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Abstract
The performance comparison studies of the autoregressive integrated moving average model (ARIMA) and the artificial neural
network (ANN) were mostly carried out between the selected model structures through trial-and-error, strongly influenced by
model structure uncertainty. This research aims to make up for this inadequacy. First, a surface water quality prediction case
study including eight monitoring sites in China was introduced. Second, the ARIMA and ANN’s performance was compared
statistically between 6912 Seasonal ARIMA (SARIMA) and 110,592 feedforward ANN with different model structures, based
on the mean square error (MSE) distributions depicted by boxplots. In a statistical view, the ANNmodels obtained a significantly
lower median value and a more concentrated distribution of validation MSEs, which indicated lighter overfitting and better
generalization ability. Furthermore, the optimal SARIMA models’ performance is inferior to even the median of the ANN
models in the case study. In contrast with the previous comparisons among selected models, the statistical comparison in this
study shows lower uncertainty.
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Introduction

Surface water quality prediction is crucial in the water plan-
ning and management process. With the help of prediction
models, the degree and trend of water pollution could be fore-
casted, providing timely and effective decision support for the
administrators (Zhou et al. 2018). Generally, surface water
quality prediction models are classified as theory-driven
models and data-driven models (Hunter et al. 2018). In recent
decades, data-driven models have been more widely applied
in water quality prediction tasks (Mount et al. 2016), owing to
the accumulation of surface water monitoring data, the im-
provement of computing power, and algorithm optimization
(Kang et al. 2017).

There are mainly three types of data-driven models for
water quality prediction. The first is the traditional statistical
method-based models such as multiple linear regression
(MLR), autoregression (AR), and autoregressive integrated
moving average model (ARIMA) (Monteiro and Costa
2018; Khairuddin et al. 2019). Among them, ARIMA pro-
posed by Box and Jenkins (1976) has become one of the most
widely used techniques (Khairuddin et al. 2019) and has been
proven effective for water quality predictions. For example,
Ahmad et al. (2001) identified the ARIMA as the appropriate
model for modeling water quality data of the Ganges River in
India. Salmani and Salmani Jajaei (2016) proved that
SARIMA models satisfied the necessary tests and conditions
for water quality forecast in the Karoun River in Iran. Sheikhy
Narany et al. (2017) predicted nitrate contamination inside
water resources in Malaysia based on an ARIMA model.
The second type of data-driven model is the machine
learning-based models (Ansari et al. 2018; García Nieto
et al. 2019; Hanson et al. 2020), such as artificial neural net-
works (ANNs), support vector machine (SVM), and adaptive
neural fuzzy interference (ANFIS). ANN is the predominant
among these models (Bhagat et al. 2020). Increasing studies
of ANN for water quality predictions have been done over
these years and exerted satisfactory performance (Maier
et al. 2010). For example, Haghiabi et al. (2018) demonstrated
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ANN had suitable performance for predicting water quality
variables (WQ variables) (Tiyasha et al. 2020) in the Tireh
River. Hameed et al. (2017) found ANN exhibited a remark-
able ability to capture the nonlinearity pattern from the tropical
rivers' water quality data. Shi et al. (2018) proved that ANN
was effective for high-frequency surface water quality predic-
tion. The last type is hybrid models, such as ANN-ARIMA,
wavelet-neural networks (WANN), and extreme gradient
boosting-ANN (XGBoost-ANN) (Bhagat et al. 2021).

