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Abstract
Fluoride is the most phytotoxic atmospheric pollutant. The objective of this study was to evaluate the effects of fluoride emissions
by an aluminum smelter on three plant species endemics to Brazil, located at Parque Estadual do Itacolomi (PEI). The monitored
species were Byrsonima variabilis (Malpighiaceae), Myrceugenia alpigena (Myrtaceae), and Eremanthus erythropappus
(Asteraceae), which were monitored during 9 months using passive biomonitoring at five different locations with different
distances from the smelter. The monitored species did not show macroscopic phytotoxicity damage to fluoride; however, they
did showmicroscopic damage. The species closer to the smelter presented more severe anatomic damages, such as rupture of cell
walls, protoplast retraction, and trichome alterations. Damaged stomatal ledges, flaking epicuticular wax, and damages to
trichomes were observed. M. alpigena showed a higher accumulation of fluoride than the other species at all monitored sites.
The test for cell death with Evans Blue was positive for the three studied species. Through biomonitoring in the PEI, we
concluded that the emissions from the aluminum smelter affect the native vegetation and that due to the greater accumulation
of fluoride and the diversity of microscopic damage in M. alpigena, the use of this species in the monitoring of environments
polluted by fluoride is enhanced.
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Introduction

The constant progress of industrialization and urbanization
has increased the incidence of pollutant emissions to the at-
mosphere. These pollutants, when in high concentrations,
pose a threat to humans and the environment as a whole
(Davison and Weinstein 2006; Yepu et al. 2017; Li et al.
2018; Mukherjee et al. 2019).

Fluoride is an air pollutant, emitted mainly in the form of
hydrogen fluoride (HF). This process takes place through an-
thropogenic sources such as aluminum smelting, glass and

ceramic manufacturing, mineral fertilizers production, and
dental products, among others (Weinstein and Davison
2004; Ahmad et al. 2012; Hong et al. 2018; Ron Fuge 2019).

Fluorine belongs to the halogen family; it has strong elec-
tronegativity and reactive characteristics (Fordyce et al. 2007;
Panda 2015). Thus, this element can cause damage to vegeta-
tion even at extremely low concentrations in the atmosphere,
being considered, among the various air pollutants, the most
phytotoxic (Klumpp et al. 1996;Weinstein and Davison 2003;
Panda 2015).

Fluoride in aqueous solution can be absorbed over the en-
tire leaf surface through the cuticle. In its gaseous state, this
pollutant is absorbed through leaf stomata, which is the main
route of fluoride absorption by plants. Inside the leaf, fluoride
moves via apoplast, through the transpiratory current, to the
leaves’ margins and apices, which can cause injuries in these
places. Fluoride can also accumulate in the mesophyll and can
cause various damages, such as cell collapse (Weinstein and
Davison 2004; Baunthiyal and Ranghar 2014; Anjos et al.
2018; Sharma and Kaur 2018). Plants contaminated by fluo-
ride may show macroscopic changes such as leaf chlorosis,
which is attributed to the collapse of chloroplasts and
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disturbances in pigment synthesis (Fornasiero 2003; Louback
et al. 2016; Anjos et al. 2018; Rodrigues et al. 2018a, 2020a,
2020b). Microscopic changes such as cuticle and trichome
rupture, epicuticular wax flaking, and damage to stomatal
ridges (Fornasiero 2001; Sant’Anna-Santos et al. 2012;
Louback et al. 2016; Anjos et al. 2018), in addition to cellular
changes and cell collapse (Silva et al. 2000; Sant’Anna-Santos
et al. 2014, 2019; Rodrigues et al. 2017, 2018a, 2020a), have
been reported.

Biomonitoring systematically uses responses from living
organisms to assess changes in the environment, usually
caused by anthropogenic actions (Matthews et al. 1982;
Gorelova and Frontasyeva 2017; Yalaltdinova et al. 2018).
This method is suitable for monitoring the long-term impact
of fluoride emissions on vegetation close to sources of this
pollutant, besides being a more economical method than the
use of analytical instruments (Weinstein et al. 1990;
Temmerman et al. 2004). In passive biomonitoring, experi-
ments are carried out with plants evaluated at their natural
place of occurrence (Gupta and Kulshrestha 2016).

