor increases sharply at a
specific time, which expands the environmental fluctuation.
The average fitness curve risen slightly in the later period,
indicating that the ability of MSDMOA to resist environmen-
tal changes needs to be improved. Figure 8 shows the changes
in the number of optimal solutions to pollution sources over-
time in 2 h, where MSDMOA performs better than DMOA,
proving a strong search ability and fast convergence speed.

BWSN1_Ostfeld2008 pipe network

In this experiment, the BWSN1_Ostfeld2008 water supply
pipe network was used. Table 1 shows the parameters of the
pipe network, while Fig. 9 shows the topological structure.
Table 5 shows the settings of the two pollution scenarios,
where the pollution concentration continuously injected is in
a unit of 1 h.

Figure 9 shows the optimization results of two pollution
scenarios after MSDMOA and DMOA are conducted 30
times, 2 h after the sensor first detects the pollution. Table 6
shows the results of the algorithm performance and standard
comparison indexes.

Table 6 shows that MSDMOA is superior to DMOA in
positioning accuracy and optimal fitness values, indicating
that MSDMOA has more potent abilities to jump out of local
optimum and search. The average fitness value of MSDMOA
at successful positioning is better than that of DMOA.
However, it is opposite in pollution event 23, because jumping
out of the local position at the later stage results in insufficient
convergence of the individual. In general, MSDMOA has a

Table 7 Pollution scenarios of KY5_Jolly2013 pipeline network

Scenes Node number Pollution injection start time Duration (h) Injected pollution concentration(mg/L)
Parameters

Pollution scene1 31 2 4 300, 180, 240, and 180

Pollution scene 2 155 2 4 300, 180, 240, and 180

Fig. 12 KY5_Jolly2013 pipe network
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robust search performance, but there are individuals with in-
sufficient convergence.

Pollution events 23 and 92 were first monitored by water
quality sensors at 5:40 and 11:10 am, respectively. Figure 10
shows the average fitness value of the two dynamic algorithms
for real-time localization within 2 h of the first monitoring of
pollution. The fitness value and the upward fluctuation of the
MSDMOA curve are small in the later period, showing a
stronger ability to adapt to environmental changes. Figure 11
shows that the non-uniqueness degree of the solution to the
real-time location of pollution sources decreases with time
(the increase of data). The performance ofMSDMOA is better
than that of DMOA, indicating the strong search ability and
fast convergence speed.

ky5_Jolly2013 pipe network

This experiment uses the KY5_Jolly2013 water supply pipe
network. Table 1 shows the parameters of the pipe network,
while Fig. 12 shows the topological structure. Table 7 shows
the settings of the two pollution scenarios tested in the water
supply network, where the continuously injected pollution
concentration is in 1 hour.

Figure 12 shows the optimization results of the two pollu-
tion scenarios after MSDMOA and DMOA are tested 30
times, while the pollution is first detected within 2 h.
Table 8 shows the results according to the algorithm perfor-
mance indicators and common comparison indicators.

Table 8 Results of KY5_Jolly2013 pipe network

Pipe network Scale Pollution incident Algorithm Positioning accuracy Optimal fitness value Average fitness value at
successful positioning

ky5_Jolly2013 430 31 DMOA 43.33% 0.0967 0.3175

MSDMOA 83.33% 0.0018 0.0906

155 DMOA 50.00% 0.2247 0.3753

MSDMOA 100.00% 0.0706 0.2475

Fig. 13 ky5_Jolly2013 average fitness values time-varying graph Fig. 14 KY5_Jolly2013 solution numbers time-varying graph
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Table 8 shows that the positioning accuracy and optimal
fitness value of MSDMOA are better than DMOA, indicating
more potent abilities to jump out of local optimum and search.
The average fitness value of MSDMOA at successful posi-
tioning is better than DMOA, except for pollution incident
155. The non-uniqueness degree of the solution to the pollu-
tion event 155 in the pipeline network is higher than that of the
first two pipelines, which makes the average fitness value
challenging to converge. Therefore, MSDMOA has excellent
stability to be used on the big pipe network.