Many comparison studies of various data-driven models’
performance in the field of water resources have been con-
ducted. Among them, comparisons between ARIMA and
ANN are common. Raman and Sunilkumar (1995) used
ARIMA and ANN to predict reservoir inflow. The trial-and-
error method was used to select the “optimal”model structure.
The results showed ANN provided a better fit in the absence
of data preprocessing. Landeras et al. (2009) compared
ARIMA and ANN in evapotranspiration forecast tasks. They
selected the best two from the 18 ARIMA models and the 12
ANN models, respectively. The performance comparison re-
sults showed that ANN performed better for the summer
months while ARIMA performed better from September to
November. In the comparison study carried out by Ömer
Faruk (2010), the optimal ARIMA structure was selected via
AIC (Akaike information criterion), while the ANN structure
was determined on an ad-hoc basis (Maier et al. 2010). The
results showed that ANN had better performance than
ARIMA for water quality prediction. Similarly, Valipour
et al. (2013) also selected the optimal ARIMA structure via
AIC, while the neurons’ number of the single-hidden layer
ANN was determined via trial-and-error. Results showed that
the performance of the two optimal models was acceptable in
forecasting the reservoir inflow. Elkiran et al. (2019) conclud-
ed that machine learning models were more robust than
ARIMA in the river dissolved oxygen prediction research.
The comparisons were conducted among the selected
ARIMA and machine learning models, of which the model
structures were also determined through trial-and-error. Two
inadequacies could be found throughout the above compari-
son studies: (i) although the comparison studies of ARIMA
and ANN in the field of water resources were conducted a lot,
the majority were water-quantity-related. In contrast, research
on surface water quality prediction issues was rare. (ii)
Mostly, comparisons were carried out among the “optimal”
model structures selected via trial-and-error or in an ad hoc
way. However, given the high uncertainty associated with the
model structure (Zhang et al. 2011), the comparison results
among a couple of selected models seem inconclusive.

This study seeks to make up for the inadequacies. First, a
surface water quality time series prediction case study of eight
monitoring sites in China was introduced. Second, ARIMA and
ANN’s prediction performance was compared statistically be-
tween thousands of models of different model structures.

Specifically, the training and validation samples are weekly
automatic monitoring data, published by the China National
Environmental Monitoring Centre. Based on data analysis
and previous experiments, the value sets of the model structure
hyperparameters were determined. Then, 6912 SARIMA
models and 110,592 feedforward ANN models with grid-
sampled model structure hyperparameters sets were developed
and trained. Moreover, the performance metric, mean square
error (MSE), was calculated for each model on the training and
validation datasets. Afterward, the two types of models were
compared statistically based on the MSE distributions. The dis-
tributions were depicted by boxplots, where the median and
percentile MSE values were given.

The paper’s remaining part was organized as follows:
ARIMA and ANN’s brief reviews were presented in the
“Methods” section, followed by the comparison case study
for surface water quality time series prediction in the “Case
study” section. Then, the ARIMA and ANN models’ perfor-
mance assessment results were illustrated separately and then
compared and discussed in the “Results and discussion” sec-
tion. Finally, the summary and conclusions were presented in
the “Summary and conclusions” section.

Methods

Overall, the ARIMA and ANN models with different struc-
tures need to be developed and trained first. Then, the perfor-
mance metric of each model on both train and validation
dataset needs to be calculated. Afterward, the two types of
models’ performance should be statistically compared based
on the median and percentile metric values. The model struc-
tures value sets of ARIMA were specified via the auto corre-
lation function (ACF) and partial auto correlation function
(PACF) curves, while the ANNs were determined based on
literature review.

ARIMA

Autoregressive integrated moving average model (ARIMA)
contains three parts: (i) autoregressive (AR) module, which
describes the memory of the system’s former state. (ii)
Moving average (MA) module, which describes the memory
of the noise that entered the system in the past. (iii) The inte-
gration procedure indicates the number of differences required
to guarantee the series’s stationarity (Rafael et al. 2019). Since
stability is a prerequisite for the AR and MA modules, stabi-
lization is required. Equations are as follows:

I ’t ¼ ΔdI t ¼ Δ Δd−1I t
� � ð1Þ

I
0
t ¼ δ þ ∑

p

i¼1
ϕiI

0
t‐i þ ∑

q

i¼1
θiet‐i þ et ð2Þ
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In Eq. (1), the d-order non-seasonal difference is made to

series It. In Eq. (2), ∑
p

i¼1
ϕiI

0
t‐i is a p-order ARmodel, in which p

is the autoregression order. ∑
q

i¼1
θi et‐i is a q-orderMAmodel, in

which q is the moving average order. ϕi and θi are the model
parameters that are to be optimized via the least square algo-
rithm. δ is the intercept, et is the white noise that obeys the
independent identical distribution: et∼N 0;σ2

e

� �
.

Furthermore, given the seasonal fluctuation of the orig-
inal surface water quality time series (see Fig. 3), the
SARIMA, an extension of the ARIMA, is more likely to
fit the data well. A seasonal component was considered in
the SARIMA so that a seasonal difference step was added
(Eq. (3)), and seasonal AR and MA modules were intro-
duced (Eq. (4)).