The bioindicator potential of some plants or their mecha-
nisms of tolerance in the face of air pollution have been stud-
ied since the 1980s, through morphophysiological and bio-
chemical changes (Koslowski 1980). In the following decade,
the European Union launched EuroBionet, an air quality as-
sessment program using bioindicator plants (Klumpp et al.
2001). The program used mainly herbaceous species, and,
until today, there are few studies that have reported the re-
sponses of tropical arboreal plants exposed to air pollutants
(Silva et al. 2000; Sant’Anna-Santos et al. 2007; Rodrigues
et al. 2017, 2018b; Anjos et al. 2018).

The state ofMinas Gerais producesmore than 135,000 tons
of primary aluminum per year and is one of the largest alumi-
num producers in Brazil (ABAL 2011). In the city of Ouro
Preto, there is an aluminum smelter installed, an emitting
source of atmospheric fluoride (Weinstein and Davison
2004; Divan Junior et al. 2008; Louback et al. 2016).
Between 2000 and 2002, the atmospheric concentration of
fluoride in an air monitoring station located in the city center
of Ouro Preto showed daily minimum values between 0.10
and 0.15μg m−3 and daily maximum values between 6.22 and
12.87 μg m−3 (Assis et al. 2003). Some studies have been
carried out in this region in order to observe the damage
caused by fluoride in the vegetation, either through passive
biomonitoring (Divan Junior et al. 2008), analyzing plants
present in the vicinity of the polluting source, or through
plants that were exposed in the desired locations, using active
biomonitoring (Sant’Anna-Santos and Azevedo 2010;
Louback et al. 2016).

The Parque Estadual do Itacolomi (PEI) consists of an eco-
system known as “rocky fields” (Campos Rupestres), and it
has particular ecological conditions, with a large number of
endemic species (Romero and Nakajima 1999). The PEI is

located near the aluminum smelter in the city of Ouro Preto.
In a study carried out at four sites within the PEI, through
active biomonitoring, the contamination of individuals from
Spondias dulcis exposed in these places was verified
(Louback et al. 2016). However, natural species from this
ecosystem have not yet been monitored.

In Brazil, few studies have addressed the effects caused by
fluoride on the tropical ecosystem and on native vegetation
(Weinstein and Hansen 1988; Arndt et al. 1995; Klumpp et al.
1996, 1998; Silva et al. 2000; Oliva et al. 2005; Divan Junior
et al. 2007, 2008), this study being the first where native
species from “rocky fields” (Campos Rupestres) and endemic
to Brazil have been monitored through passive biomonitoring.
The monitored species were Eremanthus erythropappus
(Asteraceae), Byrsonima variabilis (Malpighiaceae), and
Myrceugenia alpigena (Myrtaceae), where there are no stud-
ies in the scientific literature involving the effects of fluoride
on the last two species. Thus, this study aims to evaluate the
effect of emissions from an aluminum smelter on native spe-
cies from the Parque Estadual do Itacolomi (PEI), in order to
determine the sensitivity or tolerance of these species to fluo-
ride. The hypothesis to be tested is that the fluoride released by
the polluting source reaches the PEI vegetation, causing dam-
age to the species in this park.

Materials and methods

Study area location

The passive biomonitoring was conducted at Parque Estadual
do Itacolomi (PEI) (43° 32′ 30″–43° 22′ 30″W; 20° 22′ 30″–
20° 30′ 00″ S), in the city of Ouro Preto, Minas Gerais, Brazil.
The PEI has an area of approximately 7000 ha, with a maxi-
mum altitude of 1772m; it is located at the southern portion of
Serra do Espinhaço Biosphere Reserve and southeast of the
Quadrilátero Ferrífero, comprising a transition zone between
Mata Atlântica and Cerrado (Peron 1989;Messias et al. 2017).