The first time that a water quality sensor detected pollution
events 31 and 155 was at 2:15 a.m. and 3:05 a.m., respective-
ly. Figure 13 shows the average fitness values of the two
dynamic algorithms for real-time localization within 2 h of
the first monitoring of pollution. MSDMOA has a fast con-
vergence speed and a strong ability to adapt to environmental
changes. Figure 14 shows the changes in the number of opti-
mal solutions to pollution sources over time within 2 h, where
MSDMOA performs better than DMOA. However, the num-
ber of the solutions with the two algorithms on the pollution
event 155 fail to converge, indicating that the non-uniqueness
of the solution increases along with the pipe network scale.

Conclusions

In this work, the simulation optimization method was used to
solve the real-time location of drinking water pollution
sources. Water quality sensors were only set at critical nodes
of the water supply network, resulting in multiple solutions.
The gradual increase of the monitoring data led to the optimi-
zation of the solution and the reduction of non-uniqueness.
Therefore, the dynamic multi-mode optimization algorithm
based on domain knowledge was designed to solve multiple
solutions. The multi-group merging mechanism prevented the
sub-populations from gathering at the same pollution location
as the environment changed. Meanwhile, to improve accuracy
and avoid falling into local optimality, this work used domain
knowledge to enhance the evolution step by a multi-strategy
hybrid search. The simulation results in three different scale
pipe networks showed that the difficulties of locating real
pollution events were various under different scales, topology,
and pollution scenarios. The positioning accuracy of the algo-
rithm in this work was higher than that of unmodified DMOA,
especially for the excellent ability to jump out of the local
optimal. Moreover, when it was converted to the same fitness
value, the convergence speed of the proposed algorithm was
higher than that of the unmodified DMOA. The algorithm
proposed in this paper can locate the pollution source quickly
and meet the real-time requirement of the location of drinking
water pollution sources. The proposed algorithm can promote
the method and technology in the field of pollution sources

location, which has important scientific and practical
significance.

List of abbreviations/nomenclature PBA, Particle backtracking algo-
rithm; PSO, Particle swarm optimization; MSDMOA, Multi-Strategy
Dynamic Multi-Mode Optimization Algorithm; DMOA, Dynamic
Multi-Group Optimization Algorithm; f, prediction error; t0, the time
when the sensor first detects the pollution in the real scene; tc, the current
time; Ns, the number of sensors; cit

obs, the pollutant concentration of the
observation sensor i at time t; cit

*, the pollutant concentration of sensor i
when EPANET simulates potential pollution event at time t; L, the total
number of nodes;M, the injection vector of the pollution source; T0, the
initial injection time; D, the injection duration; k, Number of subpopula-
tions; pop_size, Size of subpopulations; gMax, Population iterations; Pc,
Crossover probability; Pm, Mutation probability; Δt, Time step; tMax,
Positioning time;N, the optimal solution set size; ε, threshold; ltrue, actual
pollution source position; p, the positioning accuracy rate; fc, the average
value of successful positioning f

Acknowledgments We are very thankful for the potential referees for
their valuable suggestions to improve the quality of the manuscript.

Authors’ contributions Conceptualization: Xuesong Yan, Chengyu Hu
Methodology: Xuesong Yan, Bin Wu
Formal analysis and investigation: Zhengchen Zhou
Writing—original draft preparation: Xuesong Yan, Zhengchen Zhou
Writing—review and editing: Bin Wu
Funding acquisition: Chengyu Hu
Resources: Chengyu Hu
Supervision: Chengyu Hu.

Funding This work is supported by the National Natural Science
Foundation of China (Granted Nos. U1911205 and 62073300), the
Fundamental Research Funds for the Central Universities, CUG
(Granted Nos.CUGGC03) and the Fundamental Research Funds for
the Central Universities, JLU ( Granted Nos.93K172020K18).

Data Availability All data generated or analysed during this study are
included in this published article.

Declarations

Ethical approval and consent to participate Not Applicable

Consent for publication On behalf of all authors, I declare that this
manuscript is the authors’ original work and has not been published nor
has it been submitted simultaneously elsewhere and all presentations of
case reports must have consent for publication.

Competing interests The authors declared that they have no conflicts of
interest to this work.