I}t ¼ ΔDI
0
t ¼ Δ ΔD‐1I

0
t
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ð3Þ
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In Eq. (4), ∑
P

i¼1
ΦisI}t‐is is a P-order seasonal AR model, ∑

Q

i¼1

Θis et‐is is a Q-order seasonal MA model. Φi and Θi are the
parameters to be optimized via the least square algorithm.

To sum up, the model structure of a SARIMA in this case
study was determined by seven hyperparameters:

p; d; q;ð Þ; P;D;Q; Sð Þ ð5Þ
where the orders of the non-seasonal and seasonal difference,
d and D, along with the seasonal period, S, could be deter-
mined based on the ACF curves (see Fig. 4). After the differ-
ence step, the orders of non-seasonal and seasonal AR and
MA, (p, q) and (P, Q) could be determined based on the
ACF and PACF curves of the stabilized series.

ANN

Artificial neural network (ANN) can be classified as
feedforward ANN, recurrent ANN, and convolution ANN.
Among them, feedforward ANN is the first and simplest ar-
chitecture (Schmidhuber 2015), and was used in this study.
The model structure of a feedforward ANN is determined by
an input layer, a hidden layer(s), and an output layer
(Schmidhuber 2015).

In the surface water quality time series prediction, the in-
puts of a feedforward ANN model were lagged water quality
data. Thus, the hyperparameter “inputs”was appointed to rep-
resent lagged time steps. The number of hidden layers and
neurons in each hidden layer were set as hyperparameter
“layers” and “neurons.” The two determine the depth and

Fig. 1 Schematic view of an
example feedforward ANN with
eight inputs (n=2) and a bias unit,
added with two hidden layers
with 12 neurons and a bias unit in
each layer. The symbol I t−11
represents input or output data,
where the superscript (t-1)
represents data one week lagged,
and the subscript refers to the
corresponding WQ variables: 1 -
pH, 2 -DO, 3 - COD, 4 - NH3 −N
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width of the network as well as the ANN's generalization
capability and complexity. An example was given in Fig. 1
to illustrate the feedforward ANN model structure.
Hyperparameters set in Eq. (6) represent that two weeks of
lagged data for each of the four WQ variables are used as
model inputs. The number of hidden layers is two, with 12
neurons in each.

inputs ¼ 2;
layers ¼ 2;

neurons ¼ 12:

8<
: ð6Þ

Then, a specific activation function needs to be added to
each neuron to introduce nonlinear informational transforma-
tion to the ANN. The two recommended activation functions
were Tanh and ReLU (Eq. (6)-(7)).

gTanh xð Þ ¼ ex‐e‐xð Þ
ex‐e‐xð Þ ð7Þ

gReLU xð Þ ¼ 0 ; x < 0
x ; x≥0

�
ð8Þ

In the training process, the adaptive moment estimation
(Adam) algorithm was used. Thus, the initial learning rate
value needed to be set. We appointed it as the hyperparameter
“lr.” Then, we adopted the mini-batch gradient descent strat-
egy, so the hyperparameter “batch size” was set to represent
the number of samples used by each epoch to update
parameters.

To sum up, the model structure of an ANN in this case
study was determined by the following six hyperparameters:

inputs; layers; neurons; activation; lr; batch sizef g ð9Þ

Statistical comparison

The performance metric measures the model’s accuracy by
judging the similarity between the predicted output(s) and
the real one(s). The most commonly used metric in water
resources models is the mean square error (MSE, Eq. (10)).

MSE ¼ 1

n
∑
n

k¼1
y tkð Þ−yp tkð Þ
h i2

ð10Þ

Fig. 2 Locations of the eight
monitoring sites
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where yp(tk) and y(tk) are the predicted output(s) and the real one(s)
at the time of tk, respectively. The optimal value is 0 for MSE.

It should be noted that the SARIMA models for the four
WQ variables: potential of hydrogen (pH), chemical oxygen
demand (COD), dissolved oxygen (DO), and ammonia nitro-
gen (NH3-N) were developed separately. Thus, the MSEs
were first calculated for the four WQ variables, respectively.

And then, the average MSEs distributions were obtained for
each of the eight sites. Otherwise, the ANN models integrated
all the four WQ variables as outputs. Thus, the average MSEs
were calculated directly for each site.