Botanical material and treatment

Individuals belonging to the following three species were
monitored: Myrceugenia alpigena (DC.) Ladrum
(Myrtaceae), Byrsonima variabilis (DC.) (Malpighiaceae),
and Eremanthus erythropappus (DC.) MacLeisch
(Asteraceae), all native from the PEI (Fig. 1). The species
identities were confirmed by the specialists Marcos E. G.
Sobral (Universidade Federal de São João Del-Rei,
Departamento de Ciências Naturais), Maria C. H. Mamede
(Instituto de Botânica, Centro de Pesquisa em Plantas
Vasculares, Núcleo de Pesquisa da Curadoria do Herbário
de São Paulo), and Eric K. O. Hattori (Universidade Federal
dos Vales do Jequitinhonha e Mucuri, Instituto de Ciências
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Agrárias), respectively. The voucher specimens were deposit-
ed at the Herbarium VIC of the Universidade Federal de
Viçosa under the numbers 43996 (M. alpigena), 43997
(B. variabilis), and 43998 (E. erythropappus).

The experiment consisted of a passive exposure of five
individuals (n = 5) of each studied species present in the
PEI, featuring a passive biomonitoring. Five locations were
monitored at different distances from the fluoride emitting
source, four of these within the PEI and one outside the PEI,
closer to the smelter. The location of the PEI and the moni-
tored sites are shown in Fig. 2. Since it was a study carried out
in the field, it was not possible to register the presence of all
studied species in all monitored sites. The distribution of spe-
cies per sampling site is shown in Table 1, in addition to the
altitude and distance from the smelter of each site. The indi-
viduals weremonitored for a period of 9months, fromApril to
December 2014.

Microenvironmental analyses

Microenvironmental analyses were carried out close to the
individuals monitored at the PEI, from 9:00 to 12:00, between
the months of April and December 2014. The determined

parameters were altitude (m), temperature (°C), relative hu-
midity (%), and wind speed (m s−1), obtained using the Kestrel
equipment (model 4300, Nielsen-Kellerman, USA).

Evaluation of visual symptoms

Three branches of each individual (n = 3) of each species were
monitored at each site in the PEI. The leaves were
photographed by a digital camera (model Cyber-Shot DSC-
W310, Sony Corporation, Japan) to record any visual symp-
toms, such as chlorosis and necrosis caused by the smelter’s
emissions. To calculate the percentage of necrotic leaf area, a
visual phytotoxicity classification scale was used: slightly in-
jured (with sparse necrotic and chlorotic spots), moderately
injured (from 30 to 50% of the leaf area necrotic), very injured
(from 50 to 70% of the leaf area necrotic), and extremely
injured (with more than 70% of the leaf area necrotic) (Silva
et al. 2000).

Determination of fluoride content

Leaves from the individuals of all treatments were collect-
ed from the third node (from apical bud) and then oven-

Fig. 1 Monitored species at Parque Estadual do Itacolomi (PEI). (A)Myrceugenia alpigena. (B) Byrsonima variabilis. (C) Eremanthus erythropappus

Table 1 Altitude, distance from emitting source, and species distribution of each monitored site at Parque Estadual do Itacolomi (PEI-MG)

Sampling sites Altitude (m) Distance from emitting source (km) Species

Myrceugenia alpigena Byrsonima variabilis Eremanthus erythropappus

Site 1 1278 3.83 – X X

Site 2 1508 4.33 – X X

Site 3 1542 2.38 X X X

Site 4 1140 1.62 X X X

Site 5 1077 0.78 – X –

– = missing species; X = present species
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dried at 65 °C and reduced in a Wiley mill. Aliquots of
0.25 g were subjected to extraction in 0.5 M sulfuric acid
(Fialho 1997). The fluoride potentiometric determination
was performed using a selective ionic fluoride electrode
(Thermo Scientific Fluoride Ions Selective Electrode,
Massachusetts, USA) coupled to an ion analyzer device
(Orion Research Incorporated EA 920, Massachusetts,
EUA).

Anatomical analysis—light microscopy

For anatomical analysis, fully expanded leaves from the
third node (from apical bud), containing no visual symp-
toms, were collected from the individuals at each moni-
toring site in the PEI. For anatomical studies, leaf samples
were fixed in a solution of glutaraldehyde (2.5%) and
paraformaldehyde (10%), in 0.1 M sodium phosphate
bu f fe r (pH 7.2 ) , p lus 5 mM ca lc ium chlo r ide
(Karnovsky 1965). Subsequently, the material was
dehydrated in a growing ethyl series and included in
historesin glycol-methacrylate (Leica Historesin,
Nussloch/Heidelberg, Germany), according to Gerrits
(1964).