References

Avi O, Elad S (2005) Optimal earlywarningmonitoring system layout for
water networks security: inclusion of sensors sensitivities and re-
sponse delays. Civ Eng Environ Syst 22(3):151–169. https://doi.
org/10.1080/10286600500308144

Avi O, James GU, Elad S, Berry JW, Hart WE, Phillips CA, Watson JP,
Dorini G, Jonkergouw P, Kapelan Z et al (2008) The battle of the

46278 Environ Sci Pollut Res  (2021) 28:46266–46280

https://doi.org/10.1080/10286600500308144
https://doi.org/10.1080/10286600500308144


water sensor networks (bwsn): A design challenge for engineers and
algorithms. J Water Resour Plan Manag 134(6):556–568. https://
doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)

Costa DM, Melo LF, Martins FG (2013) Localization of contamination
sources in drinking water distribution systems: a method based on
successive positive readings of sensors. Water Resour Manag
27(13):4623–4635. https://doi.org/10.1007/s11269-013-0431-z

Cruz C, González JR, Pelta DA (2011) Optimization in dynamic envi-
ronments: a survey on problems, methods and measures. Soft
Comput 15(7):1427–1448. https://doi.org/10.1007/s00500-010-
0681-0

De S, Annamaria E, Feng S, James GU (2010) Real-time identification of
possible contamination sources using network backtracking
methods. J Water Resour Plan Manag 136(4):444–453. https://doi.
org/10.1061/(ASCE)WR.1943-5452.0000050

Gong J, Yan X, Hu C, Wu Q (2019) Collaborative based pollution
sources identification algorithm in water supply sensor networks.
Desalin Water Treat 168:123–135. https://doi.org/10.5004/dwt.
2019.24204

Gu X, Zhang Q, Li J, Vijay PS, Liu J, Sun P, He C, Wu J (2019a)
Intensification and expansion of soil moisture drying in warm sea-
son over eurasia under global warming. J Geophys Res-Atmos 124:
3765–3782. https://doi.org/10.1029/2018JD029776

Gu X, Zhang Q, Li J, Vijay PS, Liu J, Sun P, Cheng C (2019b)
Attribution of global soil moisture drying to human activities: A
quantitative viewpoint. Geophys Res Lett 46:2573–2582. https://
doi.org/10.1029/2018GL080768

Gu X, Zhang Q, Li J, Vijay PS, Sun P (2019c) Impact of urbanization on
nonstationarity of annual and seasonal precipitation extremes in
China. J Hydrol 575:638–655. https://doi.org/10.1016/j.jhydrol.
2019.05.070

Gu X, Zhang Q, Vijay PS, Zheng Y (2017) Changes in magnitude and
frequency of heavy precipitation across China and its potential links
to summer temperature. J Hydrol 547:718–731. https://doi.org/10.
1016/j.jhydrol.2017.02.041

Guan J, Mustafa MA et al (2006) Identification of contaminant sources in
water distribution systems using simulation – optimization method:
case study. JWater Resour PlanManag 132(4):252–262. https://doi.
org/10.1061/(ASCE)0733-9496(2006)132:4(252)

Hu C, Dai L, Yan X, Gong W, Liu X, Wang L (2020) Modified NSGA-
III for sensor placement in water distribution system. Inf Sci 509:
488–500. https://doi.org/10.1016/j.ins.2018.06.055

Hu C, Li M, Zeng D, Guo S (2018a) A survey on sensor placement for
contamination detection in water distribution systems. Wirel Netw
24(2):647–661. https://doi.org/10.1007/s11276-016-1358-0

Hu C, Shu X, Yan X, Zeng D, GongW, Wang L (2018b) Inline wireless
mobile sensors and fog nodes placement for leakage detection in
water distribution systems. Software Pract Exper 39:1–16. https://
doi.org/10.1002/spe.2631

Hu C, Zhao J, Yan X (2015) A map reduce based parallel niche genetic
algorithm for contaminant source identification in water distribution
network. Ad Hoc Netw 35:116–126. https://doi.org/10.1016/j.
adhoc.2015.07.011

Huang J, Edward AM (2009) Data mining to identify contaminant event
locations in water distribution systems. J Water Resour Plan Manag
135(6):466–474. https://doi.org/10.1061/(ASCE)0733-9496(2009)
135:6(466)

Jin Y, Branke J (2005) Evolutionary optimization in uncertain
environments– a survey. IEEE Trans Evol Comput 9(3):303–317.
https://doi.org/10.1109/TEVC.2005.846356

Kuter S, Akyürek Z, Weber GW (2018) Recent contributions to climate
change and water resource management by applying novel analytics
on satellite data. EWG-ORD 2018 Workshop OR for Sustainable
Development: Establishing Policy and Measuring Goal Attainment,
Complutense University of Madrid, Spain, July 5-7, 2018. pp. 1-11

Kuter S, Akyürek Z, Weber GW, Gütmen S (2019) Advancing Water-
Resource Management: Application of Novel OR-Analytics - Snow
classification on Sentinel-2 imagery by MARS. EWG-ORD 2019
Workshop Renewable: Energy, Health & Sustainability. Dublin,
Ireland, June, 2019, pp1-10.