To statistically compare the performance of ARIMA and
ANN, we used boxplots to describe the MSE distributions of
the SARIMA and ANN models with different structures. The

Fig. 3 ACF curves of the original series
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boxplots in this study illustrated the median and percentile
values (5th, 25th, 75th, 95th percentiles), little affected by
outliers. The boxplots can describe the central tendency (me-
dian value) of the MSEs, and depict the dispersion feature
accurately and stably. Moreover, the boxplots can provide a
simple but effective approach to compare distributions among
variables.

Fig. 4 ACF curves of the seasonal and first-order differences

Table 1 Value sets of SARIMA’s model structure hyperparameters

Hyperparameters Implications Value set

d, D (Seasonal) differential order {0, 1}
p, P (Seasonal) autoregressive order {0, 1, 2}
q Moving average order {0, 1, 2}
Q Seasonal moving average order {0, 1}
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Case study

Surface water quality time series data

The two types of data-driven models were applied to a case
study for surface water quality time series prediction. The
weekly automatic monitoring data were published by the
China National Environmental Monitoring Centre. The data
validity was guaranteed by periodic equipment calibration and
replacement of electrodes. Most of the published data started
in 2004, including fourWQ variables: pH, COD, DO, NH3-N.

Considering data integrity and site distribution, we selected
eight monitoring sites located in eight cities in China: Hefei,
Chaohu, Bengbu, Wuzhou, Guilin, Suzhou, Jiyuan,
Danjiangkou, respectively (Fig. 2). Then 300 samples of each
site, monitored from 2005/01/04 to 2009/09/27, were used to
train the models, while the next 200 samples, monitored from
2009/10/04 to 2013/07/28, were used to validate the models.
Since the data set with missing values was not valid for train-
ing ANN models, all the time series data were complemented
with mean values. The time series diagrams of the eight sites
after data complementation are available in the supplementary
document.

All the sample datasets for the SARIMA and ANN
models were divided into training sets and validation sets.

Considering temporal order, we directly set the first 60%
as training samples and the last 40% as validation samples
(Wu et al. 2013). Since data normalization is helpful to
improve the convergence rate of training, the Min-Max
method (Eq. (11)-(12)) was used. The ahead time step to
prediction was set as one for both the SARIMA and ANN
models.

x
0
i ¼

xi‐max xð Þ
max xð Þ‐min xð Þ ð11Þ

y
0
i ¼

yi‐max yð Þ
max yð Þ‐min yð Þ ð12Þ

Development of the SARIMA models

According to the basic knowledge of ARIMA in the
“ARIMA” section, model structure hyperparameters (p,
d, q) and (P, D, Q, S) need to be determined before model
training. Figure 3 shows the ACF curves of the original
series. Apparent seasonality feature could be captured
from the DO series in all the eight sites, the pH series in
the Guilin and Jiyuan sites, the COD series in the Chaohu
and Suzhou sites, the NH3-N series in the Hefei, Bengbu,
and Jiyuan sites. A seasonal cycle of 52 weeks (one year)

Table 2 Value sets of ANN’s model structure hyperparameters

Hyperparameters Implications Value set

inputs Lagged steps of data used as inputs {1, 2, 3, 4}

layers Number of hidden layers {1, 2, 3, 4, 5, 6, 7, 8}

neurons Number of neurons in each hidden layer {4, 8, 12, 16, 20, 24, 28, 32, 36}

activation Activation function {Tanh, ReLU}

lr Initial learning rate of Adam {0.001, 0.003, 0.01, 0.03}

batch size Number of samples used in each epoch {2, 4, 8, 16, 32, 64}

Fig. 5 MSE boxplots of the SARIMAmodels for the eight sites (captions: lower and upper limit of the whisker refer to the 5th to 95th percentiles of the
data, Tr—training datasets, Vd—validation datasets, the same below)
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was found. Besides, the autocorrelation coefficient de-
clines with the increase of the lag steps, which indicates
a tendency. Therefore, the value sets of hyperparameter d
and D were both specified as {0, 1}, and the seasonal
period S was set as 52.

Figure 4 presents the ACF curves of the series after the
1-order seasonal and 1-order non-seasonal difference. It
can be seen that the absolute ACF values of most series
are high in the lags 1, 2, and 52, while not statistically
significant in the other lags. Therefore, the value sets of
hyperparameters q and Q should be specified as {0, 1, 2}
and {0, 1}, respectively. Similarly, according to the PACF
curves (see the supplementary document), the value sets
of hyperparameters p and P were specified as {0, 1, 2}.