Transverse sections (4 μm thick) were obtained using an
automated rotary microtome (model RM2265, Leica
Microsystems Inc., Deerfield, USA) and stained in Toluidine
blue (pH = 4.0) (O’Brien and McCully 1981). The permanent
glass slides were mounted on Permount. All images were
captured using a light microscope (model Olympus
AX70TRF, Olympus Optical, Tokyo, Japan) with an image
capture system (model Axio Vision Release 4.8.1, Carl Zeiss
Vision GmbH, Germany).

Micromorphological analyses—scanning electron
microscopy

For micromorphological analysis, samples without visual
symptoms, collected from the third node (from apical bud),
were fixed in Karnovsk solution in pH 7.2 sodium phosphate
buffer (Karnovsky 1965). The samples were dehydrated in an
ethyl series and dried to the critical point using the Critical
Point Dryer equipment (CPD 030, Bal-Tec, Balzers,
Liechtenstein). The leaf fragments were coated with gold in
a metallizer (Sputter Coater model FDU010, Bal-Tec, Balzers,
Liechtenstein).

The photographic documentation was performed using a
scanning electron microscope (model 1430 VP, LEO,
Cambridge, England) using the Iridium Ultra software. The
equipment belongs to the Microscopy and Microanalysis
Center, UFV.

Cell death detection

For the detection of cell death, samples from the median re-
gion of leaves without visual symptoms, located in the third
node (from apical bud) in all species, were immersed in Evans
Blue 0.1% solution for 40 min, immediately after collection.
Then, the samples were clarified for 4 days in 95% alcohol at
65 °C (Kato et al. 2007). The glass slides were mounted in
glycerin water and photographed under a light microscope
(model Olympus AX70TRF, Olympus Optical, Tokyo,
Japan) with an image capture system (model Axio Vision
Release 4.8.1, Carl Zeiss Vision GmbH, Germany). In this
test, the Evans Blue reagent only infiltrates cells with altered
membrane permeability, a typical symptom of dead cells,
staining them blue (Gaff and Okong’o-ogola 1971).

Fig. 2 Location of Parque Estadual do Itacolomi (PEI) and the sites where the species were monitored. Modified from Coser et al. (2010). (1, 2, 3, 4)
Monitored sites within the PEI. (5) Monitored site in the PEI surroundings, posteriorly added due to a wildfire in the park
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Statistical analysis

The experimental design was completely randomized, with
five replications (n = 5). The data were submitted to analysis
of variance (ANOVA), using the software Sisvar (Ferreira
2011). The treatment means were compared using the Tukey
test, at 5% significance (p < 0.05).

Results

Microenvironmental analyses

According to the microenvironmental analyses, in December,
there was a higher relative humidity than in the other evaluat-
ed months. Themonth with the highest temperature during the
monitoring period was November. The months with the
highest incidence of wind were July and November (Fig. 3).

Quantification of visual damage

The leaves of the monitored branches of each individual (n =
3), at all monitored sites in the PEI, did not show any visual
symptoms (chlorosis and necrosis) during the monitoring
period.

Determination of fluoride content

According to the quantification of fluoride in dry matter car-
ried out in July 2014, among the three speciesmonitored in the
PEI, the individuals ofM. alpigena had a higher fluoride con-
tent, followed by B. variabilis and E. erythropappus (Fig.
4A).

M. alpigena accumulated 25.2 μg g−1 of fluoride at site 3,
and 22.6 μg g−1 at site 4, differing from the other species at
these same sites, but not differing in the comparison between
sites for the same species. Individuals of M. alpigena were
found and monitored only at sites 3 and 4 (Fig. 4A).

B. variabilis showed fluoride levels of 8.5 and 9.2 μg g−1 at
sites 1 and 2, and 12.5 and 13 μg g−1 at sites 3 and 4, respec-
tively. Among the monitoring sites of this species, there was
no significant difference in the fluoride content.