Laird CD, Biegler LT, van Bloemen Waanders BG, Bartlett RA (2005)
Contamination Source Determination for Water Networks. J Water
Resour Plan Manag 131(2):125–134. https://doi.org/10.1061/
(ASCE)0733-9496(2005)131:2(125)

Laird CD, Lorenz TB, Bart GV (2006) Mixed-integer approach for
obtaining unique solutions in source inversion of water networks.
J Water Resour Plan Manag 132(4):242–251. https://doi.org/10.
1061/(ASCE)0733-9496(2006)132:4(242)

Li S, GongW,Yan X, Hu C, Bai D,Wang L (2019) Parameter estimation
of photovoltaic models with memetic adaptive differential evolu-
tion. Sol Energy 2019(190):465–474. https://doi.org/10.1016/j.
solener.2019.08.022

Liu L, Ranjithan SR, Mahinthakumar G (2011) Contamination source
identification in water distribution systems using an adaptive dy-
namic optimization procedure. J Water Resour Plan Manag
137(2):183–192. https://doi.org/10.1061/(ASCE)WR.1943-5452.
0000104

LvM, et al (2010) Notice of retraction investigation on backward tracking
of contamination sources in water supply systems-case study. In
2010 The 2nd Conference on Environmental Science and
Information Application Technology 484-487. doi:https://doi.org/
10.1109/ESIAT.2010.5568348

Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic optimiza-
tion: a survey of the state of the art. Swarm Evolut Comput 6:1–24.
https://doi.org/10.1016/j.swevo.2012.05.001

Özmen A (2016) Introduction. In: robust optimization of spline models
and complex regulatory networks. Contributions to Management
Science. Springer, Cham. https://doi.org/10.1007/978-3-319-
30800-5_1

Perelman L, Avi O (2013) Bayesian Networks for Source Intrusion
Detection. J Water Resour Plan Manag 139(4):426–432. https://
doi.org/10.1061/(ASCE)WR.1943-5452.0000288

Roche R, Yalcinkaya F (2019) Electrospun polyacrylonitrile nanofibrous
membranes for point-of-use water and air cleaning. Chemistry Open
8(1):97–103. https://doi.org/10.1002/open.201800267

Rossman LA (2000) Epanet 2 users manual, US environmental protection
agency. Water Supply and Water Resources Division , National
Risk Management Research Laboratory, Cincinnati, p 45268

Seth A, Klise KA, Siirola JD, Haxton T, Laird CD (2016) Testing
Contamination source identification methods for water distribution
networks. JWater Resour PlanManag 142(4):04016001. https://doi.
org/10.1061/(ASCE)WR.1943-5452.0000619

Shang F, James GU, Marios MP (2002) Particle backtracking algorithm
for water distribution system analysis. J Environ Eng 128(5):441–
450. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:5(441)

Wang C, Zhou S (2017) Contamination source identification based on
sequential Bayesian approach for water distribution network with
stochastic demands. IISE Trans 49(9):899–910. https://doi.org/10.
1080/24725854.2017.1315782

Wagner DE, Roseanna MN, Cody C (2015) Adjoint-based probabilistic
source characterization in water-distribution systems with transient
flows and imperfect sensors.Water Res PlanMan 141(9):04015003.
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000508

Wang F, Li Y, Zhou A, Tang K (2020a) An Estimation of Distribution
Algorithm for Mixed-Variable Newsvendor Problems. IEEE Trans
Evol Comput 24(3):479–493. https://doi.org/10.1109/TEVC.2019.
2932624

Wang F, Li Y, Liao F, Yan H (2020b) An ensemble learning based
prediction strategy for dynamic multi-objective optimization. Appl
Soft Comput 96:106592. https://doi.org/10.1016/j.asoc.2020.
106592