The SARIMA models were to be developed for the 32
original time series (eight sites with four WQ variables for
e a ch ) . T a b l e 1 l i s t s a l l t h e mode l s t r u c t u r e
hyperparameters aforementioned and their value sets. In
line with the sets, 216 SARIMA models with different
model structures (grid method) were constructed for each
series. The models were then optimized via the least
square algorithm, and the residual series were tested for

independence and normality. The model performance was
estimated both on training and validation datasets based
on the MSE values.

Development of the ANN models

The model structure hyperparameters of feedforward ANN
(see the “ANN” section) should be determined before model
training. Based on our previous experiments, the six
hyperparameters' value sets were specified in Table 2.

Based on the development protocol proposed by Wu
et al. (2014) and the surface water quality time series data,
13,824 surface water quality prediction ANN models with
different model structures (grid sampling method) were
constructed for each of the eight monitoring sites. The
models were trained via Adam algorithm, and the number
of training epochs was fixed at 100, which could ensure
training convergence of almost all the models. In line with
the SARIMA, the MSE values were also calculated both
on training and validation datasets to estimate the ANN’s
model performance.

Table 3 The optimal model structure hyperparameters for the SARIMA

Hyperparameter pH DO COD NH3-N

(p, d, q) (P, D, Q) (p, d, q) (P, D, Q) (p, d, q) (P, D, Q) (p, d, q) (P, D, Q)

Hefei (0, 0, 2) (1, 0, 1) (1, 1, 1) (2, 0, 0) (2, 0, 1) (0, 0, 0) (2, 1, 1) (1, 0, 1)

Chaohu (2, 0, 2) (1, 0, 1) (0, 0, 2) (0, 1, 1) (2, 1, 2) (0, 0, 0) (0, 0, 2) (1, 1, 0)

Bengbu (2, 1, 2) (2, 1, 1) (0, 0, 2) (1, 0, 1) (0, 1, 2) (2, 0, 0) (0, 0, 0) (1, 0, 1)

Wuzhou (1, 1, 1) (2, 0, 0) (0, 1, 2) (0, 1, 1) (1, 0, 1) (0, 1, 1) (2, 0, 2) (1, 0, 1)

Guilin (1, 0, 2) (2, 0, 1) (2, 1, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (1, 1, 2) (1, 0, 1)

Suzhou (2, 1, 2) (0, 0, 0) (0, 0, 2) (1, 0, 0) (2, 0, 1) (1, 0, 0) (0, 0, 1) (1, 0, 1)

Jiyuan (2, 1, 2) (0, 1, 0) (1, 1, 1) (0, 1, 1) (2, 1, 0) (2, 1, 0) (1, 0, 0) (1, 0, 1)

Danjiangkou (2, 0, 2) (1, 0, 1) (2, 0, 2) (2, 1, 1) (2, 0, 2) (2, 0, 0) (2, 0, 2) (0, 0, 1)

Fig. 6 MSE boxplots of the ANN models for the eight sites
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Results and discussion

Performance assessment of the SARIMA models

Model performance was estimated by MSE both on train-
ing and validation datasets. Figure 5 shows the MSE
boxplot of the SARIMA models for each of the eight
sites. Note that it was the distributions of the average
MSE values of the four WQ variables for each site.
From the central tendency perspective, significant gaps
can be seen between the training median MSEs and the
validation ones. Besides, in contrast with the MSEs on the
validation sets, the ones on the training sets were in much
more concentrated distributions. In summary, the
SARIMA models performed significantly worse on vali-
dation sets, which indicates the models were overfitted,
resulted in poor generalization ability. Furthermore, dif-
ferent prediction performance can be found for the eight
sites. From the central tendency’s perspective, the
SARIMA models for site Bengbu exerted the best

performance. Otherwise, as to the dispersion, the models
for site Hefei performed better than the others (obtained
the lowest 75th percentile MSE, 0.0484).

Table 3 shows the optimal SARIMA structures for each of
the 32 series selected based on the MSE values on the valida-
tion datasets. The seasonal period S identically equals 52. It
can be inferred that the seasonal periodicity was significant for
the DO series, whereas no necessity for the pH, COD, NH3-N
series to be stabilized by seasonal difference. Furthermore, the
NH3-N series showed a weak tendency, while the tendency
feature for the pH, DO, COD series varied with each site.