E. erythropappus also did not differ statistically in the accu-
mulation of fluoride between the monitoring sites. At sites 1,
2, 3, and 4, the individuals presented 7.8, 9.0, 9.0, and 10.1 μg
g−1 of fluoride, respectively (Fig. 4A).

Sites 3 and 4 were the most representative of the sites
monitored in July, where the species M. alpigena showed
significant accumulation of fluoride.

In the quantification of fluoride performed in November
2014, M. alpigena showed a significant difference in the ac-
cumulation of this element when compared to the other mon-
itored species, presenting 23 μg g−1 of this element in site 4,
but not differing from the quantification carried out in July at
the same site (Fig. 4B).

B. variabilis showed 13 μg g−1 of fluoride in individuals at
site 4, not differing from the quantification carried out in July
at the same site. At sites 1 and 2, the species showed 8 and
8.8 μg g−1 of fluoride, respectively. In addition to the sites at
which B. variabiliswas monitored within the PEI, individuals
closest to the smelter were also collected in the PEI surround-
ings, at site 5. At this site, this species showed 13.2 μg g−1 of
fluoride. There was no difference in the fluoride content in
B. variabilis between the monitored sites and between the 2
months of collection (Fig. 4B).

E. erythropappus showed 8.5, 10.5, and 10.5 μg g−1 of
fluoride at sites 1, 2, and 4, respectively. There was no signif-
icant difference between the sites sampled this month, nor was
there any difference between the quantification performed in
the months of July and November (Fig. 4B).

In November, it was not possible to collect material for
quantification of fluoride from the individuals of site 3 due
to a wildfire that occurred in the PEI, which resulted in the
death of all individuals monitored at this site. In view of this
problem, it was decided to add site 5 (close to the smelter) to
the present work.

Anatomical and micromorphological analyses

The leaf ofMyrceugenia alpigena is hypostomatic, presenting
a uniseriate epidermis, with nonglandular trichomes. The me-
sophyll is dorsiventral, presenting secretory cavities close to
the palisade parenchyma (Fig. 5A).

Fig. 3 Microenvironmental analyses at the different monitoring sites in the PEI, fromApril to December 2014. Humidity (%), temperature (°C) andwind
speed (m.s−1). Apr, April; Jun, June; Jul, July; Nov, November; Dec, December
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At the two sites whereM. alpigena was monitored (sites 3
and 4), anatomical damage was observed. At these sites, the
individuals presented retraction of protoplasts and cells of the
midrib collenchyma with an altered shape (Fig. 5B, C, D), in
addition to deformation in the nonglandular trichomes (Fig.
5A).

From the observation with a scanning electron microscope
(SEM), at the two sites (3 and 4) where the collection was
performed, it was possible to observe the presence of flaccid
trichomes in M. alpigena (Fig. 5E and F) and in some areas
they were even lost, remaining only their bases (Fig. 5E and
H). Stomata with damaged ledges (Fig. 5G and H) and fur-
rows formation in the epidermis of these plants (Fig. 5E) were
also observed.

Byrsonima variabilis presents hypostomatic leaf, with
uniseriate epidermis and thick cuticle on both sides of the leaf.
The stomata are located on the same level as the other epider-
mal cells and the guard cells have a prominent stomatal ledge;
the mesophyll is isobilateral (Fig. 6A).

The leaves of the individuals at site 3 (Fig. 6C) presented
cells of the parenchyma and collenchyma of the midrib with
an altered shape. At sites 1, 4, and 5 (Fig. 6B, D, and E), the
same modification was also observed in the monitored plants.

From the observation with SEM in B. variabilis, flaccid
trichomes (Fig. 6F), epicuticular wax flaking, and damaged
stomata, with rupture of the stomatal ledge (Fig. 6G and H),
were observed in the individuals at sites 1 and 4.

The leaf blade of Eremanthus erythropappus is
hypostomatic, with dorsiventral mesophyll. The epidermis is
uniseriate, with a thin cuticle (Fig. 7A). Glandular trichomes
were observed in the epidermis of both sides of the leaf (Fig.
7A and B), in addition to nonglandular trichomes, which were
found on the leaf’s abaxial surface (Fig. 7A).