46279Environ Sci Pollut Res  (2021) 28:46266–46280

https://doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
https://doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
https://doi.org/10.1007/s11269-013-0431-z
https://doi.org/10.1007/s00500-010-0681-0
https://doi.org/10.1007/s00500-010-0681-0
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000050
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000050
https://doi.org/10.5004/dwt.2019.24204
https://doi.org/10.5004/dwt.2019.24204
https://doi.org/10.1029/2018JD029776
https://doi.org/10.1029/2018GL080768
https://doi.org/10.1029/2018GL080768
https://doi.org/10.1016/j.jhydrol.2019.05.070
https://doi.org/10.1016/j.jhydrol.2019.05.070
https://doi.org/10.1016/j.jhydrol.2017.02.041
https://doi.org/10.1016/j.jhydrol.2017.02.041
https://doi.org/10.1061/(ASCE)0733-9496(2006)132:4(252)
https://doi.org/10.1061/(ASCE)0733-9496(2006)132:4(252)
https://doi.org/10.1016/j.ins.2018.06.055
https://doi.org/10.1007/s11276-016-1358-0
https://doi.org/10.1002/spe.2631
https://doi.org/10.1002/spe.2631
https://doi.org/10.1016/j.adhoc.2015.07.011
https://doi.org/10.1016/j.adhoc.2015.07.011
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(466)
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(466)
https://doi.org/10.1109/TEVC.2005.846356
http://www.researchgate.net/publication/327744782_Recent_Contributions_to_Climate_Change_and_Water_Resource_Management_by_Applying_Novel_Analytics_on_Satellite_Data
http://www.researchgate.net/publication/327744782_Recent_Contributions_to_Climate_Change_and_Water_Resource_Management_by_Applying_Novel_Analytics_on_Satellite_Data
http://www.researchgate.net/publication/327744782_Recent_Contributions_to_Climate_Change_and_Water_Resource_Management_by_Applying_Novel_Analytics_on_Satellite_Data
https://doi.org/10.1061/(ASCE)0733-9496(2005)131:2(125)
https://doi.org/10.1061/(ASCE)0733-9496(2005)131:2(125)
https://doi.org/10.1061/(ASCE)0733-9496(2006)132:4(242)
https://doi.org/10.1061/(ASCE)0733-9496(2006)132:4(242)
https://doi.org/10.1016/j.solener.2019.08.022
https://doi.org/10.1016/j.solener.2019.08.022
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000104
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000104
https://doi.org/10.1109/ESIAT.2010.5568348
https://doi.org/10.1109/ESIAT.2010.5568348
https://doi.org/10.1016/j.swevo.2012.05.001
https://doi.org/10.1007/978-3-319-30800-5_1
https://doi.org/10.1007/978-3-319-30800-5_1
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000288
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000288
https://doi.org/10.1002/open.201800267
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000619
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000619
https://doi.org/10.1061/(ASCE)0733-9372(2002)128:5(441)
https://doi.org/10.1080/24725854.2017.1315782
https://doi.org/10.1080/24725854.2017.1315782
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000508
https://doi.org/10.1109/TEVC.2019.2932624
https://doi.org/10.1109/TEVC.2019.2932624
https://doi.org/10.1016/j.asoc.2020.106592
https://doi.org/10.1016/j.asoc.2020.106592


Wang F, Zhang H, Zhou A (2021) A particle swarm optimization algo-
rithm for mixed-variable optimization problems. Swarm Evol
Comput 60:100808. https://doi.org/10.1016/j.swevo.2020.100808

Wang H, Harrison KW (2014) Improving Efficiency of the Bayesian
Approach to Water Distr ibut ion Contaminant Source
Characterization with Support Vector Regression. J Water Resour
Plan Manag 140(1):3–11. https://doi.org/10.1061/(ASCE)WR.
1943-5452.0000323

Wang H, Xin J (2013) Characterization of groundwater contaminant
source using Bayesian method. Stoch Env Res Risk A 27(4):867–
876. https://doi.org/10.1007/s00477-012-0622-9

Yan X, Gong W, Wu Q (2017a) Contaminant source identification of
water distribution networks using cultural algorithm. Concurr
Comp-Pract E 29(24):1–11. https://doi.org/10.1002/cpe.4230