Performance assessment of the ANN models

Figure 6 shows the MSE boxplot of the ANNmodels for each
of the eight sites. From the perspective of central tendency,
gaps between the training median MSEs and the validation
ones existed, especially in Hefei and Wuzhou. However, the
gaps were much smaller than the SARIMA models. On the
other hand, few differences existed between the dispersion
feature of the MSE distributions on the training and validation
sets. These results suggest that, in contrast with the SARIMA,
the ANN models exerted better generalization ability.
Furthermore, Fig. 6 illustrates different prediction perfor-
mance for the eight sites as well. From the central tendency’s
perspective, the ANN models for site Bengbu exerted the best
performance, consistent with the SARIMA. Otherwise, as to
the dispersion, better performance was also found in site
Bengbu, which was different from the SARIMA.
Performance differences among the sites are mainly related
to the original data. For example, apparent autocorrelation
and seasonal periodicity could be found in the pH, DO, and
NH3-N series at site Bengbu (see Fig. 3), contributing to the
best prediction performance.

Table 4 shows the optimal ANN structures selected based
on the MSE values (the average of the four WQ variables) on
the validation datasets for each of the eight sites. The results
show lit t le similarity among the model structure
hyperparameters for the eight sites except for the learning rate.

Table 4 The optimal model structure hyperparameters for the ANN

Hyperparameter Inputs Layers Neurons Activation lr Batch size MSE

Hefei 4 6 32 Tanh 0.001 64 0.013

Chaohu 3 2 36 Tanh 0.001 64 0.013

Bengbu 2 2 28 ReLU 0.001 32 0.009

Wuzhou 2 1 8 Tanh 0.003 4 0.014

Guilin 3 1 24 Tanh 0.001 64 0.015

Suzhou 2 7 8 Tanh 0.001 16 0.013

Jiyuan 3 1 28 ReLU 0.001 16 0.008

Danjiangkou 3 1 8 ReLU 0.001 32 0.008

Fig. 7 MSE boxplots for comparison of the ARIMA and ANN models
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Statistical comparison between SARIMA and ANN’s
performance

As mentioned in the “Statistical comparison” section, for
the SARIMA models, the average MSEs of the four WQ
variables were calculated. Then the MSE distributions of
all the eight sites were compared between the SARIMA
and ANN models. As shown in Fig. 7, the median training
MSE of the ANN models (0.014) was slightly lower than
that of the SARIMA models (0.017). Simultaneously, for
the validation MSEs, the ANN obtained a significantly
lower median value (0.017) than the SARIMA (0.039),
which indicates lighter overfitting and better generaliza-
tion ability of the ANN. Considering dispersion, the train-
ing MSEs of the SARIMA were in the most concentrated
distribution (5th to 95th), but the distribution of the
SARIMA’s validation MSEs spread most broadly.

Additionally, the MSEs distributions between the 75th
and 95th percentiles of the ANN models were in appar-
ently high dispersion, which stresses the importance of
model structure selection. Furthermore, comparisons of
the SARIMA and ANN were made in terms of different

sites (see Figs. 5, 6). The results show that the ANN
models achieved better performance in all the eight sites,
especially for the site Wuzhou, where the median valida-
tion MSE of the SARIMA was almost twice higher than
the ANN.

In summary, the ANNmodels statistically performed better
than the SARIMA in this surface water quality time series
prediction case study.

Optimal performance comparison between SARIMA
and ANN

Figure 8 illustrates that for each of the eight sites, the
optimal SARIMA’s prediction performance on the valida-
tion dataset was inferior to the median performance of the
ANN, not to mention the optimal ANN. Especially for the
sites Danjiangkou, Jiyuan, and Chaohu, where the valida-
tion MSE of the optimal SARIMA was around twice as
large as the optimal ANN’s.

Figures 9 and 10 compare the observed WQ data at
Chaohu with the optimal SARIMA and ANN models’
predictions. Table 5 lists three performance metrics, root
mean square error (RMSE), Nash Sutcliffe efficiency
(NSE), and mean absolute percentage error (MAPE), to
further evaluate the models. For the calculation formulas
of these metrics, please refer to Faruk's work (Ömer Faruk
2010). Good performance of the ANN was shown in the
predictions for DO and COD, while the performance for
pH and NH3-N predictions was slightly inferior. Similar
phenomena were found for the optimal SARIMA. As Fig.
3 shows, the DO and COD series of site Chaohu are of
apparent autocorrelation and seasonal periodicity, leading
to better prediction performance compared to pH and
NH3-N.