In E. erythropappus, the individuals at sites 1 and 3 pre-
sented glandular trichomes apparently ruptured (Fig. 7B).
Scanning electron microscopy showed changes in the glandu-
lar trichomes, which were ruptured (Fig. 6C, D, E, and F). In
addition, there was a proliferation of fungal hyphae at the base

of the damaged trichomes (Fig. 7D and E) and epicuticular
wax flaking (Fig. 7C and F). These changes were observed in
all monitored sites.

Cell death detection

The test for cell death was positive for all monitored species.
In M. alpigena, at site 4, damage was observed in
nonglandular trichomes, which were strongly stained by
Evans Blue (Fig. 8A).

In E. erythropappus, only the individuals at site 2 had their
cells stained by Evans Blue. This species showed a moderate
group of stomatal cells weakly stained by the reagent (Fig.
8B).

In B. variabilis the test was positive for sites 1 (Fig. 8C and
D) and 5 (Fig. 8E and F). The major reactions were observed
in the stomata, at both sites.

It was not possible to perform the collection for cell death
test in site 3 individuals due to the previously mentioned wild-
fire that occurred in the PEI.

Discussion

The species evaluated in this study did not show any visual
symptoms, even though they had accumulated the pollutant
and presented damage at the microscopic level, as verified by
De Temmerman et al. (2004), Jha et al. (2009), and Mondal
(2017).

In the present study, Myrceugenia alpigena accumulated
an average fluoride content of 25.2 μg g−1, followed by
Byrsonima variabilis with 13.2 μg g−1 and 10.5 μg g−1 for
Eremanthus erythropappus. The phytotoxicity of fluoride de-
pends on the stage of leaf development, genetic susceptibility
of the evaluated species, and concentration of the pollutant in
the atmosphere (Treshow and Anderson 1989; Weinstein and
Davison 2004). Treshow and Anderson (1989) suggested that
sensitive plants show visual damage when the fluoride

Fig. 4 Fluoride content (μg F.g−1) in each species per monitored site. (A)
Quantification performed in July 2014. (B) Quantification performed in
November 2014. My, Myrceugenia alpigena; By, Byrsonima variabilis;
Er, Eremanthus erythropappus. Uppercase letters compare different

species at the same site. Lowercase letters compare the same species at
different sites. Means followed by the same letter did not differ by
Tukey’s test, at 5% probability (p < 0.05)
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concentration in the plant is higher than 30 μg g−1 of dry
matter. However, Oliva et al. (2005) detected chloroses and
necrosis in grasses with foliar levels of fluoride between 4.7
and 27 μg g−1, while for Lolium multiflorum, even at high
concentrations of fluoride (180 μg g−1), no visual damage
was verified (Mesquita et al. 2011). This shows that the spe-
cies susceptibility variation is not related to a fluoride

concentration limit, but to the specific response of each organ-
ism to the pollutant. This was observed in the present study, in
which the monitored species did not show visual symptoms,
but showed considerable fluoride levels and anatomical
changes.

Sites 3 and 4 stood out in the accumulation of fluoride in
individuals ofM. alpigena. This result is related to the fact that

Fig. 5 Leaf blade ofMyrceugenia
alpigena without visual
symptoms, monitored at Parque
Estadual do Itacolomi (PEI). (A,
B, C, and D) Light microscopy, in
cross section. (E, F, G, and H).
Scanning electron microscopy.
(E) Adaxial surface. (F, G, H)
Abaxial surface. (A, C, E, G) Site
3. (B, D, F, H) Site 4. Black ar-
rows, damaged nonglandular tri-
chome; white arrows, cells with
altered shape; green arrows, bro-
ken trichome base; blue arrow,
furrows formation; red asterisk,
protoplast retraction; white aster-
isk, stoma with damaged ledge. C
Cuticle. E Epidermis. PP, palisade
parenchyma. SC, secretory cavi-
ty. VB, vascular bundle. LP,
spongy parenchyma. St, stoma.
TT, nonglandular trichome.
Scales: (A) 100 μm. (B, C) 50
μm. (E, D, F) 20 μm. (G) 2 μm.
(H) 10 μm
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these sites are the closest to the emitting source among the
sites inside the park, in addition to site 3 presenting a higher
altitude and strong incidence of wind, which facilitates the
arrival of pollutants to the plants, exposing them to wind cur-
rents from the smelter. Louback et al. (2016), in a study car-
ried out in this same environmental preservation area, also
found through active biomonitoring that the fluoride emission
is reaching the PEI, mainly in locations closer to the smelter;
however, the authors reported that the emitted fluoride is also

reaching locations in the PEI that are farther from the polluting
source.