Yan X, Hu C, Sheng VS (2020) Data-driven pollution source location
algorithm in water quality monitoring sensor networks. Int J Bio-
Inspir Com 15(3):171–180. https://doi.org/10.1504/IJBIC.2020.
107474

Yan X, Li T, Hu C,WuQ (2019b) Real-time localization of pollution source
for urban water supply network in emergencies. Clust Comput 22:
5941–5954. https://doi.org/10.1007/s10586-018-1725-y

Yan X, Sun J, Hu C (2017b) Research on contaminant sources identifi-
cation of uncertainty water demand using genetic algorithm. Clust
Comput 20(2):1007–1016. https://doi.org/10.1007/s10586-017-
0787-6

Yan X, Yang K, Hu C, Gong W (2018) Pollution source positioning in a
water supply network based on expensive optimization. Desalin
Water Treat 110:308–318. https://doi.org/10.5004/dwt.2018.22330

Yan X, Zhao J, Hu C, Zeng D (2019c) Multimodal optimization problem
in contamination source determination of water supply networks.
Swarm Evol Comput 47:66–71. https://doi.org/10.1016/j.swevo.
2017.05.010

Yan X, Zhu Z, Li T (2019a) Pollution source localization in an urban
water supply network based on dynamic water demand. Environ Sci
Pollut Res 26(18):17901–17910. https://doi.org/10.1007/s11356-
017-0516-y

Yang P, Tang K, Yao X (2018) Turning High-dimensional Optimization
into Computationally Expensive Optimization. IEEE Trans Evol
Comput 22(1):143–156. https://doi.org/10.1109/TEVC.2017.
2672689

Yang S, Li C (2010) A clustering particle swarm optimizer for locating
and trackingmultiple optima in dynamic environments. IEEE Ttrans
Evolut Comput 14(6):959–974. https://doi.org/10.1109/TEVC.
2010.2046667

Yerlikaya-Zkurt F, Taylan P (2020) New computational methods for
classification problems in the existence of outliers based on conic
quadratic optimization. Commun Stat 49(3/4):753–770. https://doi.
org/10.1080/03610918.2019.1661477

Zechman EM, Ranjithan SR (2009) Evolutionary Computation-Based
Methods for Characterizing Contaminant Sources in a Water
Distribution System. J Water Resour Plan Manag 135(5):334–343.
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:5(334)

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

46280 Environ Sci Pollut Res  (2021) 28:46266–46280

https://doi.org/10.1016/j.swevo.2020.100808
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000323
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000323
https://doi.org/10.1007/s00477-012-0622-9
https://doi.org/10.1002/cpe.4230
https://doi.org/10.1504/IJBIC.2020.107474
https://doi.org/10.1504/IJBIC.2020.107474
https://doi.org/10.1007/s10586-018-1725-y
https://doi.org/10.1007/s10586-017-0787-6
https://doi.org/10.1007/s10586-017-0787-6
https://doi.org/10.5004/dwt.2018.22330
https://doi.org/10.1016/j.swevo.2017.05.010
https://doi.org/10.1016/j.swevo.2017.05.010
https://doi.org/10.1007/s11356-017-0516-y
https://doi.org/10.1007/s11356-017-0516-y
https://doi.org/10.1109/TEVC.2017.2672689
https://doi.org/10.1109/TEVC.2017.2672689
https://doi.org/10.1109/TEVC.2010.2046667
https://doi.org/10.1109/TEVC.2010.2046667
https://doi.org/10.1080/03610918.2019.1661477
https://doi.org/10.1080/03610918.2019.1661477
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:5(334)

	Real-time location algorithms of drinking water pollution �sources based on domain knowledge
	Abstract
	Introduction
	Materials and methods
	Simulation software
	Problem modeling
	Real-time location algorithm based on domain knowledge
	Algorithm architecture
	Selection strategy based on domain knowledge
	Domain search strategy based on domain knowledge
	Local search strategy based on domain knowledge
	Algorithm steps


	Results and discussion
	Setting of pipe network and algorithm parameters
	Algorithm performance indicators
	Algorithm performance discussion
	Net3_Rossman2000 pipe network
	BWSN1_Ostfeld2008 pipe network
	ky5_Jolly2013 pipe network


	Conclusions
	References