Fig. 8 Comparison between the
optimal ARIMA and ANN
models

Table 5 Performance metrics of the optimal SARIMA and ANN at
Chaohu

WQ variables RMSE NSE MAPE

SARIMA ANN SARIMA ANN SARIMA ANN

pH 0.602 0.509 0.355 0.832 12.5 10.0

DO (mg/L) 1.22 0.806 0.545 0.967 12.4 7.82

COD (mg/L) 0.492 0.288 0.556 0.867 5.31 3.02

NH3-N (mg/L) 0.140 0.089 0.394 0.810 30.7 17.7
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Discussion of the generality

The statistical comparison results could be explained as
follows. In principle, ARIMA describes the linear corre-
lations between the system's future and the past state
(Edwin and Martins 2014). Therefore, the complex and
nonlinear dynamics in water systems could not be de-
scribed well. ANN has a strong nonlinear mapping ability
(García-Alba et al. 2018), so that we believe it can be
more qualified than ARIMA for water systems related
problems.

However, ANN has shortcomings, of which “poor inter-
pretability” is the leading one (Doshi-Velez and Kim 2017). In
contrast with ARIMA, model structure hyperparameters of
ANN are not aligned with exact physical meanings. Besides,
there are many model structure hyperparameters for ANN to
be determined, and the selection space is vast. It can be

concluded from this case study that the selection of the model
structure has a significant impact on ANN’s prediction perfor-
mance (Diez-Sierra and del Jesus 2020). Therefore, the model
structure optimization process is essential but challenging, and
with high uncertainty (Zhang et al. 2011). As can be inferred
from Fig. 7, there were many SARIMA models obtaining
lower MSE values than part of the ANN models. In this re-
gard, it is likely to conclude that ARIMA performs better than
ANN when the comparison is merely carried out among a
couple of selected models, and the ANN model structure is
determined via trial-and-error or other ad-hoc ways. In con-
trast, the statistical comparison in this study is of lower uncer-
tainty and higher replicability. Figure 11 shows the model
structure hyperparameters count of the ANN models which
performed inferior to the optimal SARIMA for each monitor-
ing site. Similar model structures of ANN that more likely led
to inferior performance could be found for the eight sites.

Fig. 9 WQ variables series
predicted by the optimal
SARIMA and ANN model at
Chaohu

Fig. 10 Observed versus
predicted WQ variables of the
optimal SARIMA and ANN at
Chaohu
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In addition, we believe the performance (estimated by met-
rics like MSE) of the optimal ARIMA can be future used as a
benchmark to screen out ANN models with better perfor-
mance, thereby saving computing and memory resources.

Summary and conclusions

Overall, 6912 SARIMA models and 110,592 feedforward
ANN models with grid-sampled model structure
hyperparameters sets were developed and trained, and the per-
formance metric, MSE, was calculated for eachmodel both on
the training and validation datasets. Then the two types of
models were compared based on the MSE distributions
depicted by boxplots. In a statistical view, the main findings
and comparison results of this study are as follows:

(i) For the SARIMA models, significant gaps existed be-
tween the training median MSEs and the validation ones.
Besides, the validation MSE distributions were in much
higher dispersion. These results indicate the SARIMA
models can be easily overfitted and have poor generali-
zation ability.

(ii) For the ANN models, smaller gaps were found between
the training and validation median MSEs. Little differ-
ences were revealed between the dispersion feature of
the MSE distributions. These results suggest the ANN
models exert better performance in generalization ability.

(iii) In contrast with the SARIMA models, the ANN models
obtained a significantly lower median value and a more
concentrated distribution of validation MSEs, which in-
dicates the ANNmodels statistically performed better in
this surface water quality time series prediction case
study.

Fig. 11 Model structure hyperparameters count of the ANNs performed inferior to the optimal SARIMA for each site
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(iv) The optimal SARIMA models’ prediction performance
is inferior to the median of the ANN models, not to
mention the optimal ones.

(v) In contrast with the previous comparison studies among
a couple of selected models, the statistical comparison in
this study is of lower uncertainty.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11356-021-13086-3.
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