The moderate accumulation of fluoride inB. variabilismay
be related to the fact that this species has a thick cuticle and a
dense cover of epicuticular wax, even over the stomata cells.
Chaves et al. (2002), when comparing Chloris gayana and
Panicum maximum, observed that the higher proportion of
wax may be related to greater resistance to fluoride pollution
in C. gayana. In Eremanthus erythropappus, in the present

Fig. 6 Leaf blades of Byrsonima
variabilis, without visual
symptoms, monitored at Parque
Estadual do Itacolomi (PEI). (A,
B, C, D, and E) Light microscopy,
in cross section. (F, G, and H)
Scanning electron microscopy—
abaxial surface. (A, B, G) Site 1.
(C) Site 3. (D, F, H) Site 4. White
arrows, cells with altered shape;
black arrows, flaccid trichomes;
white asterisk, stomata with bro-
ken ledges. EW, epicuticular wax
flaking; C, cuticle. E, epidermis.
PP, palisade parenchyma. VB,
vascular bundle. PL, spongy pa-
renchyma. St, stoma. (F, G, H)
Abaxial surface. Scales: (A, B, D,
E, F) 100 μm. (C) 200 μm. (G) 20
μm. (H) 10 μm
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study, the high density of trichomesmay have formed a barrier
to the entrance of fluoride via stomata, as it was also observed
by Chaves et al. (2002) in Chloris gayana and by Ribeiro
(2008). Ribeiro (2008) evaluated four species from the
Atlantic Forest and concluded that E. erythropappus has the
ability to tolerate a high fluoride concentration while main-
taining several physiological parameters unaltered. Thus, in
this study, the lower fluoride content in B. variabilis and
E. erythropappus is probably related to the anatomical struc-
ture of these species, which can provide a greater protection to
the plant, by reducing the entry of pollutants into the leaf.

In the Evans Blue test, cell groups with altered membranes
were observed, indicating that there was cell death in leaf
regions of the three monitored species. This test is an impor-
tant prognosis for cell death detection, even when injuries are
not visualized (Faoro and Iriti 2005; Louback et al. 2016). It is

known that the gaseous fluoride penetrates plants through sto-
mata (Pita-Barbosa et al. 2009). Thus, in the present study,
dead cells were observed close to these structures, indicating
that cell death occurred due to the pollutant’s entry (Gerosa
et al. 2009; Alves et al. 2011), and that, consequently, with its
accumulation inside the leaf, other tissues will be affected.
Anjos et al. (2018) studied the effects of fluoride in simulated
rain on the species Spondias purpurea and found that fluoride
caused epidermal necrosis in this species, facilitated by ab-
sorption through stomata, and that after absorption of the pol-
lutant, the damage progressed to the leaf mesophyll, promot-
ing injuries in that region, leading to a total collapse of the
mesophyll cells.

The three species monitored in the PEI showed micromor-
phological damage in their leaves. M. alpigena and
B. variabilis showed more severe damage to trichomes and

Fig. 7 Leaf blades of Eremanthus
erythropappus, without visual
symptoms, monitored at Parque
Estadual do Itacolomi (PEI). (A,
B) Light microscopy, in cross
section. (C, F) Scanning electron
microscopy—adaxial surface. (A,
C) Site 1. (B, E) Site 3. (D) Site 2.
(F) Site 4. Black arrows, damaged
glandular trichomes; green ar-
rows, proliferation of fungal hy-
phae; black asterisk, epicuticular
wax flaking. GT, glandular tri-
chome. PP, palisade parenchyma.
VB, vascular bundle. LP, spongy
parenchyma. St, stoma. TT,
nonglandular trichome. (C, D, E,
F) Adaxial surface. Scales: (A, C)
100 μm. (B) 50 μm. (D) 10 μm.
(E, F) 20 μm
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stomata. Damage occurrence, mainly associated with stomata
in M. alpigena and B. variabilis, has also been reported in
other species (Chaves et al. 2002; Sant’Anna-Santos and
Azevedo 2007; Pita-Barbosa et al. 2009; Cai et al. 2016;
Sant’Anna-Santos et al. 2019), which is due to the fact that
stomata are the main entry route for fluoride. In Eremanthus
erythropappus, the micromorphological damages were more
intense in the glandular trichomes that presented proliferation
of fungal hyphae. The appearance of fungal hyphae has been
observed previously in plants that were exposed in the PEI
(Louback et al. 2016), and also in experiments conducted in a
greenhouse, with simulated fluoride fog (Sant’Anna-Santos
and Azevedo 2007; Sant’Anna-Santos et al. 2014; Anjos
et al. 2018). The invasion of pathogens is related to the epicu-
ticular wax flaking, which can facilitate the entry of fluoride
into the epidermis and, secondarily, allow the invasion of
pathogens (Pascholati and Leite 1995; Pozza et al. 2004).

Both in passive and active biomonitoring in the PEI, the
monitored plants showed anatomical changes. The species
monitored in our research showed protoplast retractions and
changes in the shape of some cells; these damages were also

reported by Louback et al. (2016) in exposed plants at the
park. Thus, it is assumed that fluoride interacts with mem-
brane components, changing its permeability, the lipid matrix,
and interfering with its metabolic function and selectivity,
which can lead to cell death (Fornasiero 2001; Kamaluddin
and Zwiazek 2003; Weinstein and Davison 2003; Oliva et al.
2005), as verified in the present study. The interaction of fluo-
ride with cells has been verified in several studies, in which
the authors diagnosed damage to the cell structure in species
that were exposed to the pollutant, such as deformities in the
cell wall, increased sinuosity of the wall, protoplast retraction,
and loss of turgidity. In some experiments, these cellular dam-
ages led to the formation of generalized necrosis and cell
plasmolysis (Louback et al. 2016; Anjos et al. 2018;
Rodrigues et al. 2018a; Sant’Anna-Santos et al. 2019;
Rodrigues et al. 2020a, 2020b).

The light microscopy data corroborated the data found by
scanning electron microscopy and the histochemical test for
cell death, allowing us to state that the monitored species
showed significant microscopic changes in response to fluo-
ride, even though no visible injuries occurred.

Fig. 8 Cell death in leaves of
plants at Parque Estadual do
Itacolomi (PEI) exposed to emis-
sions from the smelter.
Histochemical test with Evans
Blue, in diaphanization. (A) Site
4, M. alpigena. (B) Site 2,
E. erythropappus. (C, D) Site 1,
B. variabilis. (E, F) Site 5,
B. variabilis. White arrow,
nonglandular trichomes stained
by Evans Blue; white asterisk,
group of dead cells; black arrow,
stomata stained blue. Scales: (A,
C, E) 150 μm. (B, D, F) 100 μm
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Conclusions

The responses obtained through passive monitoring at the PEI
lead us to conclude that the emissions from the aluminum
smelter affect the native vegetation of this environmental con-
servation area. In addition, the greater accumulation of fluo-
ride in M. alpigena and its broader diversity of symptoms,
with considerable microscopic damage if compared to the
other monitored species, enhances the use of this species in
the monitoring of environments polluted by fluoride. It is
worth noting, however, that analyses in a controlled environ-
ment are necessary in order to confirm the damage described
in the field.

The study of the impact caused by the emission of fluoride
on plants contributes to the understanding of abiotic factors
that affect the species of the PEI, which alter communities and
ecosystems, thus increasing human awareness of the effects of
air pollution. The knowledge of the effects of fluoride on these
native species of the PEI is of great importance, since the use
of these species in environmental pollution biomonitoring
programs can contribute to the preservation of the plants pres-
ent in this park.
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